
TOPOLOGICAL STRUCTURES
FOR

GEOMETRIC MODELING

by

Kevin J. Weiler

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer and Systems Engineering

Approved by the Examining Committee:

Prof. Michae! J. Wozny. The@ivi@

Prof. W. Randolpfi Frank!m, Member

e

S AR

Prof. Harry W. McLaughlin, Member

Prof. Mark S. Shepgard, Member

Rensselaer Polytechnic Institute

Troy, New York

August 1986

TR-86032

© Copyright 1986

by
Kevin J. Weiler

All Rights Reserved

ii

CONTENTS

CONTENTS ...cocvvvririrecrne i

LIST OF TABLES

LIST OF FIGURESc.......

ACKNOWLEDGEMENTS ...c.oceoviiemnuriimniranemtnecssis i inserseseiseessssssescsstos s seesse e oo XV

ABSTRACT ...

Chapter 1. INTRODUCTION

1.1 Organization of the Thesis

1.2 Audience

1.3 Miscellaneousccccvevenene.

Section I. GEOMETRIC MODELING

Chapter 2. INTRODUCTION ..o.cciienrarniminenscoiniess st oteeseseesessesesess s e esesoses oo 8

2.1 Organization of THiS SECHOM .wevuivereuririoueeeenteeseiees et eseeeeseneeese o ress o es oo 8

Chapter 3. FORMS OF GEOMETRIC MODELING ..ovoovcevevecvveee oo 10

3.1 Geometric Modeling FOTMS .oiuiriivimuriroeioneiseeeseressesnsses oo oo 10

3.2 A Taxonomy of Geometric Modeling Representationso.ooeoeonn. 17

Chapter 4. TOPOLOGY AS A FRAMEWORKoovvmooievrereeeoeos oo 22

4.1 Topology and GEOMELTYoomirirerieemrereesinsireeseeresresesssseses e 22

4.2 Different Kinds of TOPOIOZY wecvovurmrrioueirnrioiricseierese s seos e 23

4.3 USING TOPOLOZY ovvvveeeevennenreenie s eeemsse st sessersesessssereseseseeseses s e 24

4.4 Topology as .- Framework ...cccuiivoenirooninsseseeereeseesesesesesess oo 27

4.5 Sufficient TOPOIOZY ..vvveereemereesnsreinrsiseeaecses et eses oo seneeearessee s esseos oo es 20

4.6 Sufficient Topology as & Frameworkoccoceveeoereeosevsvecrorsoveos oo 30

Chapter 5. TOPOLOGY AND GEOMETRY ..oocovviveemreee oo oo 31

5.1 Graph Theoretic CONCEPLS wo.uverirrrnnreriereeeseceesener e reeesseese e oseensos oo 31

5.2 Topological CONCEPLSvverueirreemrsrirerisie s ee e ee s s oo oo 32

iii

5.3 Geometric Modeling CONCEPLS .ivvrieiireiriemriiieriersenreensenseesreessiaseesresssesvessnner

5.4 Drawing Boundary Graphs ... iensineiensenennneene e e e

Chapter 6. TOPOLOGICAL ADJACENCY RELATIONSHIPSc.cooovvviienrarnnnes

6.1 Terminologies for Adjacency Relationshipscccocvveeviveriecie e

6.2 Topological Element Adjacency Relationship Terminologyocvceverevrienn.

6.2.1 Element Type SYMDBOL ..o ettt sr i sn v en e e

6.2.2 Symbol PIUTAliLYcoovviiiiiceitiisi sttt vt n e e ss v ar s

6.2.3 Group OFderilg ..ccvininiiiiiiiiin et rercee e er s s v etes b s sear s s s e sese st aran

6.2.4 Adjacency Relationshipoccivicinrinnnin et s e

6.2.5 COTTeSPONUEIICE ..iiiiiiciiciercrceerin s s et crsess s veab e sras b er et ea sessta s st s ce e reeeva s

6.2.6 Referencing and ENUmeration ...cccivevcciioionsninsirieneevses et se e s se e ees

6.2.7 EXBMIPIES wvoveiiiiiriiiiriine it s vt seee e orsrae e s vt seats s snsa s ssavve se ot bn se st a0 e st ve eesenee

Chapter 7. TOPOLOGICAL DOMAIN AND SUFFICIENCY ..o,

X DOMAIN ittt crcrcrereren e s s et e e s s e ss a0 s et e ee s st ar e

7.2 Topological Sufficiencycoecevevcrviiinieneseiiiiiine s

7.2.1 Theoretical SUFICIENCY .ocivvirrriniieiinieerieniseeee it crese e cerssesersresesseeseeans

7.2.2 Practical Sufficiency

Section II. MANIFOLD SOLID REPRESENTATIONS

Chapter 8. INTRODUCTIONcociiiiicvinininntiiriceine e ersresese et seesesssses st sese s e

8.1 Organization of This SECHON wvvviiierireriiririrerieetcrctitet et s e s e

Chapter 9. DOMAIN ..ccviiiiiiiiniie et veneanns

9.1 Topological CONSIAErations «...v.vcuvcererirenrieiviee s s ceicesesseseeneeene e

9.2 Geometric Considerationscvuuvieveneeemvsrnineenseseeviennns

9.3 Domain Characterizationeecceivaneneeiiioveresesreemranne.s

Chapter 10. TOPOLOGICAL ADJACENCY RELATIONSHIPS

10.1 The Manifold Topological Elementsccoevvvevueeeereveerennnn

10.2 The Manifold Connected Graph Topological Adjacency Relationships

10.2.1 Edge Adjacency Relationships woooooveiveieieeieie it

10.2.2 Correspondencecccveenvererevrreivninnevnnans

10.3 Adjacency Relationships for Disconnected Graphs ..

iv

59

59

61

61

64

65

69

69

71

78

80

82

10.3.1 LOOPS uuvivieieioiisiinitnsiisssensisissteessse e inasasasanseos st sess s e ne s eeesoneeee e s e sesrotssons

10.3.2 SREllS wuiiiiiiiriiiiiircrncncer st cr et v s e s st es et e ean sttt e

10.3.3 Disconnected Graph Adjacency Relationshipso.coovevveeerresrnesrssesnsenn

Chapter 11. TOPOLOGICAL SUFFICIENCYcoceovvvvereevevmesiseersemers s

11.1 Sufficiency of the Manifold Element Adjacency Relationships

11.1.1 The Individually Sufficient Adjacency Relationshipsccovcevevrresenen

TLLLL V < E> SUFACIENCY wvvvviirieiririririe e eeeen e e ee s

ILLL2 E {< E> } SUffiCIENCY vvvvviveiiieireceieeseerereeessrerosieenn

11.1.1.3 F< E> Sufficiency ...,

11.1.2 The Insufficient Individual Adjacency Relationshipsc..ocovererrerennn.,

11.1.3 Sufficiency of Combinations of Adjacency Relationshipscocove.......

11.2 Sufficiency of the Disconnected Graph Adjacency Relationships ...,

11.3 Summary of FIRAINGS ..cieieiecriiiirinr s i seseescee e es s

Chapter 12. TOPOLOGICAL DATA STRUCTURES .oovvvoveeee oo

12.1 Edge Based Graph Data StIUCIUTES ...ovvveceveveiseeseeniersorrsessereseos s eoosos e

12.2 Support Data Structuresouvivieevceaveriveenenns

12.3 The Winged Edge SITUCIUTE .rvvvvueeriviieiene st ceeeeseeseeesees s ses s es e

12.3.1 DeSCription ..ovveveereiiieivirenisisiesecensvoononan

12.3.2 SUFAICIENCY 1ivivireeeerenrcniiiieens oot ss s rsseeer et sesese e easeenenns

12.4 The Modified Winged Edge Structure ...
12.4.1 Description

12.4.2 Sufficiency

12.5 The VerteX-Edge SIFUCIULE ...cvvrivvieiiiereereeeree e eeeeceso s et os s e

12.5.1 DESCIIPLION 1uvuviiiiviiisiecreceinientse et ve et st ssen e esaeses e s es e ee s

12.5.2 SUFACIENCY 1ivivivitventierieirneeees s sseisir it st ee e e e e eteeeres e eeeseeeeeese s eon

12,6 The Face-Edge SIUCUIEccuvviirireereurieissenseseres e reeeesss e e es e oseseeseoe e

12.6.1 DESCHPUON wvviiviieiiivisiere vt cnienasit e et e e sesss e essese e

12.6.2 SUTAICIENCY wouvuiiuiiiivisiitiecr ot ettt st e e eeee st e s

12.7 Topological Elements and Their Uses in Adjacency Relationships ..

12.8 VAIBLONS w.oviviveiitiit it ettt et es s st

12.9 Extensions for Disconnected Graphs

83

84

85

90

90

91

91

94

95

107

{10

115

118

118

119

123

123

126

131

131

132

133

133

133

135

135

137

138

140

141

vi

12.9.1 Multiply Connected Faces e . 141

12.9.2 Multiple Shell Objects 145

Chapter 13. EULER OPERATORS 148

13.1 The Euler OPErators ... oo 148

13.2 The Basic OPErators ... e inssiesssssseossssessssnssensses 149

13.3 Direction-Edge-Vertex Positioning Specificationccocvvicriviesrereveeerererne s 150

13.4 A Specification of the Euler Operatorsc.uummeiiievesroiiiosesecnnnnnne, 154

13.4.1 Basic OPEIAtOrSccovvierrcicrerensaranessesissessaersassassessarsesesssssassossosseseeseeroncees 133

13.4.2 Complement OPEratorscocuueiivieneneseercrenesenrsrsrsvasisneseersseievesssrsnnesaes 136

13.4.3 Composite OPEratorsuuiiiinminesenicivnnnecesssenissneiessississnssvernens 138

13.4.4 Miscellaneous OPerators ... nnnsinesesnsronseerssreeresnonnes 139

13.5 Building Higher Level Functions on the Euler Operatorsceeovivireren. 163

Section ITI. NON-MANIFOLD REPRESENTATIONS

Chapter 14. INTRODUCTION 165

14.1 Application Areas for Expanded Modeling Capabilitiesccccoveervvvrernne. 166

14.2 Organization of This SECtON .uicircnnrrnninnrnee e eee 167

Chapter 15. DOMAIN ..o cnssssnsssssssetessse s eessssssssssssnessssssonssnenss 169

5.1 Specification of DOMAINocveiiniiiiiiieie i e etiras e 169

Chapter 16. ADJACENCY RELATIONSHIPS ..cooovvvveiiiiiiieiieeieeeeeieeeee et 173

16.1 The Non-Manifold Topological Elementscocevvuiviviveiicsiereosseseseeenenene. 173

16.2 Adjacency Relationships in a Non-Manifold Model ...ccocoeeevevevvereescvccirnnnn. 175

16.2.1 Adjacency Relationship Semanticswvniviiiiiiviiisienioscecessseseeeeenenrs 183

Chapter 17. TOPOLOGICAL DATA STRUCTURES ...coovvverrereeeeee e, 186

186

187

17.1.2 Non-Manifold Conditions Along an Edgecccocvvevnniicmvnenecrericnnnnnn, 187

17.1.3 Non-Manifold Conditions at @ VerteXmueoeeeeicieienrieneiesreerenn. 189

17.1 Design Issues in Non-Manifold Representations

17.1.1 Direct Representation of Adjacency Uses

17.1.4 Non-Manifold Wireframe Representationceccoveeeeciverrierevecriorssnns. 189

17.1.5 Separation SUIfACEScicrierrrinimriierecirit s seiriie s e vecreesecamrsesveseeanrenes 190

17.2 A Description of the Radial Edge Data Structurecccovvveeeeeveeeeeeirrnrrrennnn 193

17.2.1 Design Decisions ...

17.2.2 DAta SITUCHUTES wovivivisiereisse e e ceseeeiemssesessesisas b st eeesevesssteresesassestosesesteserensonsoren

17.2.3 Geometry and Other ALIFIDULES .oocvveercicreioieieiriiiniese s er e iiese e srer e venenens

17.2.4 Variations in Data StIUCLUIEScuviriviieiviesririiees e er s b e eser e e seseersenes

17.3 Detecting Volume Closure by Face Additionscccevvuerererenne.

Chapter 18, TOPOLOGICAL SUFFICIENCY ..coccciiineniceiticieeesese i veessesvarsenns

18.1 Minimal Theoretical Sufficiency for Non-Manifold Environments

18.2 Practical Sufficiency for Non-Manifold Environmentscoveeeeevvvvvnveenn.

18.3 Sufficiency of the Radial Edge StrUCIUTE ...vcvvviciiieriiieeeeeeerecserseeeerossee s s

18.3.1 Adjacency Relationships in the Radial Edge Structureomeveevvionn.

18.3.2 Completeness of the Radial Edge Structure T

Chapter 19. NON-MANIFOLD OPERATORS

19.1 The Non-Manifold Topology Operators

19.1.1 Non-Manifold Positioning Specificationcoceeeeeveieovesesevererecvsssssnesenns

19.1.2 A Specification of the Non-Manifold Operatorsocuveeceoverevsrersrennsrns

19.1.3 General OPEratorsuuic o mmiimirmoiemnmasasssssosstesesesrens e e eeeessessseseen

19.1.4 Non-Manifold Operatorsccuviienineeeivirisennenn

19.1.5 Manifold OPeratorswe e crniiimresrerssseiensaressresseseseoses e seeserssoe s

19.1.6 Other OPeratorsuiierieierereitnareronseseseceneens

19.2 Sufficient Set of Construction OPETatorS ...ceeeieeiirireirset e

19.3 Examples of Use of the Non-Manifold Operatorseeooeverveemevnnennn.

19.4 Specification of the Access OPErAtOTSo.cccoeoeoveeieeeereeereeeererseeereros e ss

19.4.1 Query Operatorsuummrnrmrirerneans

19.4.1.1 Downward Hierarchical Accesses

19.4.1.2 Upward Hierarchical Accesses

19.4.2 Traversal OPEIAOISuiiireireioirarerieosessesseseseseeseeeot et seesse e ms s eeesessron s

19.4.2.1 Global Traversals

19.4.2.2 Downward Hierarchical Traversalsc.eocoereeivveersecrverereesssosiesess oo

19.4.2.3 Upward Hierarchical Traversalsccccuuiouurieressuriveesseeseseescersssseenns

19.4.2.4 Element Use TIAVETSAlS ...ccicviieeivieieeeeetereerecemsseeeesseresessss s srssesess s os oo

19.5 Building on Low Level Non-Manifold OPEratorscceeeonnnneernieireeeonsenn

vii

193

196

210

211

212

215

216

217

218

218

221

224

224

226

230

231

236

238

239

239

246

247

249

249

250

250

251

252

252

252

252

viii

Section IV. TOPOLOGY AND GEOMETRY INTERFACE

Chapter 20. THE INTERFACE BETWEEN TOPOLOGY AND GEOMETRY .. 257

20.1 Problems in Coordinating Topological and Geometric Information 258

20.1.1 Implicit Formulations ... 299

20.1.2 Parametric Formulations 262

20.2 Representation of Intersection Curves with Parametric Geometry 262

Section V. CONCLUSION

Chapter 21. CONCLUSION ...ccciiiiiieriinrenesenesnns e mvesrinanressscnessiessvsnsssessnssrnssrnesens 206 .

21,1 ContribULONS wvvriiinieiriie it eresesensin s e arar e vear s srss e sesrsosesrnesecn e ees 266

21.2 Areas for Future Developmentc.cvuviiinniinesnsvoneiseen e seseise s s s 268

278

278

279

280

Appendix A. TOPOLOGICAL SUFFICIENCY UNDER CONSTRAINTS.

1 Sufficiency Under Constraintscueverirencninncneniinernnreninrsseenens.s

2 Disallowing Multigraphs and Self Loopscccoemvvnerirreneiminncenns

3 Unique E{F} Adjacent Groups ..c.c.ceeiieneinnmneneane s cenosssvsssesesens

4 Sufficiency with Connectivity Informationccocovvernvivenrereeesnnirnnn, . 282

282

283

4.1 The Three-connected and Planar Constraint for Graphs

4.2 Removing CONSIIAIES wuvniicirceeiereararesencnsemsseseorensessererssssesreses

Appendix B. STORAGE AND ACCESSING EFFICIENCY COMPARISONS. ... 289

1 Space Requirements for the Manifold Data Structurescocecviveveverieesnnenennis 290

292

293

295

2 Time ReqUirements ... rcrmeconerioisiescnnnssensnsosevnenas

3 Accessing Efficiency Comparison of the Manifold Data Structures ..

4 Accessing Algorithm Complexity of the Manifold Data Structures

305

306

308

308

308

Appendix C. TRAVERSALS OF THE RADIAL EDGE STRUCTURE.

1 Generalized Traversalcccceeue.

2 Global Model Traversals

3 Downward Hierarchical Traversals

4 Radial Edge Use-Component TraverSals .c.ooviveeioieierieieseeeesessseseeeoeeeeenrinens

Appendix D. COMPLETENESS OF THE RADIAL EDGE STRUCTURE.

1 Additional FURCHONS ittt en e r s e

2 Algorithms to Derive the Adjacency Relationshipso.cocvevvviviissssevere s

2.1 Upward Hierarchical Diagonal Adjacency RelationShipscoccoivueeecrirennnes

2.2 Downward Hierarchical Diagonal Adjacency Relationshipsoveveeremnnn.

2.3 Upward Hierarchical Adjacency Relationshipsccevcrvverevenerencnnnn,

2.4 Downward Hierarchical Adjacency Relationshipscc.oeee....

2.5 Main Diagonal Adjacency Relationships .o..ccveeeeviiiceneeensonennens

Appendix E. SELECTIVE QUERY AND TRAVERSAL. ..c.cooovemmveeemeroeeeeen,

L RALONAIE wcvvviiiiiiiiinieccnrariens st sterar e besesesese e s et s se e saennensennens

2 Implementation et et et b e e

ix

310

311

312

312

312

313

315

317

319

319

320

LIST OF TABLES

Table 13-1. The Euler OPerators ... wsim o areereerasessaronsess s

Table 13-2. Operator Effect on the Numbers of Topological Elements

Table 18-1. Left Half of Radial Edge Adjacency Matrixccccovvvivvenvivmniencnninnes

Table 18-2. Right Half of Radial Edge Adjacency Matrixc.coeevienvenvevrrerennnns

Table 19-1. Topology Representation Construction Operatorsc.ccccvvververrerennas

Table 19-2. Operator Effect on Numbers of Topological Elementsc..coevvvrnennes

Table 19-3. Complementary Relationships Between Construction Operators

Table B-1. Representation Storage Requirements per Edge ..cccoveeciirevecvvenearinns

Table B-2. Typical Storage Requirements for Some Solid Objectso.ocvvvvennen.

Table B-3. Summary of Field AcCessing COSESvmmrrimirirosmsiesinnsossoreersonreeeseressenee

Table B-4. Summary of Record Accessing COSIS wivviveivinniinirneiiienrvennnenesnniniesennons

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 4-1,

Figure 4-2,

Figure 4-3.

Figure 4-4.

Figure 5-1,

Figure 5-2.

Figure 5-3.

Figure 6-1.

Figure 6-2.

Figure 9-1.

Figure 10-1.

Figure 10-2.

Figure 10-3.

Figure 10-4.

Figure 10-5.

Figure 10-6.

Figure 10-7,

Figure 10-8.

Figure 10-9.

Figure 10-1

LIST OF FIGURES

Wireframe, surface, and solid modeling formscoceovoveevereeesnsirinns

Example of a non-manifold geometric modeling formo..ooovvvnn.nn.

The 2-dimensional disk around points on a SUrfaceovvvovnannn.

The Boolean union of two manifold obJEctsccvevereerervveveereresssss o

Geometric modeling representation classification and examples

Topological information in the continuum of information

The nine element adjacency relationships

Different forms of tOPOIOZY weevurerireieriinsiiisiiereeeesseeseesesse oo sseseos e

Top-down hierarchical representation of topological elements

Schlegel diagram of @ cUBE .ccovvveeieiiveivie it ee s

Boundary graph diagram of an object of genus one using voids

Crossing edge diagram of torus in Figure 5-2ococorvooveroeevooesn

Baer et al. terminology for element adjacency relationships

The element adjacency relationship class Matrix vo...ooovvveveeevevevovorivon.

Self loops and multigraphsooieveeeeeeensrsrinns.

The ordered and unordered adjacency relationshipsoo.vvevvene.n.,

The ordered and unordered adjacency relationships ...c.ccvcvvenvieenn,

Actual adjacency relationships for a tetrahedron

EE adjacency relationship formats ...

Two definitions of the F< F> adjacency relationshipo............

Adjacency relationship example involving strut edges and self loops .

Correspondences between the nine adjacency relationships

Artifact edges to associate separate boundaries of a face

Artifact faces to associate separate boundaries of a volume

0. The manifold disconnected graph adjacency relationship matrix

xi

11

13

15

16

19

23

25

26

27

38

39

40

43

48

63

72

73

74

76

77

81

83

84

Figure 10-11. V< L> adjacency relationship examplecccvevenriiiniminn s,

Figure 10-12, LL adjacency relationship eXamplec.cviveionivon i oo

Figure 11-1. Result of application of vertex identification rules A and B

Figure 11-2. Insufficiency of the E{V} adjacency relationshipcccoeemurrevivrnnnns

Figure 11-3. Insufficiency of the E{F} adjacency relationshipccccoeemvverenrvrirnnnnnn

Figure 11-4. Insufficiency of the V< V> adjacency relationship ..ccuciieivnecrrninnn.

Figure 11-5. Insufficiency of the F< V> adjacency relationshipccceevverenrnennen,

Figure 11-6. Insufficiency of the V< F> adjacency relationshipccccoovervevunne.

Figure 11-7, Insufficiency of the F< F> adjacency relationshipccvveeeevniinninn,

Figure 11-8. Insufficiency of the E{{E]} adjacency relationshipcoevvevevniviinne

Figure 11-9. Insufficiency of the E[V]-E{F] adjacency relationships

Figure 11-10. Insufficiency of the E{V}-F< V> adjacency relationships

Figure 11-11, Insufficiency of the E{F}-V< F> adjacency relationships

Figure 11-12. Insufficiency of the E{F}F< V> adjacency relationships

Figure 11-13. Adjacency relationship matrix showing sufficiencyceennn...

Figure 12-1. Pascal description of the support data StrucCturesoovevevceireeererann,

Figure 12-2. The winged edge data SETUCLUTE ..ocvrivriveivereeeeseeesn e eneeersteteeeeere s e

Figure 12-3. Sufficiency of E[VI-E[LEI] woicvcoiieroresmirsiincnrereineseresseserssnesessessssesseeses

Figure 12-4. An object with multiple self loops using the same vertex

Figure 12-5. The modified winged edge data StrUCtUTEoovvvvvvieevcrieieeeeceeeer e

Figure 12-6. The vertex-edge data SITUCIUIE ...cvuviervvusereiensieresessie s e

Figure 12-7. The face-edge data SITUCIUTE uvvvveceiiineeeievenireeeesiciseeeeereseee e es s

Figure 12-8. Loop structure adjacency relationshipsccoceeveveeieeesesiecseessn o

Figure 12-9. Modified and additional data structures for 100Dvevevneveeveresserenn.

Figure 12-10. Shell SIructureoococoveeevrereeenveennnns

Figure 13-1. Specification of placement for an €dgecoovvieemerinriressosieses e

Figure 13-2. Direction-edge-vertex edge placement specificationcvveeruen..,

Figure 13-3. Action of the Euler OPerators ..u.iuuiineeniiininseeeseeseseseess e nenes

Figure 13-4. Action of the EUler OPErators ... uiivemiositosseasiensses s sescereeseees

Figure 13-5. Action of the Euler OPerators ... ienimiieariresieesoseeesreremseeoreneens

Figure 16-1. Non-Manifold adjacency relationShip matrixocoveveeeeeveesenesnoesinnns

xii

87

88

97

101

102

103

104

105

106

108

111

112

113

114

116

120

125

129

130

132

134

136

143

144

146

152

153

160

161

162

176

Figure 16-2. Actual adjacency relationships for a non-manifold object .oociirnnrnnin.

Figure 17-1. Non-manifold conditions at a point and along an open curve

Figure 17-2. A separation surface

Figure 17-3. A nested tree of separation surfaces

Figure 17-4. Radial Edge structure relationships

Figure 17-5. Radial Edge representation of two faces

Figure 17-6. Cross-section of three faces

Figure 17-7. Plan view of a loop of edges

Figure 17-8. Radial Edge representation of a vertex.

Figure 17-9. General types for Radial Edge structure

Figure 17-10.

Figure 17-11,

Figure 17-12.

Figure 17-13.

Figure 17-14.

Figure 17-15.

Figure 17-16.

Figure 19-1. Action of the Non-Manifold topology operators ...

Types for Radial Edge basic topological elementsooooooovonnn.

Types for Radial Edge basic topological elementso.oooovooovivinn,

Types for Radial Edge basic topological elementsocvvoonn.e...

Types for Radial Edge adjacency usage elements

Types for Radial Edge basic topological elementscovvoovovn..

Types for Radial Edge basic topological elements

Types for Radial Edge adjacency usage elements

Figure 19-2. Action of the Non-Manifold topology operators

Figure 19-3. Action of the Non-Manifold topology OPeratorseneveererreennnn,

Figure 19-4. Action of the Non-Manifold topology operators

Figure 19-5. Action of the Non-Manifold tOPOlogy OPEratorsuvvuveevcerereiennns

Figure 19-6. A minimal sufficient set of operators to construct any medel

Figure 19-7. A non-manifold face using an edge three timesccoocoeevvevvisnnnnn.

Figure 19-8. A layered approach to building a geometric modeling system

Figure 20-1. Example of a self-intersecting curve of intersection

Figure 20-2. Techniques to identify implicit geometry curve segments

Figure 20-3. Curve segment specification prone to precision problems

Figure 20-4. Correspondence between parametric geometry and edge uses

Figure 20-5. Correspondence between parametric geometry and edge uses

Figure A-1. An object and its 2-connected boundary graph

xifi

178

188

191

192

194

197

198

199

200

202

203

204

205

206

207

208

209

240

241

242

243

244

245

249

253

259

260

261

263

264

xiv

Figure A-2. The hYpercube ... s sessesissesensasiensss . 280

Figure A-3. Self loop located at a vertex shared by several facescouvvivneen. 287

Figure B-1. Manifold adjacency relationship accessing proceduresuvvvrverenens 298

ACKNOWLEDGEMENTS

There are many people that I'd like to thank for their help, support, and friendship

during the lengthy production of this thesis. I am deeply grateful to each of them.

Dr. Michael Wozny, my advisor and doctoral committee chairman, has been helpful

in both academic guidance and in the development of the research presented here.

He has also put together and directs an impressive education and research laboratory,

the RPI Center for Interactive Computer Graphics. And I certainly wouldn’t forget

Mary Johnson and her staff, who have been helpful on numerous occasions and do a

superb job of keeping the administrative functions at the CICG running smoothly.

My doctoral committee, W. Randolph Franklin, Harry McLaughlin, Mark Shephard,

and Michael Wozny have provided feedback, encouragement, and stimulating conver-

sations.

Several people contributed through their careful reading and commenting on a draft

of the thesis, including William Charlesworth, Philip Kennicott, Peter Noel, and Peter

Wilson,

Several people three years ago commmented on the paper “‘Adjacency Relationships

in Boundary Graph Based Solid Models” which eventually found its way into this

thesis: Peter Atherton, Brian Barsky, Patrick Hanrahan, and Uri Shani.

The GE CR&D CAD Branch has provided a friendly and helpful environment which

helped to foster much of this research.

Rida Farouki gave permission to use a figure from his paper [Farouki 86], which

appears here as Figure 20 - 1, and has also provided comments on some portions of

the thesis.

XY

xvi

The GE Educational program provided financial support.

My current and former immediate GE CR&D management provided support for this

line of research, and, when necessary, helped cut red tape: Leonidas Jones, Virgil

Lucke, and Peter Wilson.

The GE CR&D graphics operation produced most of the artwork found here, with

Diane Stephens coordinating the effort.

Dominick Darkangelo and John Spaeth kept my computer backed up and the laser

printer running.

Most of all, ’d like to thank my family: my wife, Arlyn, for her support, patience,

encouragement, and love; my son Jay, a newcomer, for his love; and my parents and

relatives for their support and encouragement,

ABSTRACT

Geometric modeling technology for representing three-dimensional objects has pro-

gressed from early wireframe representations, through surface representations, to the

most recent representation, solid modeling. Each of these forms has many possible

representations.

The boundary representation technique, where the surfaces, edges, and vertices of

objects are represented explicitly, has found particularly wide application. Many of

the more sophisticated versions of boundary representations explicitly store topologi-

cal information about the positional relationships among surfaces, edges, and vertices.

This thesis places emphasis on the use of topological information about the shape

being modeled to provide a framework for geometric modeling boundary representa-

tions and their implementations, while placing little constraint on the actual geometric

surface representations used.

The major thrusts of the thesis fall into two areas of geometric modeling,

First, a theoretical basis for two-manifold solid modeling boundary topology represen-

tations is developed. The minimum theoretical and minimum practical topological

adjacency information required for the unambiguous topological representation of

manifold solid objects is determined. This provides a basis for checking the correct-

ness of existing and proposed representations. The correctness of the winged edge

structure is also explored, and several new representations which have advantages

over existing techniques are described and their sufficiency verified.

Second, a non-two-manifold boundary geometric modeling topology representation is

developed which allows the unified and simultaneous representation of wireframe,

surface, and solid modeling forms, while featuring a representable range beyond what

xvii

is achievable in any of the previous modeling forms. In addition to exterior surface

features, interior features can be modeled, and non-manifold features can be

represented directly. A new data structure, the Radial Edge structure, which provides

access to all topological adjacencies in a non-manifold boundary representation, is

described and its completeness is verified. A general set of non-manifold topology

manipulation operators is also described which is independent of a specific data struc-

ture and is useful for insulating higher levels of geometric modeling functionality

from the specifics and complexities of underlying data structures.

The coordination of geometric and topological information in a geometric modeling

system is also discussed.

Chapter 1

INTRODUCTION

Geometric modeling technology for representing three-dimensional objects has pro-

gressed from early wireframe representations, through surface representations, to thé

most recent representation, solid modeling. Each involves increasing amounts of

information about the shape being modeled, and provides correspondingly more

sophisticated functionality. Yet each modeling form still retains unique characteristics

which make it most appropriate under certain application requirements.

Each of these forms has many possible representations. One kind of representation

technique that has found wide application is the boundary representation technique,

where the surfaces, edges, and corner vertices of objects are represented explicitly.

Many of the more sophisticated versions of boundary representations explicitly store

topological information about the positional relationships among surfaces, edges, and

vertices,

This thesis explores boundary based, object based, evaluated representational forms

which explicitly store topological information, because these have shown wide applica-

tion in industrial modeling as well as in other environments.

The thesis places emphasis on the use of topological information about the shape

being modeled to provide a framework for the modeling representation and imple-

mentation, while placing little constraint on the geometric surface representations

used. While there are many advantages to this approach, perhaps the most important

is that it can provide a stable basis for an implementation to evolve using several

geometric surface representation forms, as appropriate to the application require-

ments. The thesis therefore concentrates on the representation of the topological

framework itself.

The major thrusts of the thesis fall into two areas of geometric modeling.

The first is in the area of manifold boundary representations. Manifold boundary

based, object based solid modeling topology representations are the basis of some of

the most popular forms of manifold solid modeling representations being used today.

In spite of this, most of the topological theoretical exploration of solid modeling has

been limited to point set topology, which is of more value in volume based modeling

representations. There has previously been little theoretical exploration of algebraic

topology to provide a firm theoretical basis for boundary based solid modeling sys-

tems. The value of providing a theoretical basis for solid modeling representations is

that it provides a basis for checking the correctness of existing and proposed

representations and their implementations, and can provide insight which may lead to

new representations previously not considered. It also provides a basis for determin-

ing the minimal amount of information needed to unambiguously represent a model.

The thesis addresses this need, developing a theoretical basis for manifold solid

modeling boundary topology representations. The minimum ‘theoretical and

minimum practical topological adjacency information required for the unambiguous

topological representation of manifold solid objects is determined. The correctness of

an existing manifold solid modeling representation is explored, and several new

representations which have advantages over existing techniques are identified and

proof of their sufficiency is given.

The second is in the area of non-two-manifold topology representations. Little work

has been been done in the area of non-manifold boundary based object based

geometric modeling representations, and non-manifold representations which expli-

citly store topological adjacency information are in an entirely new area of research.

Yet there are several reasons why such a representation form is useful. A unified

representation for combined wireframe, surface, and solid modeling by necessity

requires a non-manifold representation, and is desirable since it makes it easy to use

the most appropriate modeling form (or combination of forms) in a given application

without requiring representation conversion as more information is added to the

model. A unified representation can also have many implementation advantages in

terms of lower initial resource investments as well as lower maintenance requirements

compared to multiple representation systems. The user interface in a unified represen-

tation system also tends to offer a more integrated approach to the end user since the

same framework is being manipulated in all cases. Arbitrary geometric information,

such as center lines, can be stored in the model with shape descriptions. Composite

objects can be modeled directly. With a non-manifold representation, applications

such as finite element analysis can for the first time be directly supported in the

modeling representation environment, allowing communication between the modeler

and analysis application in both directions using the model representation as the com-

munication medium. Closed form Boolean operations are possible in a non-manifold

representation. In addition to a non-manifold geometric modeling representation,

operators to manipulate the representation greatly simplify implementations. The

thesis describes a new data structure, the Radial Edge structure, which provides

access to all topological adjacencies in a non-manifold boundary representation, and

verifies its completeness. A general set of non-manifold topology manipulation

operators is also described which is independent of a specific data structure and is use-

ful for insulating higher levels of geometric modeling functionality from the specifics

and complexities of underlying data structures.

The thesis thus contributes to the state of the art in two areas of geometric modeling;

first, by establishing and utilizing a theoretical basis for manifold boundary based

solid modeling topology representation systems, and second, by investigating a power-

ful but largely unexplored geometric modeling form through the development of the

first non-manifold boundary based geometric modeling representation which explicitly

represents topological adjacencies.

1.1. Organization of the Thesis

The thesis is organized into five major sections.

The first major section, ‘‘Geometric Modeling’’, presents an organized view of the

geometric modeling field and identifies the position of this new work in the wider

geometric modeling context. It provides a philosophical and technical foundation for

the work described in the thesis, and also develops the terminology used throughout

the thesis. It is primarily intended to provide a minimal mathematical background for

the non-mathematician, and a minimal geometric modeling background for those new

to modeling.

The second major section, ‘‘“Manifold Solid Representations”, develops a theoretical

foundation for boundary based manifold solid modeling topologies, describes and

proves the sufficiency of several new data structures, and, for completeness, reviews

existing operators to manipulate manifold boundary graph topology representations.

The third major section, ‘““Non-Manifold Representations’, describes a new non-

manifold boundary graph topology representation which provides a unified representa-

tion of wireframe, surface, solid, and non-manifold modeling forms. Completeness

of the new data structure is proven. It also presents new general operators to mani-

pulate non-manifold boundary graph topology representations.

The fourth major section, “Topology and Geometry Interface’, describes some of

the problems in coordinating the topological and geometric representations in

geometric modeling systems, and identifies some of the potential techniques to

approach these problems. It also points out the correspondence between direct

representation of uses of topological elements and representation of parametric

geometry surface intersections.

The fifth major section, ‘‘Conclusion”, concludes the thesis, reviews the major

results, and identifies areas for further research.

Five appendices follow. The first, ‘‘Topological Sufficiency Under Constraints’,

examines topological sufficiency for manifold solid modeling topologies under more

restrictions than the domain identified in Chapter 9. The second, ““Storage and

Accessing Efficiency Comparisons’’, provides detailed comparisons of the four mani-

fold solid modeling data structures described in Chapter 12, in terms of storage

requirements, accessing efficiency, and accessing algorithm complexity. The third,

““Traversals of the Radial Edge Structure”, describes detailed traversal algorithms for

the non-manifold Radial Edge structure. The fourth, “Sufficiency of the Radial Edge

Structure’’, describes detailed algorithms for the derivation of all of the non-manifold

adjacency relationships from the Radial Edge structure. The fifth, “‘Selective Query

and Traversal”, details a technique for associating multiple independent attributes

with topological elements which can later be used for accessing model topological

adjacency information selected by combinations of attributes.

1.2, Audience

Much of the appeal of the geometric modeling field is that humans are naturally

endowed with an understanding of and interest in the three-dimensional physical

world and the spatial relationships of objects in it. This intuition about geometry and

topology is already contained in each of us. It takes only a little more effort to study

and appreciate these same relationships in the more abstract context of geometric

modeling.

The major audience targeted by this thesis is the geometric modeling community.

One of my goals in writing it is to demonstrate that a proper theoretical foundation is

extremely beneficial in the design and implementation of geometric modeling sys-

tems, and that such a foundation is understandable and usable by modeling system

implementors. In the case of this study alone, theoretical investigations led to more

powerful and general representation systems than the original study was concerned

with. To the end of reaching this audience, most of the theoretical parts of the thesis

are stated in terms probably most familiar to the geometric modeling and computing

communities, perhaps at the expense of disenchanting some who may have preferred

a more traditional notation. With the major exception of the adjacency relationship

terminology central to the topic of adjacency topology, use of notation is avoided, and

where possible, an intuitive overview of what is going on is attempted.

1.3. Miscellaneous

All of the material in the thesis, unless explicitly stated otherwise, describes original

work, except for Chapters 5 and 13, which summarize existing terminology and

review existing techniques.

Some of the material contained in this thesis has been previously published. Of note

are ““Topology as a Framework for Solid Modeling” [Weiler 84], which is incor-

porated in Chapter 4, and ‘‘Edge-based Data Structures for Solid Modeling in Curved

Surface Environments’ [Weiler 85a], which is incorporated in parts of Chapter 12

and Appendix B.

The thesis also incorporates work from several currently unpublished papers. These

include ‘‘Adjacency Relationships in Boundary Graph Based Solid Models’’ [Weiler

83], which is incorporated in Chapter 11 and Appendix A, ‘“The Radial Edge Struc-

ture: a Topological Representation for Non-Manifold Geometric Modeling’* [Weiler

85b], which is incorporated in Chapters 15, 16, and 17, and ““Boundary Graph Opera-

tors for Non-Manifold Geometric Modeling Representations’ [Weiler 85¢], which is

incorporated in Chapters 15, 16, and 19.

All of the original work described here was done while pursuing a doctorate at

Rensselaer Polytechnic Institute.

SECTION I

GEOMETRIC MODELING

Chapter 2

INTRODUCTION

Geometric modeling currently involves the use of computers to aid in the creation,

manipuiation, maintenance, and analysis of representations of the geometric shape of

two- and three-dimensional objects. It is used in a wide variety of applications includ-

ing industrial mechanical part design and analysis, engineering and scientific visualiza-

tion, commercial video and motion picture production, artistic pursuits, and many

other areas.

This thesis emphasizes the role of topology in geometric modeling,

This major section has two objectives. First, it provides some background for those

unfamiliar with some of the details of geometric modeling and topology. Second, it

takes a fresh look at several general geometric modeling concepts in order to provide

background for later sections on two important geometric modeling representational

forms, manifold and non-manifold representations.

2.1. Organization of This Section

The first of the following chapters, Chapter 3, provides a brief description of the

different forms of geometric modeling representations currently available.

Next, Chapter 4 provides an intuitive introduction to the use of topology as a frame-

work in geometric modeling implementations, and provides the philosophical basis for

the approach taken in the remainder of the thesis.

Chapter 5 briefly identifies relevant terminology from graph theory, topology, and

geometric modeling.

Chapter 6 discusses topological elements and topological adjacency relationships, and

describes a comprehensive terminology to describe important characteristics of adja-

cency relationships relevant to geometric modeling,

Finally, Chapter 7 discusses the importance of specifying the domain of geometric

modeling systems and of proving sufficiency of the representation over that domain.

Chapter 3

FORMS OF GEOMETRIC MODELING

This chapter briefly describes many of the different approaches to geometric modeling

representations that have evolved over the last twenty-five years.

3.1. Geometric Modeling Forms

Different forms of geometric modeling can be distinguished based on exactly what is

being represented, the amount and type of information directly available without

derivation, and what other information can and cannot be derived.

Historically, several different geometric modeling forms have evolved.

Wireframe modeling, one of the earliest geometric modeling techniques, represents

objects by edge curves and points on the surface of the object (see Figure

3 - ta).

Surface modeling techniques, first developed in the early 1960’s, go one step further

than wireframe representations by also providing mathematical descriptions

of the shape of the surfaces of objects (see Figure 3 — 1b). Surface

modeling techniques allow graphic display and numerical control machining

of carefully constructed models, but usually offer few integrity checking

features,

Solid modeling, a technique developed in the early 1970°s, explicitly or implicitly con-

tains information about the closure and connectivity of the volumes of

solid shapes. It is becoming an increasingly important part of the process

10

11

Figure 3 - 1. Wireframe, surface, and solid modeling forms

12

of computer aided modeling of solid physical objects for design, analysis,

manufacturing, simulation, and other applications. Solid modeling offers a

number of advantages over previous surface modeling techniques, because

it provides a guarantee that any models which are created will form closed

and bounded objects more closely related to physically realizable shapes

than can be guaranteed for surface models. Figure 3 - lc illustrates that

for boundary based solid models every surface boundary is always directly

adjacent to one other surface boundary, guaranteeing a closed volume.

Solid models, unlike surface models, enable a modeler system to distin-

guish the outside of a volume from the inside, allowing mass property

analysis for the determination of volume, center of gravity, and the like.

Typical solid modeling systems also offer tools for the creation and mani-

pulation of complete solid shapes, while maintaining the integrity of the

representations.

Non-manifold geometric modeling, as defined here, is a new modeling form which

removes constraints traditionally associated with manifold solid modeling

forms by embodying all of the capabilities of the previous three modeling

forms in a unified representation and extending the representational

domain beyond that of the previous modeling forms (see Figure 3 - 2).

Non-manifold representations are the most recent development. Some volume based

solid modeling systems have allowed some non-manifold conditions, but did not

allow the full range of non-manifold conditions involving boundary objects such as

surfaces and wireframe edges. Focus on full non-manifold systems allowing all such

conditions is new. By definition such systems must have some boundary representa-

tion capability. The work in this thesis emphasizes non-manifold representations

which explicitly store topological adjacencies.

The differences between manifold solid representations and non-manifold representa-

tions merit further discussion.

In a manifold (two-manifold) solid representation, every point on a surface is two-

13

cutting
section
plane

center

line

solid volume

Figure 3 - 2. Example of a non-manifold geometric modeling form

14

dimensional; that is, every point has a neighborhood which is homeomorphic to a

two-dimensional disk. In other words, even though the surface exists in three-

dimensional space it is topologically ‘‘flat’’ when the surface is examined closely in a

small enough area around any given point. Historically, boundary based solid model-

ing systems which store topological adjacencies have used manifold representations.

Non-manifold is a geometric modeling term referring to topological situations which

are not two-manifold. In an environment which allows non-manifold situations the

surface area around a given point on a surface might not be “‘flat”’ in the sense that

the neighborhood of the point need not be a simple two-dimensional disk. This

allows topological conditions such as a cone touching upon another surface at a single

point, more than two faces meeting along a common edge, and wire edges emanating

from a point on a surface (see Figure 3 - 3). A non-manifold representation there-

fore allows a general wire mesh with surfaces and enclosed volumes embedded in

space.

A set of common solid modeling operations, the Boolean set operations, are not

closed under manifold representations. A modification of the Boolean operations,

called the regularized set operators [Requicha & Voelcker 77], is designed to permit

only volume filling results from the Boolean operations. The regularized set opera-

tions therefore avoid a subset of the non-manifold results which can result from

applying the Boolean operations on manifold inputs. However, with some manifold

inputs the results of Boolean operations, regularized or not, are non-manifold and

therefore not representable under manifold representations. For example, an append-

age reaching out from the main volume of an object and then touching back on the

surface of the same object at a single point is not directly representable with mani-

folds, and creation of such an object even with regularized set operations cannot yield

a valid manifold result (see Figure 3 — 4). Non-manifold representations avoid these

singularities by representing non-manifold situations directly instead of restricting the

domain of the output.

Overall, non-manifold representations have superior flexibility, can represent a larger

15

D
a) :b) f :V2 @

Figure 3 - 3. The 2-dimensional disk around points on a surface

16

L—
a7

Figure 3 - 4. The Boolean union of two manifold objects yielding a non-manifold
result

variety of objects, and can support a wider variety of applications than manifold

representations, but at a cost of a larger size data structure. Boolean operation imple-

mentations operating on either manifold or non-manifold representations must detect

and deal with non-manifold results in some fashion; however, in a non-manifold

representation such results are uniformly and cleanly represented and manipulated.

Thus non-manifold representations are required if accurate closed form Boolean

operations with faithful representation of non-manifold results are desired. Non-

manifold representations are also required if one is interested in the interior volume

structures in an object and the relationships between them, such as in composite

objects and finite element meshes.

Perhaps most importantly, generalized non-manifold representations can represent

17

wireframe, surface, and solid modeling representations simultaneously in a single uni-

form format. This uniformity offers significant advantages in the staging, delivery,

and maintenance of geometric modeling systems.

Manifold topology representations may still be preferable, however, in situations

where storage space is at a premium, and the additional advantages of non-manifold

capability are not required.

3.2. A Taxonomy of Geometric Modeling Representations

More detailed analysis of the many different representations that have been

developed for geometric modeling reveals a more complex picture than that shown by

the basic representational form classification presented in the previous subsection.

A more detailed taxonomy of these representations is now presented.

A wide variety of representations have been developed for geometric models, each

with its own strengths and weaknesses in the context of different applications. These

techniques can be differentiated on the basis of at least three independent criteria

concerning whether the representation is:

s boundary based or volume based

® object based or spatially based

¢ evaluated or unevatuated in form

A representation is boundary based if the solid volume is specified by its surface

boundary; if the solid is specified directly by its volume it is volume based.

A representation is object based if it is fundamentally organized according to the

characteristics of the actual geometric shape itself; it is spatially based when the

representation is organized around the characteristics of the spatial coordinate system

it uses.

The evaluated/unevaluated characterization is roughly a measure of the amount of

18

work necessary to obtain information about the objects being represented with respect

to a stated goal. In this thesis, for simplicity, it is assumed that the goal is obtaining

enough information for wireframe or surface display of an object.

Thus many representational techniques are potentially available by choosing different

combinations of values of the above criteria. The most appropriate modeling tech-

nique to use depends not only on the intended application but also on the particular

phase of the application one is concerned with. Many modeling systems support mul-

tiple representational techniques to ensure their efficacy over a broad range of applica-

tions and phases of the same application.

If each of the three way criteria presented is considered to allow binary choices, then

eight categories result. Several examples of the application of this classification to a

variety of current geometric modeling representational schemes are presented in Fig-

ure 3 - 5. The representation names in the boxes are not the only examples that can

be found for each of the classifications.

Unevaluated representation systems require some form of procedural interpretation to

be used with respect to the specified application. Examples of the unevaluated, spatial,

boundary classification include the halfspace solid representation technique where the

spatial region of interest is defined by successively dividing space in halves with usu-

ally infinite surface descriptions which coincide with portions of the desired region

boundary and selecting the half space on a specified side of the surface, eventually

enclosing the solid region. The halfspace technique is classified here as spatial based

because the surface descriptions are positioned in spatial coordinate space rather than

being relative to the object. An unevaluated, spatial, volume based approach is the

octree solid representation technique which represents solid regions of interest by

hierarchically decomposing a usually cubic volume of space into successively smaller

cubes. Hierarchical division and cube orientation usually follows the spatial coordi-

nate system. An unevaluated, object, boundary based representation example is the

procedural description of an object as a sequence of Euler operations, an edge based

construction technique described later in this thesis. A popular unevaluated, object,

Unevaluated

Spatial Eveluated based

Object
based Boundary Volume

based based

UNEVALUATED LAYER

Spatial Half Oct-
based space tree

Object Euler cSG
based ops

Boundary Volume
based based

EVALUATED LAYER

Spatial E;tlmdary Cell
based enumeration enumeration

Non- Object Boundary parametric
based rep primitives

Boundary Volume
based based

Figure 3 - 5. Geometric modeling representation classification and examples

20

volume based example is CSG (Constructive Solid Geometry), where desired regions

are described as a series of Boolean set operations combining primitive volumes.

Sweeps, where geometric objects are swept through space, usually to produce a higher

dimensional element (such as sweeping an area to obtain a volume) are another

example falling into this category. Parametric primitives, standard shapes that come

with size, orientation, position; and other parameters, also fail into this category.

Evaluated representation systems usually require substantially less interpretation to

use with respect to the specified application. An example of a evaluated, spatial,

volume based representation is cell enumeration, which may be as simple as a three-

dimensional Boolean array, with each cell representing a cubic volume of space, with

a cell having a true value if the region of interest intersects with that cell. A boun-

dary based version of the same technique, an example of a evaluated, spatial, boundary

based representation, is boundary cell enumeration where only the cells which inter-

sect region b;.)undaries have true values. An popular example of a evaluated, object,

boundary based representation is the boundary representation, where objects are

represented in terms of their boundary elements; for example, a polygon may be

represented by its bounding edges, and a solid volume by its finite bounding surfaces.

An evaluated, object, volume based representation is that of non-parametric primitives,

such as a simple fixed position object; this is not a particularly flexible representation.

The application domain of particular interest to this thesis is the design, analysis, and

manufacture of solid mechanical parts. Early in the design phase of such objects a

high level of abstraction, a symbolic form, offers the most powerful means of per-

forming complex design tasks —as long as the abstraction is appropriate to the design

task at hand and to the designer performing it. However, during modification,

analysis, and use of the constructed model, easy availability of complete information

on the model is a prime consideration. For this phase of this application it has been

popular to use an object based, evaluated, boundary form of geometric model which

explicitly stores topological adjacency information, that is, the information specifying

which topological elements such as faces, edges, and vertices touch upon one another.

21

The focus in this thesis will be on evaluated, object based, boundary representations

which explicitly store topological adjacency information and can be used as a frame-

work for the implementation of geometric modeling systems. Both manifold solid

modeling and non-manifold geometric modeling representations will be addressed.,

Chapter 4

TOPOLOGY AS A FRAMEWORK

This chapter provides an intuitive introduction to the use of topology as a framework

in geometric modeling implementations, and provides the philosophical basis for the

approach taken in the remainder of the thesis. It is intended to provide motivation

for following material rather than provide a completely rigorous mathematical descrip-

tion of the topological aspects of geometric modeling.

4.1. Topology and Geometry

Complete geometry can be considered to represent essentially all information about

the geometric shape of an object including where it lies in space and the precise

geometric location of all aspects of its various elements.

Topology, by definition, is an abstraction, a coherent subset, of the information avail-

able from the geometry of a shape. More formally, it is a set of properties invariant

under a specified set of geometric transformations. Invariance of these properties

under transformation implies by definition that the properties represented by the

topology do not include the set of information which is actually changed by such

transformations. Therefore all information is not present in topology; topology is

incomplete shape information which can theoretically be derived from the complete

geometric specification. A carefully selected, coherent subset of information, one that

supports a meaningful view of the whole, is the essence of an abstraction.

22

23

Given this idea, one can consider topological information as a fuzzy definition of an

object located somewhere on the continuum between no information on the object

and a complete geometric definition of the object (see Figure 4 — 1). As such, topol-

ogy constrains, but does not uniquely define, the final geometry of an object. On the

other hand, a complete geometric description completely defines the topology of an

object, though such geometric information may not be in a form convenient for the

derivation of topological information.

4.2. Different Kinds of Topology

In the context of geometric modeling, when we think of topology we most often

No information

Topology

\J
Geometry

(Complete information)

Figure 4 - 1. Topological information in the continuum of information about
the geometric shape of an object

24

think of the adjacencies between topological elements such as vertices, edges, and

faces (see Figure 4 - 2). An individual adjacency relationship is the adjacency, in

terms of physical proximity and order, of a group of topological elements of one type

(such as vertices, edges, or faces) around some other specific single topological ele-

ment. An example of one topological adjacency relationship is the group of edges

found in a cyclic order around each vertex on an manifold object’s surface.

But an adjacency topology is only one subset of many possible subsets of geometric

information — only one among many forms of topology. Knot theory topology —

knots involving interlocking loops in objects which cannot be undone by geometric

transformation short of intersecting the objects — is one example of a different form

of topology (see Figure 4 — 3a). The amofint of twist in an object of genus greater

than zero is another form of topology which is totally unrelated to adjacency or knot

topology (see Figure 4 — 3b). In this case all three forms of topology are orthogonal;

that is, each has information which is completely independent of the other two.

We will restrict our consideration here to the adjacency form of topology since that

form has so far been found the most useful in our selected application areas. Accept-

ing this restriction, adjacency information is often informally referred to as the topol-

ogy of the solid model. The actual geometric surface descriptions, curve descriptions,

and point locations are then referred to as the geometry of the solid model. This

topology information can serve as a framework into which the geometric information

is placed, and the topology can therefore serve as the ‘‘glue’’ which holds all the indi-

vidual component geometry and topology information together.

4.3. Using Topology

What benefit is there to considering the topology of a geometric model apart from the

complete geometric description ?

When it is a unified, coherent, high level abstraction of available information, topol-

vy VE VF

i l

EV EE EF

EV FE FF

Figure 4 - 2. The nine element adjacency relationships in a manifold adjacency
topology consisting of faces, edges, and vertices

b}

Figure 4 - 3, Different forms of topology

ogy is useful in several situations. First, it is useful whenever a concise global abstrac-

tion or summary of information can save time over being forced to view in full detail

all data associated with a geometric model. Often, a top-down down hierarchical

description is used for this purpose, with higher levels serving as abstractions of the

lower levels. Second, during local manipulaticn of a small portion of an object, it is

useful to be able to find directly adjacent portions of the object without having to

review all data associated with the object.

Use of these two properties can simplify geometric modeling manipulation algorithms

and greatly improve their efficiency. However, topology can be even more useful

when it serves as a framework around which the geometric modeling representation

can be built.

27

4.4. Topology as a Framework

By using topology as a framework for a geometric modeling representation we mean

first that topological information is explicitly available and second that it serves as the

organizing factor in the schema of the data structures used in the representation (and

therefore in the algorithms which operate on the structures). Third, to provide a

unified total structure, all topological information must be associated together. To

date, the most commonly useful approach has been to organize the topological infor-

mation in a top-down hierarchical fashion from higher to lower levels of dimensional-

ity (see Figure 4 - 4).

The usefulness of topological information as described in the previous section is not

Shelt

’\'/
S

Figure 4 - 4. Top-down hierarchical representation of topological elements

28

the only reason topology should be considered as a framework around which a solid

modeling representation can be built. There are more compelling reasons.

First, once the topological and geometric domain which the representation is intended

to cover has been defined, and the corresponding topological representation has been

selected, the topological portion of the implementation remains relatively stable.

Geometric surface representation and implementation techniques are still a subject of

research; the modeling field has not yet converged on any single ‘‘ultimate’’ or

canonical geometric surface representation technique, and is still plagued by funda-

mental numerical accuracy problems. As a result, many different forms of geometric

surface representation and implementation techniques currently exist, and more are

under development. If a topological framework is used in a modeling implementation,

old geometric representations can be pulled out and new ones plugged in or multiple

geometric representations can be handled simultaneously without major changes to

the structure of the implementation. With a stable topological framework the impact

of such geometric representation changes can be minimized to small portions of the

implementation and the ability to add new or replace existing geometric representa-

tions is enhanced. Thus a system implementation based on a topological framework

provides for a smoother evolution of the geometric modeling system over its lifetime.

Second, because of the approximate nature of geometric representations of general-

ized curved surfaces as currently formulated and implemented on computers, it is

possible that numerical accuracy problems can develop, such as small gaps appearing

between surface patches that were intended to be adjacent. Relying on geometric

information alone to determine topological relationships such as patch to patch adja-

cency can be an error prone proposition, particularly since arithmetic operations on

the underlying scalar number representations being used are not closed form. If adja-

cency information is known at the time of model creation, combining a topological

framework with one or more geometric surface representation techniques provides a

way to represent the intended properties of an object, in spite of some types of

geometric inaccuracies (though certainly not all of them).

29

Third, separation of topological and geometric information in a geometric modeling

representation provides a more systematic approach to implementation, providing for

simpler creation, verification, and analysis of the model.

4.5. Sufficient Topology

In an adjacency topology consisting of three primitive elements such as faces, edges,

and vertices, there are nine possible adjacency relationships (as seen in Figure 4 — 2

). If a topological representation contains enough information to recreate all nine of

these adjacency relationships without error or ambiguity, it can be considered a

sufficient adjacency topology representation.

A complete characterization of a sufficient representation cannot be made without

first identifying the domain, or representational range over which the representation is

intended to be valid.

Since it is not necessary in general to- store all possible adjacency relationships in

order to have a sufficient topological representation, identifying a sufficient minimat

subset of that information becomes an issue. While only a small subset of the possi-

ble adjacency relationships can be considered sufficient and are theoretically necessary,

practical topological representations useful in geometric modeling normally utilize a

sufficient subset of adjacency relationships in combination with one or more other

adjacency relationships. This is necessary in order to associate together all of the

unique topological elements found in a particular model. For example, in a three ele-

ment adjacency topology, since each adjacency relationship involves only two element

types, a second adjacency relationship is necessary to associate all three element types

together while maintaining the unique identity of each element (which is necessary to

be able to assign unique non-topological attributes to each element, a requirement in

most modeling applications). If the combination of adjacency relationships selected

for a representation is sufficient, it is then not necessary to rely on geometric infor-

mation to obtain any of the remaining topological adjacency relationships. Because of

30

possible inaccuracies in geometric data, a sufficient topological representation is there-

fore highly desirable.

4,6. Sufficient Topology as a Framework

When topological information is used as a framework for geometric modeling

representations and their implementations, its advantages are best realized if it is

independent of geometric representations. Otherwise changes cannot be made to the

geometric representation portion of the system implementation without putting the

entire framework at risk. In other words, a topological representation chosen as a

framework for a geomsetric modeling system should be a sufficient topological

representation. The use of a sufficient topological representation for the framework

also allows a more complete consistency check against geometry, often avoiding or

identifying some types of inconsistencies due to geometric inaccuracy. Furthermore, it

can help avoid the inadvertent assumption of sufficient information by algorithms

which manipulate the representation.

In an object based evaluated boundary form of geometric modeler it is highly desir-

able to utilize an adjacency topology data structure as a framework in the structure of

the implementation. The abstraction implicit in this topology based organization of

the data can increase the efficiency and simplicity of the modeling system. For this

scheme to gain full advantage, however, the topological information used as the

framework must be mathematically sufficient information, independent of the

geometric information in the model. In this case the use of topology as a stable

framework for the implementation structure can minimize the impact of changes in

the geometric representation portions of the system implementation, can help sur-

mount some types of geometric accuracy problems, and can simplify creation,

verification, and analysis of the geometric model.

Chapter 5

TOPOLOGY AND GEOMETRY

This chapter provides a brief introduction to terminology from existing graph theory,

algebraic topology, and geometric modeling that will prove useful in later sections of

the thesis. It is not intended to be completely rigorous, but rather to be accessible to

the average geometric modeling practitioner.

$.1. Graph Theoretic Concepts

Since the topology representations described in later chapters use graphs to represent

the edges and vertices of both planar and curved surface polyhedral solids, a brief

review of some ideas from graph theory will be helpful [Harary 72].

A vertex is a unique point. In modeling discussions we will assume it is associated

with a unique three-dimensional geometric point in modeling space. An edge is an

unordered set of two vertices. Strictly speaking, these vertices must be distinct,

meaning that each edge has twe different vertices and at most one edge exists

between any two particular vertices; however we will relax this definition below. A

graph is a set of vertices and a set of distinct edges which utilize the vertices. In

modeling representations, edges are often associated with closed boundaries of sur-

face areas, and may be curved or straight non-self-intersecting finite segments of

space curves.

Edges whose set includes a particular vertex are incident with that vertex. The degree

of a vertex is the number of edges incident with it. Vertices which share an edge

between them are considered to be adjacent to each other.

31

32

The trivial graph is a graph consisting of a single vertex.

A graph is connected if every two vertices are joined by some path, that is, there is an

alternating sequence of vertices and edges which begin and end at the two vertices

and where each edge in the path is incident to each vertex before and after it in the

sequence.

The connectivity of a graph, also called the point connectivity, is the minimum number

of vertices which, when removed along with their incident edges, results in a discon-

nected graph. A graph of connectivity » is said to be n-connected. This should not

be confused with line-connectivity, which is the minimum number of edges whose

removal results in a disconnected graph.

A self-loop is a graph configuration in which an edge joins a vertex to itself; in other

words the two vertices associated with the edge are not distinct. A multigraph is a

graph configuration where multiple edges are allowed to join the same two vertices;

the vertex set of a multigraph edge is therefore not necessarily unique as in the usual

definition of a graph. While ordinary graphs, by strict definition do not allow these

conditions, we will allow both. Graphs that allow both self loops and multiple edges

are called pseudographs. When we refer to graphs in this thesis we are always refer-

ring to pseudographs unless noted otherwise.

A labeled graph is a graph where each vertex and edge is uniquely identified by some

means independent of the graph.

Commonly used graph theory terminology has overlaps with terminology from the

field of topology; some of this relevant terminology is therefore described in the next

subsection.

5.2. Topological Concepts

Some ideas from topological theory will also be necessary to characterize the domain

of the shapes that are of interest in the context of geometric modeling. An intuitive

33

introduction to topology may be found in [Arnold 62]. A more formal approach may

be found in [Agoston 76]. The following definitions, while not completely rigorous,

will be helpful in later discussions.

A homeomorphism is a one to one, onto, topological transformation which is continu-

ous and has a continuous inverse. Topology is the study of properties which are

invariant under homeomorphisms; such properties determine topological equivalence.

Intuitively homeomorphisms can be thought of as elastic deformations which

preserve adjacency properties.

An open disk is that portion of a two-dimensional space which lies within some circle

of positive radius centered at a given point, excluding the circle itself. An open ball or

open sphere is the three-dimensional analog of the open disk and is a set of points

inside a sphere centered at a point and with a radius greater than zero, and excludes

the sphere itself,

A subset of a topological space is arcwise-connected if for any two points in the subset

of space there is a continuous path between them which is entirely contained within

that subset of space.

A surface, for our purposes, is an arcwise-connected space that is topologically two-

dimensional in nature. Note that although a surface is locally two-dimensional, it may

geometrically exist in a three-dimensional space, and may be curved.

A surface is bounded if the entire surface can be contained in some open ball. A

boundary on a surface may be a closed or open curve, or a single point on the surface.

A closed curve boundary separates a piece of the surface from the rest of the surface.

A surface is closed if it is bounded and has no boundary. For example, a plane has no

boundary but is unbounded, while a sphere is a closed surface.

A swo-manifold surface is a topologically two-dimensional connected surface where

each point on the surface has a neighborhood which is topologically equivalent to an

open disk. A manifold may or may not be a closed surface. We will always be refer-

ring to two-manifolds when the word manifold is used in this thesis.

34

The study of three-manifolds is concerned with the shape of three-dimensional space;

this area of study will not be of direct concern in this thesis and a Euclidean space will

be assumed.

A manifold is orientable if it is two sided, that is, if it is not a surface like a Moebius

strip or Klein bottle. The surfaces of a solid volume are required to be oriented as

well as closed so that there is a clear distinction between the inside and outside of the

volume. Note that while the manifold surface of a solid volume may consist of

several pieces, these pieces must be joined together to form a single closed surface.

A graph can be embedded in (or mapped into) a surface if it is drawn on the surface so

that no two edges intersect, except at their incident vertices. A planar graph is a

graph which can be embedded in a planar surface. Graphs may be embedded in

non-planar surfaces unrestricted in the genus of the surface. A graph may also be

embedded in three-dimensional space, with or without accompanying bounded sur-

faces, as long as non-intersection properties are observed, that is, that no two ele-

ments intersect except at common lower dimensional boundary elements.

Faces are the connected subsets of the surface defined by a graph embedded in a sur-

face. Each face is a connected component of the set obtained by subtracting the ver-

tices and edges of the embedded graph from the surface. The boundary of a face

consists of those edges and vertices of the embedded graph whose every part touches

upon the face. Note that a face does not contain its boundary.

When a graph is embedded in an orientable two-manifold surface, each edge of the

graph is used exactly twice in the traversal of the edges around each face, once in

each direction. The traversal can be done by moving along each of the edges and

vertices in sequence around each face such that the area of the face is always to one

side, say the right, and the end vertex of each edge is the beginning vertex of the

next edge in the traversal,

A simply connected face is a face which has a single, connected boundary. A multiply-

connected face has a boundary that consists of two or more disconnected components,

as in a face with a hole in it,

A handle on an object can be formed by cutting two holes in the surface of the object

and then constructing a tube to join these two holes together. A doughnut shape or

torus is topologically equivalent to a sphere with one handle. The genus of a graph is

the minimum number of handles which must be added to a sphere so that the graph

can be embedded in the resulting surface without edges crossing at places other than

their common vertices.

A relationship known as the Euler-Poincaré formula describes the relationships of

numbers of elements in a planar graph:

V-E+ F= 2

where V, E, and F refer to the numbers of vertices, edges, and faces in the graph,

respectively.

In its more general form, where the graph may be embedded in a non-planar surface,

V-E+ F= 2(1-G)

where G refers to the genus of the graph. These formulae will be expanded further

in a later chapter dealing with manifold disconnected embedded graph representa-

tions.

5.3. Geometric Modeling Concepts

The geometric modeling community has also developed its own terminology. Many

of the terms describe concepts of particular interest in geometric modeling which are

not addressed or addressed in less detail in other fields with different concerns.

Non-manifold, as mentioned earlier, is a geometric modeling term referring to topolog-

ical situations which are not restricted to be manifold [Braid 83] [Requicha and

Voelcker 83]. In a non-manifold environment the surface area around a given point

on a surface might not be topologically ““flat’’ in the sense that the neighborhood of

36

the point need not be a simple two-dimensional disk. This allows topological condi-

tions such as a cone touching upon another surface at a single point, more than two

faces meeting along a common edge, and wire edges emanating from a point on 2

surface (see Figure 3 - 3). Non-manifold representations are defined here as being

represéntations that allow non-manifold topological conditions, including those

involving volume, area, curve, and point elements.

The following terms have sometimes been used inconsistently in the literature; so the

definitions utilized in this thesis are given here.

Edges can be classified according to their use as boundaries by adjacent faces. A wire

or wireframe edge is an edge embedded in space which is not a boundary of any face.

A lamina edge is an edge which is used only once on the boundary of a single face. A

manifold edge is an edge which is used exactly twice on the boundary of one face or

exactly once each on the boundaries of two faces. A non-manifold edge is an edge

which is used three or more times on the boundaries of one or more faces.

A strut edge is a manifold edge which bounds one face and has one vertex which has

no other incident edges. An isthmus edge is a manifold edge which bounds only one

face but both vertices of the edge have additional incident edges.

Adjacency relationships are the information specifying which (and in what order) topo-

logical elements such as faces, edges, and vertices touch upon one another. They are

are defined in detail later in the text.

The regularized set operations are Boolean set operations which restrict their output so

that only volume filling resuits may occur. Thus so-called ‘‘dangling’’ faces and edges

which could be a result of the standard Boolean set operations are not present in the

output of a regularized set operator, but non-manifold output may be present

[Requicha 77].

37

5.4. Drawing Boundary Graphs

One practical issue that comes up in discussing adjacency topologies for manifold solid

modeling representations is in determining how to draw the boundary graphs of solid

objects on the flat sheets of paper (or CRT’s) to which we’ve become so accustomed.

It is often convenient to do so for purposes of discussion or exposition.

The graphs used in object based, boundary based, evaluated manifold solid modeling

representations are graphs which have been embedded in a surface. A common form

of diagramming these embedded graphs when they are planar is called a Schlegel

diagram. A Schlegel diagram is a projection (or its combinatorial equivalent) of the

vertices, edges, and faces of the embedded boundary graph of an object as seen from

a point very close to the surface of the object from just outside the object. In a

Schiegel diagram, as in the embedding of the graph onto its surface, edges may not

cross except at their incident vertices, and vertices may not coincide. An example of

a Schlegel diagram of a cube is shown in Figure 5 -~ 1. From here on in this subsec-

tion, when we say graphs we are referring to graphs which have been embedded in

manifold surfaces unless explicitly stated otherwise.

Since the objects being represented in the case of manifold solids are actually closed

objects, diagrams of their boundary graphs drawn on paper use the device of an

“infinite’’ face surrounding the graph drawn on the paper. Intuitively, the diagram

can be considered to be drawn on a small, nearly “‘flat”’ portion of a sphere, and this

infinite face can be thought of as the ‘‘back side’ of the sphere which closes the

object up.

Objects of genus greater than zero, that is, objects whose boundary graphs are non-

planar, need some additional mechanisms for representation on a flat piece of paper.

We extend the Schiegel diagram technique here by allowing voids to be drawn.

Voids are labeled areas which always appear in pairs (for 2-manifold objects), with

each pair having a unique label. Voids are used to connect portions of the graph

together by conceptually establishing a ‘‘bridge’” over the plane of the paper. Thus

38

a)cube b)Schlegel diagram of cube

Figure 5 - 1. Schlegel diagram of a cube

the edges and vertices surrounding a void appear twice in the diagram (adjacent to the

two voids with the same label) and are used in opposite directions by the faces adja-

cent to the voids. The two faces which are adjacent to the same edge on the boun-

dary of a void pair are actually adjacent to each other. Thus the matching pair of

voids can be considered to be conceptually *‘glued” together,

Voids have no actual counterpart on the surface of the object being represented.

They are a diagramming convenience and have no function other than to convey the

39

adjacency information present in the boundary graphs of objects of genus greater than

zero within the confines of a planar diagram. The labeling of the voids serves to

associate together each pair of voids to complete the adjacency association. The

number of void pairs necessary in a diagram is equal to the genus of the boundary

graph,

Figure 5 - 2 illustrates the void technique with an object of genus one. An advantage

of the void technique of representing boundary graphs on a plane is that it easily

allows boundary graphs with a genus greater than one in a uniform fashion.

Another technique used to draw non-planar maps on the plane when lines cross in

the plane drawing but not on the actual surface, is to indicate in some notation that

they do not actually meet, such as by making one of the edges dotted near the

\ey

Figure 5 - 2. Boundary graph diagram of an object of genus one using voids

40

crossing area (see Figure 5 — 3). We’ll call this technique the dotted-line technique,

Both techniques have pros and cons. The dotted-line technique has the disadvantage

that it is difficult to trace face boundaries and determine the number of faces in the

mapping, which is relatively easy with the void technique. On the other hand, deter-

mining the order that edges meet at a vertex is easy with the dotted-line technique

but somewhat less obvious with the void technique when the vertex is located on the

boundary of a void.

Figure 5 - 3. Crossing edge diagram of torus in Figure 5-2

41

Boundary graphs of non-manifold models can be drawn on the plane if suitable

domain specifications are made and additional techniques are utilized. In the case of

the non-manifold domain specified in this thesis in Chapter 15, individual faces

(which do not include bounding edges and vertices) are restricted to be mappable to a

plane. Thus their boundary graphs can be drawn on the plane in at least a piecewise

fashion using additional drawing techniques.

Drawing boundary graphs of non-manifold models requires techniques similar to

those used for manifold boundaries but the situations represented can be considerably

more complex. For example, consider a manifold spherical surface. Push together

two points on opposite sides of the sphere until they touch at the center to form a

single boundary vertex. The surface is now a non-manifold surface. A drawing of its

boundary graph on the plane involves the use of the infinite face technique to

represent the closed surface, but the single boundary vertex shows up two places in

the drawing. Similarly, non-manifold edges may show up several places in a planar

drawing of a non-manifold boundary graph.

Wire edges, lamina faces, and individual regions are often drawn separately for non-

manifold boundary graphs, utilizing element labels and occasionat region labels to

indicate actual adjacencies. This style of diagramming provides adjacency information

but still does not specify the complete spatial ordering of faces around edges required

for the complete description of a full non-manifold environment.

Chapter 6

TOPOLOGICAL ADJACENCY RELATIONSHIPS

Adjacency topology concerns the physical adjacencies of the topological elements

embedded in space or on the surfaces of an object.

This chapter discusses topological elements and their topological adjacency relation-

ships, and introduces a comprehensive terminology to describe characteristics of adja-

cency relationships relevant to geometric modeling. Topological adjacency relation-

ships form the basis of the topological information in all of the topological representa-

tions described in this thesis.

6.1. Terminologies for Adjacency Relationships

A terminology for identifying the nine element pair adjacency relationships for con-

nected graph manifold topologies was developed by Baer et al [Baer et al 79] for the

purpose of comparing which adjacency relationships were stored in various geometric

modeling systems. That terminology symbolized each adjacency relationship as a pair

of symbols separated by a colon. Each of the symbols refers to one of the three ele-

ment types. The first symbol is a letter which stands for the element type used as the

viewpoint from which the adjacency relationship is expressed. The second symbol

represents the element type which is adjacent in some way to the first element type

(see Figure 6 ~ 1). This terminology is sufficient for the identification of the nine

element adjacency relationship classes and in some cases includes additional informa-

tion, but does not consistently include enough information for detailed discussion of

the nature of the element adjacency relationships themselves or their interrelation-

ships.

42

43

vi{v} e:{v ,v } fi{v}
vi{e} e:{e,e,,¢e) ,¢5} f:{e}
v:i{f} e:{f . f} f:ir:

Figure 6 - 1. Baer et al. terminology for element adjacency relationships

An expanded terminology is needed which separately specifies the two types of infor-

mation which comprise each of the nine adjacency relationships:

¢ identification of which of the element adjacency relationships is involved (a

specification of adjacency as in the previous terminology)

¢ a specification of the order and direction of order of the adjacency given ail the

similar components in that relationship,

This last type of information is critical to boundary representation schemes but has

not been previously emphasized. As will be shown later, both kinds of information

are necessary to represent a complete adjacency topology using the adjacency relation-

ships.

A more comprehensive and general terminology has been developed to explicitly

include this ordering and orientation information as well as other information that will

facilitate discussion of some of the properties of the adjacency relationships both as a

class and in individual cases. Additions for these purposes include the ability to dis-

tinguish between a specific individual element and a group of elements (including the

entire element class itse}t). The terminology is generalized enough to handle both

manifold and non-manifdlsd topological adjacencies.

This new terminology is used throughout the remainder of the thesis in discussions

involving the topological element adjacency relationships.

44

6.2. Topological Element Adjacency Relationship Terminology

This terminology expresses six concepts related to the elements of graphs embedded

in space or in a surface and their topological adjacency relationships. Each is

described in the following sections.

6.2.1. Element Type Symbol

Three alphabetic letter symbols are used to specify which of the three basic topological

element types is being referred to:

vV the vertex element type
E the edge element type
F the face element type

In more complex topologies, such as those allowing disconnected graphs and non-

manifold conditions, additional topological element type symbols are required. They

will be defined in the relevant chapters as needed.

6.2.2. Symbol Plurality

The plurality of an element symbol determines whether the symbol refers to one or

more or all elements of the given type ina specific topology. Plurality is indicated in

the following manner:

v (lower case) - singular plurality; refers to one
specific element

14 (upper case) - multiple plurality; refers to a collec-
tion of zero or more elements
(upper case with bar) - multiple plurality; refers to
a collection of all elemegg of the specified type

<|

45

6.2.3. Group Ordering

A group is a collection of elements. Groups are allowed to have one of four group

ordering specifications. Groups of elements are symbolized either by the proper plu-

rality of a single symbol or by a list of element symbols. While the plurality of a sym-

bol indicates whether the symbol refers to a single element or a group of elements, it

does not identify the ordering of the group. A sequential list also does not neces-

sarily imply an ordering. The following terminology is used to specify which ordering

an element group actually has:

group indicates that the grouP ordering is unspecified; it
could be any of the following three orders

[group] indicates an ordered linear list of elements

< group > indicates an ordered cyclic list of elements

{ group } indicates an unordered set of elements

As an example, < E> refers to a group of edges in a cyclic ordering.

The group specification within the brackets can take either the general form indicated

by the multiple plurality of a single symbol, or a specific form indicated by a series of

symbols of singular plurality. Therefore if the plurality of a symbol in a group is

singular, then all members of the group must be specified. As used here, all ele-

ments in a single group are usuaily of the same type and ordering.

Ordering refers to both sequence and direction information.

It is also useful in some cases to nest groups inside of other groups; that is, a group

may consist of a list of other groups. An example of a nested group is {{£](E]} which

refers to an unordered set of two items, both of which are ordered linear lists of

. edges.

Parenthesis are not used as a bracketing symbol in this terminology; they therefore

retain their usual mathematical meaning of associating parts of an expression when-

ever they are used in conjunction with the adjacency relationship terminology.

46

If the group specification within the group ordering brackets is a single symbol of

multiple plurality, it binds to the group ordering brackets. For example, because of

this binding action [V] means a linear ordered group of individual vertices rather a

linear ordered group of nested groups of vertices. In cases where it is important to

specify nesting of groups without making an ordering specification, parenthesis can be

used to make the overall specification unambiguous. In the example above, a linear

ordered group of nested groups of vertices (of an unspecified ordering) could be writ-

ten as (V)1

Two additional notational devices are used in the adjacency relationship terminology

relating to groups. First, the cardinality of a group is specified as a superscript follow-

ing the group ordering form brackets (as in < > *), indicating that the group has the

specific number of members specified by the superscript. Second, a subscript follow-

ing the group ordering form brackets (as in [I,) indicates a reference to the a th ele-

ment in the group. The following section on referencing and enumeration discusses

such references for unordered groups and cyclic ordered groups. Superscripts may be

zero or any positive number, subscripts may be any positive number less than or

equal to the number of elements in the group.

The use of the word ‘‘group” here should not be confused with other uses of the

word in mathematics.

6.2.4. Adjacency Relationship

The element adjacency relationships indicate the topological adjacency of a group of ele-

ments with regard to a single element or element type. This is represented as a pair-

ing of symbols. The first symbol in the pair is the single reference element, and the

second symbol, called the adjacent group, refers to the group of elements adjacent to

the reference element:;

reference adjacentgroup indicates a specific adjacency relationship

47

Adjacency relationships deal with distinct ordered pairs of element types, so the

number of adjacency relationships in an adjacency topology of n element types is n’

In the examples initially presented three topological element types are present, creat-

ing nine distinct combinations of element types. Each distinct combination is called

an adjacency relationship class or type. For example, VE refers to the adjacency rela-

tionship class involving the groups of edges which surround all of the vertices of a

graph. V< E> is more specific and refers to the circular ordered lists of edges which

surround vertices.

As a form of shorthand, EE can be used to signify E£. This includes situations where

group ordering specifications are made, so E< V> can be used to signify E< V> .

This means that the reference element part of an adjacency relationship always refers

to all elements when a multiple plurality symbol is used. Whether the general adja-

cency relationship concept itself or a specific adjacency in an embedded graph is being

referred to is determined by the plurality of the symbols used.

An adjacency relationship carries two kinds of information: the class of the adjacency

relationship and the ordering information of the adjacent group. Adjacency relation-

ships which have unordered adjacent groups are called unordered adjacency relation-

ships; relationships with linearly or circularly ordered adjacent groups are cailed

ordered adjacency relationships. For example, V< E> is an ordered adjacency rela-

tionship while V {£} is an unordered adjacency relationship. The distinction is a vital

one in terms of the informational sufficiency of the adjacency relationships, as will be

discussed in Chapter 11,

Adjacency relationship classes can be organized into an adjacency relationship matrix, a

standard way of presenting the déscriptions of the classes. The matrix is organized

into n columns and n rows, where n is the number of topological elements. The

matrix starts at the upper left corner. The rows are labeled top to bottom from the

lowest dimensional element (the vertex) to the highest dimensional element (in the

examples given here, the face). The columns are similarly labeled left to right. For a

given position in the matrix, the row labeling specifies the reference element type and

48

YV VE VF
EV EE EF
FV FE FF

Figure 6 — 2. The element adjacency relationship class matrix

the column labeling specifies the adjacent group type of the adjacency relationship

class.

One can alsc name groups of classes based on their position within the matrix. The

main diagonal consists of the n adjacency classes falling on the diagonal of classes

from upper left to lower right. All of the classes lying above the main diagonal are

the upward hierarchical relationships, and those below the main diagonal are the down-

ward hierarchical relationships. The subset of the (n—1) upward hierarchical relation-

ship classes immediately adjacent to the main diagonal is the upward hierarchical diago-

nal, and the subset of the (n-1) downward hierarchical relationships immediately

adjacent to the main diagonal is the downward hierarchical diagonal. Figure 6 — 2

shows the element adjacency relationship matrix for the three basic topological ele-

ment types.

An adjacency relationship matrix may be referred to as A, with the specific matrix

indicated by context. A specific adjacency relationship may then be specified in a

positional notation, ;mw,columnl where the adjacency relationship is located in the

specified position in the adjacency relationship matrix. For example, in Figure 6 - 2,

A, refers to the EF adjacency relationship.

The element adjacency relationships are discussed in detail in Chapters 10 and 16 for

manifold and non-manifold domains, respectively.

49

6.2.5. Correspondence

Correspondence is the ability to make adjacency associations between adjacency rela-

tionships which utilize the same element type in either their reference element or

adjacent group. An example is the ability to make correspondences between elements

in the ordered adjacent groups of two or more adjacency relationships.

The strongest form of correspondence is when two adjacency relationships have the

same reference element type. Other forms of correspondence have the common ele-

ment type in the adjacent group type or mixed between the adjacent group type and

reference element type. Correspondences with the same reference element type are

referred to as strong correspondences because, unlike other correspondences, their adja-

cent lists can be interleaved and combined in a fashion which contains more informa-

tion than either of the adjacency relationships individually.

For example, using correspondence one may associate the VE adjacency relationship

with the VF adjacency relationship. Then one has available not only the edge-around-

a-vertex information and face-around-a-vertex information, but also all edge-then-face-

then-edge information around a vertex. That is, the correspondence information logi-

cally links together the adjacency information about the various elements so that their

ordering information can be coordinated.

Correspondence is symbolized as two or more adjacency relationships connected by a

dash. For example, the V< V> and V< E> manifold adjacency relationships in

correspondence are symbolized as V< V> -V<E>. In this case correspondence

means that information about vertex-and-edge-then-vertex-and-edge ... around-a-vertex

information is available in addition to the expected edge-then-edge-around-a-vertex (

V< E>) and vertex-then-vertex-around-a-vertex (V< V>) information,

The order of appearance of the adjacency relationships in the correspondence is not

significant. For example, V< V> -V< E> is the same as V< E> -V< V> .

Strong correspondence appears to embody information not found in the individual

50

corresponding adjacency relationships; generating correspondence information

requires information from additional adjacency relationships. For example, in the

VV-VE correspondence above, EV is required to generate the correspondence.

While correspondence will be used in several places in this thesis, the topic is not

treated in detail, and represents an area of possible further research.

6.2.6. Referencing and Enumeration

When dealing with a specific labeled graph, which has been mapped into a surface for

manifold topologies, or embedded in space for non-manifold topologies, it is assumed

there is available:

V= ({V}

Fe (F}
Fe (F}

which are the unordered sets of all vertices, all edges, and all faces of the embedded

graph. Similarly, the sets of all of any additional elements would also be available. In

order to refer to specific elements of these unordered sets, an ordering shall be

assumed, [V], [E], [F]. Specific elements may then be referred to by the group sub-

scripting mechanism, so that [V]; specifies the ith element of that ordering. A short-

hand form for referring to specific elements is the form v; , ¢ , and f; , which

signifies (V};, (E);, [F}; respectively, and again refers to specific members of these

sets, where the subscript specifies the ith element of that ordering. The ordering

chosen is arbitrary, but once chosen remains constant for a given consideration of the

embedded graph. Thus the embedded graph is a labeled graph.

Similarly, cyclic groups, < N>, are assumed to have an ordering [N], so that its

members may be referred to by the standard group subscripting, < N> ; , to indicate

the ith element of the group. To arrive at such an ordering, a specific (but arbitrarily

chosen) element in the cyclic list is chosen as a first element of the ordered list. Sub-

51

scripted list elements then refer to the ith element in this ordered list modulo the size

of the cyclic list.

The number of elements in a set or ordered group is the cardinality designated by

bracketing, as in {V |, meaning the number of vertices in the entire graph, or as in

vi< E> |, meaning the number of edge elements in the cyclic adjacency group associ-

ated with v; .

An iteration over the elements of a set or list can then be specified by, for example,

Vi E> il E> |

which iterates over each member in the adjacent group of vi< E>, or

vi<e>j,jeln

for short. The iteration is usually stated by itself on a line and the scope of the itera-

tion is specified by indentation of relevant statements towards the right. The iteration

may be nested, in which case the rightmost iteration varies fastest.

This terminology allows discussion of algorithms which refer to adjacency relation-

ships of elements in a specific embedded graph.

6.2.7. Examples

The following examples further illustrate use of this terminology.

v represents the collection of all vertices in a graph.

VE re%pres.ents the general adjacency relationship class
of adjacent groups of edges surrounding vertex
r;ference elements. It can also be stated as VE for
short.

V< E> is a more detailed description of a VE adjacency
relationship class, specifying that the adjacent
groups are cyclicly ordered.

v represents a specific vertex, namely [V}, the ith
element in the group of all vertices in a graph,

vi< E>

< e>y

EYY

E{<E>}

vy < e e e >

VE - VF

VvV -VE - VF

{E1P

(ei< L> ;)< V>

Eiiel.n

Vi<E>,,jelunkelon

represents the specific VE adjacency relationship
consisting of the circularly ordered adjacent group
of edges surrounding the reference element ver-
tex [V); .

indicates a reference to the third edge element in
the cyclic list of the adjacent group edge elements
surrounding the vertex reference element (V], .

represents the adjacency relationship class EV with
unordered adjacent groups of vertices surrounding
a edge reference elements, and further specifies
that there are always exactly two vertices in each
adjacent group.

represents the adjacency relationship class EE with
unordered adjacent groups, each member of which
is itself a cf}{lclicly ordered group of edges. The
description further specifies that there are always
exactly two < E> groups in the adjacent group of
each edge. This could also be written out as
E{<E><E>}.

represents a fully detailed description of the circu-
larly ordered list of edges around a specific vertex.
Note that here, all members of the group must be
enumerated, since the adjacent group consists of
specific elements rather than a single multiple plu-
rality group symbol.

indicates that the VE and VF adjacency relation-
shl;ps are maintained in correspondence” with each
other. ’

indicates that all three of these adjacency relation-
ships are maintained in correspondence.

represents the relationships of ed§es adjacent to
each end of a particular edge ¢;. See Chapter 10
for a more detatled explanation.

is the L< V> adjacency for a sgecific loop. The
loop reference element is found by taking a refer-
ence to the jth element of the ¢;< L> adjacency
relationship’s adjacent group. The parentheses are
not strictly required here but do provide clarity.

is an iteration over each edge in an entire graph.

is a nested iteration over each edge in the adjacent
group of the V< E> adjacency relationship for
every vertex in a gragh..The. edge is referenced
within the scope of the iteration by its complete
expression V;< E>, . The index & varies fastest
in this iteration.

52

represents a specific adjacency relationship in an
adjacency relationship relationship matrix using
the row, column positional notation. The adjacency
relationship matrix being referred should be clear
from context. In this example, referring to the
adjacency relfationship matrix in Figure 6 — 2, the
adjacency relationship specified is the VF adjacen-
cy relationship.

53

Chapter 7

TOPOLOGICAL DOMAIN AND SUFFICIENCY

A computer representation of an application consists not only of static data and data

structures but also of the operators and procedures applied against them. The two are

inextricably intertwined.

The domain of a representation is the complete set of possibilities for which the

representation is valid. The domain addressed by any representation should be care-

fully specified; it is the only measure of success of the representation and is the start-

ing point for any formal proof of correctness.

The correctness of a representation depends on:

e the complete specification of the domain over which it is intended to be use-

ful.

¢ proof of sufficiency over that entire domain.

¢ operators which can be proven to cover the entire domain yet cannot create

or manipulate the data into a state outside of the intended domain of

the representation.

Early influential work by Requicha {Requicha 77] emphasized consideration of the

topological aspects of domain, but much of this work used a point set topological

approach, which is less directly applicable to boundéry representations than to other

representation forms. The approach taken here utilizes algebraic topology, which is

directly related to the adjacency topologies addressed in this thesis.

This section will address the importance of providing a specification for the intended

domain of geometric modeling representations, as well as the importance of

determining their topological sufficiency over that domain.

7.1. Domain

Traditionally, the careful specification of the domain for geometric modeling represen-

tations, especially boundary based representations, was rarely done — often leaving

open the question of their validity for various applications. Considering the amount

of effort required to construct a significant robust geometric modeling system, imple-

mentors can ill afford to base an implementation around a representation structure

which is insufficient over the domain it is intended to support. It is therefore vital to

prove sufficiency of the representation before significant investment of resources.

Specification of the domain which a modeling system is intended to address is the first

step in such an examination of the sufficiency of a representation.

The domain, in this case the topological domain, must be specified as completely as

possible. The domain specification is usually made by stating an initial environment

followed by a series of further restrictions on that environment. Two types of restric-

tions can be made.

First, representational restrictions places further limits on the gross topological condi-

tions affecting the geometric shapes that are allowed to exist in the representation,

directly affecting what is representable in the representation. For example, placing

restrictions on the allowable genus of an object, such as stating that the genus must

always be zero, reduces the number of possible shapes that are representable, in this

case making doughnut (torus) shapes unrepresentable.

Second, procedural restrictions place additional conditions on the representation, but do

not directly change what is representable in the representation, only the exact manner

in which it is represented. For example, restricting individual faces from having han-

dles does not mean that surfaces with handles are not representable, only that a face

boundary must be present on a handle. Thus, the allowable partitioning of the sur-

face is further restricted, but anything representable without the restriction is

transformable into something which is representable without changing the intended

shape,

7.2. Topological Sufficiency

Topological sufficiency of a representation is regarded here as the ability to completely

and unambiguously represent adjacency topologies. Completeness implies the ability

to generate all of the topology information from the representation. Unambiguity

implies that for any unique set of data in the representation, there is only one possi-

ble set of topology information that can result from interpretation of the representa-

tion, that is, there is a one-to-one mapping between a representation and the full

topology information.

Sufficiency can be regarded at two levels, theoretical and practical sufficiency.

Theoretical sufficiency is the absolute minimum information required to unambigu-

ously reproduce a complete adjacency topology, while practical sufficiency is the

minimum required in a practical geometric modeling representation.

7.2.1. Theoretical Sufficiency

Sufficiency of a representation is the ability to recreate all of the topological element

adjacency relationships without error or ambiguity. In this context, it is the ability of

a specified subset of the element adjacency relationships taken from a Specific mapped

graph to provide enough information to uniquely reproduce the original embedding of

the graph except for labels of the element type(s) which are not in the original subset

of adjacency relationship(s) chosen. The embedding constructed from the adjacency

relationship subset must be identical to the original in all of the element adjacency

relationships, reflecting the ability of the adjacency relationship subset to represent

the topology of a mapped graph exactly and completely. Note that this definition does

not allow the use of geometry associated with elements (if any) for derivation of any

additional topological information.

57

In general, it is not necessary to store information on all the adjacency relationship

classes in the topology to achieve sufficiency. In fact, at least in the manifold domain,

there can be single adjacency relationships and combinations of single insufficient

adjacency relationships which can be used to achieve topological sufficiency over a

specified domain.

7.2.2. Practical Sufficiency

All elements in an embedded graph geometric modeling structure must be bound

together in some fashion in order to produce a single cohesive representation of an

object. Thus all elements must be related to each other by label, since in a practical

modeling system additional information is potentiaity uniquely associated with each

individual element by label,

This means that any representation which includes n topological element types for

which reproducible labels are desired, must allow the derivation of at least n—1 adja-

cency relationships involving all n element types. This is the key to understanding

the difference between theoretical minimal sufficient topological information and the

minimal sufficient topological information practical in a geometric modeling system.

For example, in a labeled graph environment consisting of three topological element

types, at least two or more adjacency relationships are necessary to bind all of the

different element types together, since each individual relationship can only refer to at

most two element types. Thus in a practical modeling representation for this environ-

ment sufficient combinations of two individually insufficient adjacency relationships

are just as interesting for geometric modeling representations as individually sufficient

relationships (as long as they involve all three element types), since two adjacency

relationships are required anyway.

SECTION II

MANIFOLD SOLID REPRESENTATIONS

Chapter 8

INTRODUCTION

This major section discusses object based evaluated boundary based manifold solid

modeling representations which explicitly represent information about the adjacencies

of topological elements. To date, all of these representations, with only partial excep-

tions, have been manifold representations.

Manifold representations are currently in use in many commercial boundary based

solid modeling systems, as well as in prototype industry standards, and reflect a heavy

investment in manifold technology by industry. When storage space is at a premium

and the flexibility and unified representational advantages of non-manifold representa-

tions will never be required in a representation, manifold representations will con-

tinue to be used in preference over non-manifold representations. Thus manifold

topology systems will likely be around for some time, and are worthy of detailed

theoretical analysis.

8.1. Organization of This Section

This major section is organized into the following five chapters concerning manifold

topology representations.

First, the domain of interest is described in Chapter 9.

Chapter 10 describes the manifold adjacency relationships.

Next, Chapter 11 details the theoretical sufficiency of various combinations of the

manifold adjacency relationship information.

59

60

Chapter 12 describes several data structures for manifold topology representations

and provides proof of their sufficiency.

Lastly, Chapter 13 describes operators for manipulating manifold topologies.

{

Chapter 9

DOMAIN

In this section we are interested in restricting our range of topological representational

capability from the domain of all topological possibilities to only that portion which

corresponds to physically realizable solids with manifold surfaces. Making such res-

trictions will simplify our stated goal of unambiguously representing topologies of

manifold solid polyhedra using boundary graph based techniques.

The domain conditions identified in this chapter will provide the context which will be

assumed in the rest of this major section on manifold solid modeling representations,

unless explicitly noted otherwise.

9.1. Topological Considerations

Our primary assumption in this section is that of a manifold domain in a three-

dimensional Euclidean space. We are going to restrict the range of solid objects of

interest to those with compact (closed) orientable 2-manifold surfaces. This elim-

inates the possibility of vertices, edges, and one sided faces which *‘hang off’’ the

mapped boundary graph of the object. Thus non-manifold objects such as Figure

3 ~ 2 are excluded from consideration here (but are treated in the next major section

of the thesis).

In many current modeling applications the final result does not require non-manifold

objects; such objects are not physically realizable as single objects since they can be

connected through infinitely thin vertices or edges. Thus a manifold representation is

61

62

often adequate for representing the final result, if only solid shape information is

desired. This does have the effect of restricting the modeling sequence of operations,

however, since non-manifold objects would not be allowed even as intermediate

results; these restrictions can be removed by the use of more advanced non-manifold

representations. This major section of the thesis will accept this limitation and require

a manifold representation at all stages of modeling.

{Requicha 771 and {Mantyla 81} discusses objects with ‘‘pseudo-manifold’’ surfaces.

Basically such objects have non-manifold regions at certain points and curves, but,

unlike the non-manifold object in Figure 3 - 2, their volumes are completely con-

nected by regions consisting only of interior points (Figure 3 - 3). Because of this,

such objects, while not manufacturable in the practical sense because infinitely thin

portions of the solid cannot be machined or manufactured, do represent possible

design goals in that they are still single, connected objects. One approach for

representing such objects could be by simply adding edges and vertices to the mani-

fold representation until all surfaces were manifolds and then identifying and associat-

ing together elements involved in the originally non-manifold regions explicitly.

Geometry is not modified in this scheme so that the originally non-manifold regions

are still geometrically coincident though no longer directly adjacent topologically

without use of the additional association information. We will not include such

objects within our representational range of interest here because of the additional

complexity an adequate representational scheme for pseudo-manifolds would imply,

while still not providing the generality or uniformity of a true non-manifold approach

because implementations of these techniques require special case procedural detection

and handling of non-manifold conditions.

The ability to represent boundary graphs as pseudographs which allow self loops and

multigraphs is very desirable because such situations occur naturally during typical

modeling operations, particularly those involving the Boolean operations (see Figure

9 — 1). While such situations can be simulated by dividing each multiple and self

loop edge into several edges, this approach requires additional intelligence on the part

of the modeler to detect and deal with such situations. Much of the power of

63

boundary graph based solid modeling systems derives from their ability to preserve

and quickly deliver surface coherence information; unnecessarily increasing the

number of elements necessary to represent an object decreases this performance.

a) self loops created by subtraction of a cylinder from a rectangular solid

b) multigraph created by subtraction of a sphere from a rectangular solid

Figure 9 ~ 1. Seif loops and multigraphs resulting from common modeling
operations

64

9.2. Geometric Considerations

In a sense the topology of an object is a ‘‘fuzzy’’ geometry specification which

prescribes certain limits which a geometric instantiation must maintain. Thus

geometric instantiations of topological representations by definition are subject to cer-

tain geometric restrictions in order to preserve their topological integrity. It is

worthwhile discussing some of the geometric implications of the topological restric-

tions we wiil be making.

Perhaps the most important geometric restriction on the geometric instantiation of a

manifold polyhedron topology in this regard is that the manifold surfaces of the topol-

ogy may not intersect except at the specified adjacent face boundaries. This is neces-

sary to keep the surface homeomorphic to an open disk as required in the definition

of a manifold. If the geometric instantiation of the object surface intersects itself at a

point, curve, or area then the combination of the object topology and geometry

representations is invalid under the requirements we have identified so far. At such

intersections the surface becomes non-manifold and non-orientable with repsect to a

single volume when one considers the entire surface of the object at one time.

Non-manifold objects such as those described above can be the result of common

modeling operations such as the Boolean operations. Requicha discusses constraints

on the Boolean set operations (the regularized set operations [Requicha 77]) which

guarantee that all resulting surfaces are used as boundaries of space filling volumes.

It is the responsibility of manifold modeling system implementations that depend on

manifold characteristics for their topological integrity to ensure that all possible

modeling operations result in manifold objects or at least declare non-manifold results

invalid since they are unrepresentable in the manifold domain. Non-manifold model-

ing systems can avoid this problem entirely.

Another geometric restriction involves the valid range of the geometric definition of

an individual face of a manifold solid object model which uses boundary graph based

representation techniques. Every embedding of a graph into a surface must be a

65

two-cell embedding. That is, each face is homeomorphic to an open disk. Every

face, whether singly or multiply connected, must be mappable to a plane. This means

that each face is topologically ‘‘flat’’ and cannot contain handles. Otherwise one could

arbitrarily add any number of handles to each face and information about such global

features as genus would have to be contained in geometric surface definitions rather

than the boundary graph structure. Allowing this would remove many of the advan-

tages of boundary graph based representations of solid models since detailed

geometric information would have to be consulted to determine some of the global

characteristics such as genus of the entire surface. At any rate, flexible geometric

representations of such multi-handled surface types independent of topological infor-

mation appear intractable with today’s geometric surface representation techniques,

particularly when one considers the intersections of such surfaces. Since this is an

undesirable situation, we will therefore restrict all face geometric surface definitions to

form surfaces which are topologicaily ““flat’’ and mappable to a plane.

We can include the surface of a sphere under this constraint if we omit at least one

point. A truncated cylindrical surface is mappable to a plane and implies a discon-

nected graph, Both connected and disconnected graph conditions will be discussed in

this section.

Following {Requicha 80a], we also restrict geometric surface descriptions to have

“finiteness’’ properties, that is, they are well behaved in the sense of having finite

surface area and not having infinitely varying surface properties.

9.3. Domain Characterization

We will now describe the domain over which we are examining these solid modeling

representations in more detail. We are specifically interested in representations of the

class of manifold solid objects with the following (not necessarily distinct) characteris-

tics:

Compact Orientable 2-Manifolds - The surfaces of the objects are compact

66

orientable 2-manifolds in a three-dimensional Euclidean space. This

implies that no faces are allowed which self-intersect, or intersect with

each other, forcing the adjacency topology to explicitly carry ail surface

intersection information through adjacency information. Thus in a traver-

sal of edges bordering faces, every edge is traversed exactly twice, and no

non-manifold conditions are allowed. The orientability guarantees that the

interior of a solid volume is distinguishable from its exterior. Note also

that we are talking about single volumes completely connected by interior

points,

Embedded Graph Adjacency Topology - Their topologies are represented by 2-cell

embeddings of graphs into a surface. In other words, the graph is totally

contained in the surface, without any edges crossing except at mutual end-

points. Every face in the embedded graph must have a boundary of at

least one vertex.

Pseudographs - Their graphs are pseudographs; they may be muitigraphs and may

contain self loops. This allows curved edges with little constraint on

geometry, other than the embedded graph constraint that edges must not

intersect except at endpoints. This ability is very desirable because such

situations occur naturally during typical modeling operations involving

curved surfaces, particularly those involving the Boolean set operations.

More restricted graphs are briefly considered in Appendix A.

Labeled Graphs - Their graphs are labeled (at least for those element types

involved in the adjacency relationships being used to represent their topol-

ogy). Our interest in maintaining the labels of graph elements is explained

below.

Faces contain no handles - This ensures that an arbitrary number of handles can-

not be added to the surface of a solid without changing its boundary graph

structure, forcing the adjacency topology to carry all genus information

(and maintain the validity of the Euler-Poincaré formula). It is important

to note that a face does not include its boundary; otherwise faces of

objects like the one in Figure 12 - 4 would have to contain a handle.

67

Intuitively this can also be described as the condition that the face must be

mappable to a plane without cutting the face or changing its boundary.

Note that the no handle on faces restriction is not implied by the two-

manifold condition.

Genus - There is no restriction on the genus of the total object being represented.

Connected Graph - In initial discussions on sufficiency and data structures, we will

assume the graphs are connected graphs, and their individual faces are

simply connected. There are no other connectivity restrictions other than

being l-connected. This restriction will be lifted in a later parts of the

relevant discussion.

The compact orientable manifold, embedded graph, and connected graph conditions

ensure the validity of the basic Euler-Poincaré equation.

While polyhedra are normally thought of as having straight edges and planar faces,

topologically it makes no difference if the edges and surfaces are curved. Therefore,

in general, graph based solid boundary representational techniques are equally valid

for representing both planar and nonplanar faced solid objects with curved or straight

line edges. However, there is a much wider variety of embedded graph

configurations that are possible if the underlying surface is curved, as indicated by the

pseudograph condition. This condition is not needed for domains involving only

planar surfaces, since self loops and multigraphs cannot occur in these more restricted

environments.

There are actually several reasons for using labeled graphs. First, it is desirable to

have the ability to associate non-topological and possibly non-unique attributes with

topological elements for application purposes (including associating geometric coordi-

nate values with a vertex). Second, adjacency relationship information, even if

sufficient, does not in general uniquely identify an element. Third, all element types

will in general be required in a solid modeling representation since we want the rela-

tionships of all topological element types to be derivable and associated with each

other by label.

68

Holes in faces and internal cavities in solids can be represented with disconnected

graphs. Both of these situations are not directly allowed by the connected graph con-

dition, but this restriction will be removed, and an expanded version of the Euler-

Poincaré equation will be presented to support removal of this restriction in a subsec-

tion on disconnected graphs in the following chapter.

. Chapter 10

TOPOLOGICAL ADJACENCY RELATIONSHIPS

The basic concepts behind the topological adjacency relationships have been described

in Chapter 6; this chapter describes the specific topological adjacency relationships

found in the manifold domain specified in the previous chapter.

10.1. The Manifold Topological Elements

Since topological element adjacency relationships concern the relationships between

individual topological elements, we must now define the elements more carefully

before describing the adjacency relationships themselves.

At least seven distinct element types, including six basic topological element types are

involved in a manifold evaluated object based boundary topology representation.

They can be seen as being related in a hierarchical fashion, where lower dimensional

elements are used as boundaries of higher dimensional elements.

A model is a single three-dimensional topological modeling space, consisting of one or

more distinct regions of space. A model is not strictly a topological element as such,

but acts as a repository for all topological elements contained in a geometric model,

allowing the manipulation of multiple geometric models by a modeling system.

A region is a volume of space. There is always at least one in a model. Only one

region in a model may have infinite extent; all others have a finite extent, and when

more than one region exists in a model, all regions have a boundary. For example, a

single solid would require two regions in the model, one for the inside of the object,

and one for the outside (which has an infinite extent). For manifold solid modeling

69

70

it is usually assumed that there is only one volume of interest (where there would be

only two regions in a model) so in this situation it is not necessary to directly

represent regions in an adjacency relationship topology. The only times that more

than two regions show up in a manifold solid topology is when a solid model has

several interior voids or when voids have additional shells within them. Even in

these cases regions are usually not represented directly, since there is a one-to-one

correspondence between shells and regions in a manifold model. Regions will there-

fore not be considered further in this section.

A shell is an oriented boundary surface of a region. Shells are applicable to discon-

nected graph topologies. A single region may have more than one shell, as in the

case of a solid object with a void contained within it. A region may have no shell

only where all space exists as a single region, as in the initial state where no modeling

has been done, or after all components of a model have been deleted. A shell must

consist of a connected set of faces which form a closed volume.

A face is a bounded portion of a shell. It is oriented. Note that an orientable element

implies only that it is possible to assign an orientation, while an oriented element

actually specifies a particular orientation. Strictly speaking, a face consists of the piece

of surface it covers, but does not include its boundaries.

A loop is a connected boundary of a single face. Loops are applicable to disconnected

graph topologies. A face may have one or more loops; for example a simple polygo-

nal face would require one loop, and a face with a hole in it would require two loops.

Loops normally consist of an alternating sequence of edges and vertices in a complete

circuit, but may consist of only a single vertex. Loops are also oriented.

An edge is a portion of a loop boundary between two vertices. Topologically, an edge

is a bounding curve segment which may serve as part of a loop boundary for the one

or two faces which meet at that edge. Every edge is bounded by a vertex at each end

(possibly the same one). An edge is orientable, though not oriented; it is the use of

an edge which is oriented.

71

A vertex is simply a unique point in space, that is, no two vertices may exist at the

same geometric location (although the topology alone does not specify an exact

geometric location beyond these topological constraints). Single vertices may also

serve as boundaries of faces.

Thus, discounting models and regions, there are three topological elements of interest

for connected graph manifold adjacency topologies and five topological elements of

interest for disconnected graph manifold adjacency topologies.

Although not directly represented in adjacency relationships as described here, at least

two additional structure types of topological element adjacency uses associated with

the edge, and vertex elements may also be defined. Their purpose is to represent the

use of a specific basic topological element in the adjacent group of an adjacency rela-

tionship; in some representations they are represented directly.

An edge-use is an oriented bounding curve segment on a loop of a face and represents

the use of an edge by that loop. There are always two uses of a single edge in a man-

ifold model.

A vertex-use is a structure representing the adjacency use of a vertex by an edge, or a

loop.

10.2. The Manifold Connected Graph Topological Adjacency Relationships

The nine manifold element adjacency relationships of topological elements in mani-

fold embedded graphs, as expressed in the new adjacency relationship terminology,

are shown in Figure 10 - 1. A diagram of the ordered element adjacency relation-

ships, along with the unordered relationships (which lack ordering information) is

shown in Figure 10 - 2. The unordered relationships have been included in these

figures for later discussions of orderedness of topological models under certain con-

straints. Figure 10 - 2 includes ordered adjacency relationships with the edge as a

reference element, although the ordering is not intrinsic to the relationships and can

72

only be induced by correspondence (see Section 10.2.1). An expanded example of

the actual values of adjacency relationships in a particular embedded graph is shown

in Figure 10 - 3.

Variations on how each relationship is represented and defined are possible. These

variations involve the semantics of the adjacency relationships and not necessarily

storage representation formats. The adjacency relationship definitions shown in the

figures include a few cases which reflect choice as to the exact meaning of the rela-

tionship.

The EE adjacency relationship can be defined at least two different ways. In both

cases the adjacent group of the reference edge is an unordered list of length two. The

length of two is due to an edge having two ends and the list is unordered since there

is no means of identifying one end of an edge from the other solely in terms of its

edge adjacencies. The difference in the two definitions given is in how the members

of the adjacent group themselves are defined.

class ordered unordered

VW V<V> Vv
VE V<E> VIE}
VF V< F> Vi{F}

EV E{V} see text
EE E{[E]} E{{EW EE def. A, see text
EF E{FP see text
FV F<V> F{}

FE F<E> F{E}
FF F< F> F{F} FF def. A, see text

Figure 10 ~ 1. The ordered and unordered adjacency relationships for manifold
topologies

{

73

\
Edge is Facels

refarence

Clament element

reference
olement

@ © .

Figure 10 - 2. Diagram of the ordered and unordered element adjacency rela-
tionships

74

a) a solid tetrahedron and its labeled embedded graph structure

b) adjacency relationships

v l/fz

V< V> V< E> V< F>

VIS V> = vi< vy vy v Vi< E> = vi<ejese Vi< B> = vi< fyfafa>
V< V> = vy vy vy v Vo< B> = vy< eserep> Vo< B> = vy< fifaf o>
Vi< V> = < vy vy vy Vi< B> = va< ggepes> v3< F> = vy< fifafs>
Vi< V> = < Uy vy V3> v4< B> = vy< egeieg> va< F> = va< fifafa>

E{V} E{(E]} E{F}
e {Vi= {v; v4} e{[ETF= eqllesesllegeq) e{F}= e {24}
ea{Vi= {vy va} er{lEIF = ey{le ezlles eql) ex{F}= e;{f1f4}
e3{V}= {v; vy} es{lEIY = es{leselleq esl} e3{F}= e3{f,fs}
eqfVi= {vy ve} 34{[E]}Z= es{leseslley eql} ey{Fl= eq4{f i f2}
es{Vi= {vy vs} es{[E]}2= es{leseqlleq eal} es{F}= es{fif1}
eg{V}= vy vy} e{lE]Y = eg{lereslleq e} e{F}= eg{f1f4}

F< V> F< E> F< F>

F1a Ve = fi<vyvgvs F1<E> = fi<eqeqes> Fi< B> = fi<fafaf e
fa2 V> = foxvgvy v L1 B> = fa< eqezep> fax B> = fo< fifsfe>
f3< V> = fyvpvyve> f3 B> = fi<esesep Fa< B> = fa<fof ife
fac Vo> = fucvivave fa<E> = fu< eseqer> fa< B> = fu<fafaf>

Figure 10 - 3. Actual adjacency relationships for a tetrahedron

In the first EE definition, E {{E]P, (or E{{[E])* in correspondence) referred to here as

EE definition A, each of the two members of the adjacent group is itself a group of

two linearly ordered edges, symbolized by [E]. The two edges, in order, refer to the

left and right nearest neighbor of the reference edge clockwise and counterclockwise

from the reference edge respectively about that end of the reference edge. Such rota-

tional directions are as seen from outside the solid volume looking directly towards

the surface. This definition of EE has the advantage of requiring a short constant

length implementation data structure.

In the second EE definition, E{< E> }*, referred to here as EE definition B, each

member of the adjacent group is a cyclicly ordered group of edges, symbolized as

< E>. Each member < E> of the adjacent group refers to the cyclicly ordered list of

all of the edges surrounding one end of the edge. To effectively use the relation-

ships, the reference edge would usuaily need to be found in the < £> group in order

to determine the relationship of the reference edge to other edges, and further, an

indication of which occurrence of the edge in the adjacent group was relevant to a

particular end of the edge would need to be maintained for seif Ioop edges.

An example illustrating the differences in the two definitions are shown in Figure

10 - 4.

FF will be defined in terms of the adjacency of faces to vertex and/or edge elements

in the boundary of the reference face. Even then, the FF relationship can still be

defined at least two semantically different as well as syntactically different ways. The

difference is in how the adjacent goup is defined (see also Figure 10 - 5):

Definition A - only faces adjacent to edges surrounding the reference face are in the

adjacent group

Definition B - faces adjacent to edges and vertices of the reference face are in the adja-

cent group; no differentiation of the two is made in the adjacent group

Unless specified otherwise, we will be referring to definition A when FF is mentioned.

The preferred definition is largely a matter of taste; definition 4 is chosen here

76

a) topology

b) E{{E1P form (definition A) generates:

erfles erlleqesl}

¢) E{< E> ¥ form (definition B) generates:

er{< ey eze e9> < ejeqe5e6> }

Figure 10 -~ 4. EE adjacency relationship formats

77

a) topology

b) definition A

1< F> = fi< fufsfsfr>

¢) definition B

Fi<F> = fi< fofafsfafsfsf1fsfs>

Figure 10 - S. Two definitions of the F< F> adjacency relationship

because of its simplicity and because of the convenience of having the same number

of members in its adjacent group as F< V> and F< E> .

In the F< V> relationship, strut or isthmus edges and self loops in faces are

represented as shown in Figure 10 - 6.

The V< F> relationship is defined such that the adjacent group enumerates all faces

encountered between all the edges surrounding a vertex. The number of elements in

the adjacent group of F< V> is therefore the same as in the V< E> relationship.

78

For example, in the case of v, in Figure 10 — 6, the adjacent group is < f, f1 f1 > .

This is the maximum amount of information we can ascribe to V< F> .

10.2.1. Edge Adjacency Relationships

The element adjacency relationships where the edge is the reference element have

several characteristics which are different from the other adjacency relationships and

are worth mentioning at this point.

The relationships where the edge is the reference element are the only relationships

in which the adjacent groups can be of fixed length, are essentially unordered, and

can not be truly cyclic.

EV and EF are defined as E{V}and E{F} and are exceptional in that they are the only

adjacency relationships which always have exactly two members in their adjacent

group (le{V}l = 2 and le {F}|= 2). Without combining information together,

there is no basis for differentiating one end or one side of the edge from the other in

any in.dividual adjacency relationship involving the edge as the reference element.

Thus EV and EF are by themselves unorderable without réferring to other elements

for positioning, One might argue that EV and EF have cyclic ordered adjacent groups

of length two, but this is semantically equivalent to an unordered list in terms of ord-

ering information, and it is unclear if a claim can be made for any cyclic nature of the

two ends of an edge. Therefore, since EV and EF can't reflect any true ordering they

are represented as unordered element adjacency relationships, and there are no

ordered versions of EV and EF.

Similarly, the adjacent group of the EE relationship is also unordered. In this case,

however, it is listed as an ordered adjacency relationship because some relative order-

ing information is retained in each of the individual members of the adjacent group in

both definitions discussed.

Any two or all three of the adjacency relationships with the edge as the reference ele-

79

a) F< V> relationship

FIRV> = i< vsvivgyvavavyv,>

b) V< F> relationship

Vi F> = v < faf o fy>

¢) V< E> relationship

viK E> = vi< e eges>

d) E{[E1P relationship (EE definition A)

eellEIY = eg{le el [ese,]}
e{[E1P = e7{lesesl[e5e7]}

e) E{< E> ¥ relationship (EE definition B)

eg{< E> P = es{< ejeges> < eg> }
e{<E> P = e;{< eqeqere3> < egeqeqe,> }

Figure 10 - 6. Adjacency relationship example involving strut edges and self
loops

80

ment may be put into correspondence. In this case the correspondence information

may be represented by having the adjacent group assume an ordering for coordination

only, as in E{V) and E{F] for E{V } and E{F} in correspondence, and using the order-

ing to coordinate between the two relationships. ‘Although the ordering is arbitrary

for the first relationship chosen, it provides a basis for ordering the remaining ele-

ments, allowing the correspondence to be made. Thus while E{V ¥, E{{E]P, and E {F}

all consist of unordered adjacent groups, the imposition of an ordering can be used to

represent the correspondence between all of them, creating E(V12-E[[E1}%-E(F]? This

ordering would be used for correspondence and does not represent information

inherently present in the specific adjacency relationships in correspondence.

An example of the representation of strut and seif loop edges in terms of both

definition A and definition B of the EE relationship are shown in Figure 10 - 6d and

10 — 6e. Ends of strut edges, since they are not adjacent to any other edges, are

represented in definition A, E{{E]1¥, as a set including the reference edge twice for

the corresponding member of the adjacent group. In defi‘nition B, however, a strut

edge does have a single member in its adjacent group member < E>, which is the

reference edge itself.

An advantage of the EE definition A is that with the correspondence E[VI*-E[[E])*

E[FY?, efficient clockwise and counterclockwise traversals around the edges and ver-

tices surrounding a face can be made. This allows traversal of the entire graph

without resorting to local searches through cyclic lists of elements of arbitrary length,

as would be necessary with EE definition B unless the cyclic adjacent groups were

somehow marked to indicate the location of the reference element edge in the cyclic

list.

10.2.2. Correspondence

The twenty-seven pairs and the six triplets of possible correspondences of the nine

possible adjacency relationships are listed in Figure 10 - 7. Nine of the possible

81

thirty-six pairs of adjacency relationships (thirty-six since the number of unique unor-

dered pairs in a group of n objects is fl%fi) do not allow correspondence because

they involve the adjacency relationships where one of the pair of adjacency relation-

ships has the same reference and adjacent group element type and the other of the _

pair of adjacency relationships consists of the two element types not found in the first

relationship.

same reference element type

EV - EF VE - VF FV - FE

EV - EE VE - VV FV - FF

EE - EF VV - VF FE - FF
EV-EE-EF VV-VE-VF FV-.FE-FF

same adjacent group element type

VV - EV VE - EE VF - EF
VV - FV VE - FE VF - FF

EV - FV EE - FE EF - FF
VV-EV-FV VE-EE-FE VF-.EF-FF

mixed same reference and adjacent group element type

VE-EV VF-FV EF-FE

VE-EF VF-FE EF-FV

VE-FV VF-EV EV-FE

Figure 10 - 7. Correspondences between the nine adjacency relationships

82

10.3. Adjacency Relationships for Disconnected Graphs

Although early boundary modelers (such as [Baumgart 72]) had simpler data struc-

tures which represented topology information using the element adjacency relations

much as they have already been described, several later boundary based solid

modelers (including [Eastman & Weiler 79] and [Braid et al 78]) have expanded the

number of basic elements to remove both the surface and volume connectivity res-

trictions encountered with the original representations. The basic idea is that the new

element types ‘‘bridge’’ the gap between common boundaries of the same face or

volume. Since the same conditions can be represented in a connected graph

representation, the changes are more a practical matter of convenience and a clean

representation rather than an extension of theory.

The loop structure modification was originally created to eliminate the otherwise

unnecessary artifact edges used to associate ‘‘inner’’ hole contours with the “‘outer’’

face boundaries (see Figure 10 — 8). The addition of the loop structure generalizes

the representations to allow disconnected graphs within single surfaces of a solid

volume,

The shell structure extension was made to allow multiple shelled objects (solid

volumes with internal cavities) without resorting to artifact faces created solely to pro-

vide a connected graph representation of the desired separate surfaces (see Figure

10 - 9). Similarly, this addition generalizes the representation schemes to allow sin-

gle volumes to contain multiple surfaces.

Both of these additions together modify the Euler-Poincaré equation:

V-E+ F= 2-2G

to the following form:

V-E+ F-(L-F)= 2(S-G)

where L is the number of loops and S is the number of shells or surfaces in the

83

object being represented.

10.3.1. Loops

Note that the quantity (L - F) in the Euler-Poincaré equation above is the number of

contours of multiply connected faces “‘in addition’’ to the first contour in faces of the

object being represented. The effect of subtracting the “‘additional’’ contours on the

left side of the equation is identical to the effect of including an additional artifact

edge, since the edges appear with a negative sign on the left side of the equation.

Thus the overall effects of the two different multiple contour face representation tech-

niques are identical in terms of their effect on the Euler characteristic of the topology:

While the artifact edge technique is convenient from a theoretical point of view for its

simplicity, it has several problems from a practical standpoint. In a geometric model-

ing situation, where models are constantly modified during the design of an object,

the artifact edges may be split several times, increasing the computational costs of

manipulating the model. The system must also be able to decide which vertices of

vy Va v A

Vs Vs Vs Vg

Vg vz Ve vy

Va V3 Vy V3

Figure 10 — 8. Artifact edges to associate separate boundaries of a face

84

artifact faces

[\
LM<

Figure 10 — 9. Artifact faces to associate separate boundaries of a volume

the contours to use when locating the artifact edge in the structure during its creation.

In systems which actually display artifact edges, the appearance of these edges to pro-

duce a hole in a face is conceptually disturbing to users whose modeling requests

(such as remove the volume of a cylindrical shape from a block) did not imply

“‘extra’’ lines on faces with holes.

10.3.2. Shells

Object representations with multiple shells could be represented by a list of several

separate surface topologies. Unlike artifact edges used to represent holes in faces,

independent shells cannot be represented by ‘“‘artifact faces’® without significant com-

putational effort and additional tags to differentiate ‘‘real” faces from artifact faces.

85

This is necessary because two matching coincident ‘‘faces’” are required to tie

together an outer shell to an inner shell. Normally, geometrically coincident faces

which are topologically separate would not otherwise occur in such representations.

Some additional topological information not derivable from the other adjacency rela-

tionships can also be stored at the shell level. This information is the characterization

of which shell is the outer shell of the finite object and which are the inner shells

entirely contained by the outer shells. The usefulness of representing this informa-

tion in the topological model instead of deriving it from geometric information is

again dependent upon its frequency of use in a given application. Such information

can reduce computational cost dramatically in situations such as the determination of

whether a point is interior or exterior to a solid since it allows a hierarchical spatial

search to be performed.

10.3.3. Disconnected Graph Adjacency Relationships

If the loop and shell elements are considered as additional topological element types,

then several new adjacency relationships emerge, as well as changes in the semantics

of the old adjacency relationships. There can be many variations on the way these

relationships are specified; one way is shown in the adjacency relationship matrix in

Figure 10 - 10.

Since we are only allowing manifold surfaces on objects, the adjacency relationships

V{Sh E{S} L{§} F{S}, may only have one member in their adjacent group. L {F}is

part of the definition of a face and therefore has only one member in its adjacent

group. Since edges have only two sides on a manifold, similar to the initial set of

adjacency relationships, the adjacent groups of E{V}, E{L}, E{F}, and each of the

member groups of the adjacent groups of E{{E]} have exactly two members.

V< L> is defined as the cyclically ordered list of loops which use a vertex (see Figure

10 — 11). LL could be defined as the list of loops adjacent to the reference loop by

86

Ve V> V< E> V<L> V< F> VY

E(P E{[EIP EQLY E{FP E{fY

L<V> L<E> L<L> L{F} LS}

Fi<V>} F{E>} F{L} F{<F>} F§}

SV} S{E} S} S{F} sy

Figure 10 - 10. The manifold disconnected graph adjacency relationship matrix

sharing an edge (LL definition A), or as the list of other loops used in the face to

which the loop belongs (LL definition B), as shown in Figure 10 - 12. We will use

LL definition A here.

F{L }is the list of loops belonging to a face.

FV, FE, and FF adjacent groups may have multiple members, each member of which

is a group, one for each loop in the face. For a given face f;, there will therefore be

exactly |f;{L }| members in the unordered adjacent groups of F{< V> }'/"(“' ,

Fi<E> }lf,-{L)l £ H
, and F{< F>} , with each adjacent group consisting of |f;{L }|

members consisting of < V>, <E>, and < F> groups, respectively. These < V>

and < E> adjacent groups are equivalent to L< V> and L< E> for each loop of the

face.

§{S} has no members in its adjacent group since shells may not touch in manifold

environments. §{F} simply provides a lists of faces in a shell; the remaining adja-

cency relationships using a shell as the reference element can be derived from §{F}

and similar adjacency relationships using the face as the reference element.

87

viLl> = < lilhlls>

Figufe 10 - 11. V< L> adjacency relationship example

88

a) LL Definition A:

IH{L } = {lslylsle}
L} = {4}

b) LL Definition B:

lhi<L> = <Ip»

< L> =< -

Figure 10 - 12. LL adjacency relationship example

A model normally keeps a simple list of shells. More complex structures may be

desirable in some situations to differentiate the outermost shell or completely capture

the shells of multiple objects or an ability to differentiate containment relationships

between shells (such as with hierarchical tree structured lists).

The new FL and LF adjacency relationships involving the loop element type embody

the connective information allowing faces to have multiple disconnected contours.

Such connective information was only available through adjacency relationships

involving edges in the previous system of adjacency relationships, which is why the

artifact edge technique was developed to simulate disconnected contours.

89

Since the addition of the shell element type occurs at a hierarchically higher level

above the existing elements, its effects on the other element adjacency relationships

are minimal,

Chapter 11

TOPOLOGICAL SUFFICIENCY

Proving the topological sufficiency of a geometric modeling representation is an

important part of the process of verifying the correctness of a representation over a

specified domain, The most concise way to prove topological sufficiency of a

representation is to start from information about the theoretical minimum informa-

tion necessary to attain sufficiency.

This chapter develops the theoretical minimum topological adjacency information

necessary for manifold boundary geometric modeling representations. This is done

by examining the topological element adjacency relationships for topological

sufficiency. Sufficiency of specific data structures is discussed in Chapter 12, which

describes the data structures.

The topological element adjacency relationships are first considered for sufficiency

individually, and are then considered for sufficiency in combination. The findings are

then summarized.

Some readers may wish to skip directly to the summary subsection at the end of this

chapter on a first reading.

11.1. Sufficiency of the Manifold Element Adjacency Relationships

To examine the topological sufficiency of a representation or of its specific implemen-

tation data structures we first need to find what information is sufficient, in other

words which set of adjacency relationships are sufficient,

The overall objective of this chapter is to characterize the theoretical sufficiency of

90

91

various subsets of the manifold ordered element adjacency relationships, and in par-

ticular each individual adjacency relationship, to represent manifold curved surface

domain polyhedral topologies.

It can be proven with simple counterexamples that none of the individual unordered

element adjacency relationships are sufficient to specify a complete manifoid

polyhedron topology under the conditions identified in Chapter 9. Although

insufficiency of two of the unordered adjacency relationships will be proven here, this

section will concentrate on examining the sufficiency of the ordered element adja-

cency relationships and their ability to unambiguously produce a compiete polyhedron

topology representation under the conditions identified in Chapter 9. This includes

the topic of whether some combinations of individually insufficient adjacency relation-

ships are together sufficient,

First, sufficiency will be defined, then sufficiency of three of the nine individual ele-

ment adjacency relationships will be proven, and then insufficiency of the remaining

six will be proven. The sufficiency of some pairs of individually insufficient element

adjacency relationships will also be considered. Finally, a summary will characterize

the findings.

11.1.1. The Individually Sufficient Adjacency Relationships

Three element adjacency relationships, V< E> , the specific £E adjacency relationship

E{< E> P, and F< E> , are individually sufficient to represent polyhedral topologies.

All three sufficient element adjacency relationships have the edge element type as the

type of their adjacent group.

11.1.1.1. V < E> Sufficiency

A theorem due to Edmonds [Edmonds 60] determined that the directed cyclic orders

of the edges around the vertices in an embedded graph are sufficient information to

92

completely and uniquely describe polyhedron topologies (see [White 73] and [Graver

& Watkins 771). The cyclicly ordered edge-around-a-vertex information is equivalent

to the definition of the V< E> element adjacency relationship given here. Therefore

the V< E> adjacency relationship by itself is sufficient for representing polyhedral

topologies unambiguously.

A major result of the theorem is an embedding enumeration algorithm, called the

Edmonds embedding technique, which can produce all of the 2-cell embeddings in an

orientable surface of a given graph (the connectivity information V{V}or E{V}). The

algorithm operates by turning the lists of edges incident to each vertex into a cyclic

list, which creates a specific instantiation of V< E> information. By permuting the

orders of the edges in the cyclic lists, all possible V< E> adjacency relationships can

be created. The theorem states that each possible ordering corresponds to a specific

embedding of the graph in an oriented surface. Thus, by permuting the V< E> adja-

cent group information created in this way, each of the possible embeddings can be

produced.

Generating the actual embedding from a specific instantiation of the V< E> informa-

tion (see [White 73]) involves constructing the boundaries of the faces of an embed-

ding from the V< E> information, and then ‘‘sewing” the face boundaries together

by matching up their edges much like assembling a picture puzzle. Every edge of an

embedded graph is used exactly twice in the V< E> adjacent groups of edges, and

each such use of an edge is associated with one of the two directed edges between the

two vertices of the edge. Since this map construction or embedding technique results

in a mapped graph where every edge is used twice and in opposite directions, the map

is closed and oriented.

To illustrate how the boundaries of the faces of an embedded graph can be deter-

mined, the following algorithm which is part of the Edmonds embedding technique

(see [White 73] and [Young 63]) is presented in adjacency relationship terminology.

93

To traverse the boundary of a face in a clockwise direction given the clockwise cyclicly

ordered V< E> information:

L. Select a vertex v;. This will be called the original vertex.

2. Select an edge which is a member of v;< E>, say v;< E> ,. This will be called

the original edge.

3. Find some v;< E>, such that i< E> , = vw< E>, and if i = & then a# b.

4. Find v,< E> ,, the successor edge to v,< E> , in the traversal of the face

boundary, from the v,< E> information using 6. w< E>, is simply the

edge preceding vi< E> , in the cyclic sequence v, < E> , that is ve< E> ,_;.

5. Until v, = the original vertex and v,< E> ., = the original edge, g0 to step 3,

using v, as the new v; and vy< E> , as the new vi< E> .

The traversal of the boundary of a face in the embedded graph from the V< £>

information alone is now complete. To construct all face boundaries from the V< E>

information the above process is repeated until all edges have been used twice during

the traversals of the face boundaries.

Note that the F< V> -F< E> adjacency relationships in correspondence can also be

created during the face boundary traversal. These relationships are used to *‘sew’’

together the face boundaries into a complete embedding by an identification process

which matches up each use of an edge so that each of its two adjacent faces uses the

edge in opposite directions in their boundary. This is done by making sure the ver-

tices of the two uses of the edge “‘match up’ when the two faces are made adjacent

along their common boundary. In the case of an isthmus or strut edge the two sides

or uses of the edge are sewn together on the same face boundary.

Using this embedding technique, V< E> information taken from a specific embed-

ding can be used to generate an embedding which will be identical to the original up

to the label of the faces. If desired, after the embedding process is complete, the

faces of the embedded graph may be uniquely labeled, and other adjacency relation-

ships derived.

94

11.1.1.2. E {< E> } Sufficiency

It is apparent that E{< E> }*, EE definition B contains nearly identical information to

V< E> since each member of the adjacent group contains information identical to the

entire adjacent group of the V< E> relationship of one of the vertices to which the

edge is incident. The difference is that the reference vertex of each < E> adjacent

group is unknown, and there are multiple copies of each < E> group. In fact, for

every vertex of degree n there are n copies of an adjacent group equivalent to the

vertex’s v;< E> adjacent group. E{< E> ¥ cannot be used directly for traversal of the

edges bounding a face because there is no foolproof way of determining which edge

of the < E> groups to use when multiple self loops occur at a vertex of the reference

edge. In order to determine face boundaries and embeddings from the E{< E> P

information, V< E> information must first be created.

V< E> information can be created from E{< E> ¥ information by a simple algorithm

which eliminates the duplicate copies of the < E> groups and then labels the vertices.

Establishing the equivalence between E{< E> }? and V< E> in this way will prove the

sufficiency of E {< E>

The algorithm is:

1. If there are no E{< E> P adjacency relationships, then our embedded graph is

the trivial graph and we are finished.

2. Otherwise, for each adjacent group member < E> of every ¢;{< E> }? create an

equivalent < E> and place it in set A, a set of all < E>’s found in all

E{< E> }s.

3. Until set A is empty:

a) Remove some < E>, a member of set A, from set A,

b) Find and eliminate the other (n-1) members of set A which

exactly match in membership and cyclic order the < E> origi-

nally removed from set A in step 3a, where n = |< E> |.

c) Place the < E> originally removed from set A in step 3a into set B.

95

4. Until set B is empty:

a) Remove < E>, any member of set B.

b) Create a unique label of a vertex, i .

c) Join the label with the < £> to create a v;< E> adjacency relation-

ship.

Given the ability to generate V< E> information uniquely from E{< E> ¥ informa-

tion, we can claim sufficiency for E {< E> ¥ (EE definition B).

Theorem 11-1: The E{< E> ¥ adjacency relationship is sufficient to unambiguously

represent adjacency topologies of polyhedra,

proof: Given the above algorithm, one can convert E{< E> P into V< E>. The algo-

rithm is correct because by the EE definition B of E{< E> }* there must be

n copies of the < E> cyclic ordered groups of edges surrounding each ver-

tex of degree n, one for every edge incident to a vertex. Given the one-

to-one correspondence between V< E> and E{< E> ¥ using this algo-

rithm, E{< E> P is then sufficient by the Edmonds theorem.

11.1.1L.3. F < E> Sufficiency

The ordered cyclic list of edges surrounding a face preserves the orientation and

embedding of the face. Because each edge can only be used twice, and because the

orientation information is preserved, an embedding technique can be constructed to

create the complete embedding from the F< E> information.

The embedding process is similar to the Edmonds embedding technique and is basi-

cally an identification process which matches up each of the two directed uses of a

given edge as well as each of the uses of a vertex. The identification process will

form a closed and oriented surface. Unlike the Edmonds technique, information on

vertex identity is not directly available and vertex identification must be made solely

through the use of edge information.

96

The embedding procedure involves the examination of all adjacent groups of all

fi< E>:

1. edge identification procedure

If any f,< E>, = f.,< E>, where a may or may not equal ¢ (but if a=

c, as in the case of a strut edge, then b# d), then the boundaries of f, and

fe are adjacent along this edge. The two uses of the edge are the only

uses of the edge and are of opposite orientation in the‘boundary cycles of

fo and £..

2. vertex identification procedure

Every edge has two ends or vertices. A traversal of the boundary cycle of

a face first encounters one vertex of the edge, called the starting vertex of

the edge, then encounters the edge itself, and then encounters the second

vertex of the edge, called the ending vertex of the edge with respect to the

face boundary cycle. There are two rules for vertex identification:

A) The starting vertex of an edge f,< E>; is the same vertex as the end-

ing vertex of the edge f,< E> ;_; directly previous to f,< E>;

in the face boundary cycle. The ending vertex of an edge

fa< E>; is the same vertex as the starting vertex of the edge

fa< E> 4y directly following f,< E>; in the face boundary

cycle.

B) For any matching uses of an edge f,< E>, = f.< E>, , the starting

vertex of edge f,< E> , is the same vertex as the ending vertex

of edge f.< E> ; and the ending vertex of edge f,< E> , is the

same vertex as the starting vertex of edge f.< E> 4.

As a direct result of rule A in the vertex identification procedure, if | f,< E> |= 1 or

| fe< E> | = 1 then the starting and ending vertices of the edge are in fact the same

vertex. Intuitively this makes any previously discovered common uses of the starting

and ending vertices in the partially embedded graph coalesce so that they converge

upon the same vertex. If | f,< E> |# 1and | f,<E> |=# 1 then the two vertices

97

of any given edge in the face boundary cycles may or may not be distinct. In other

words, a self loop must be encountered before it will be recognized that two potential

vertices are in fact the same vertex, since the vertices have not been labeled.

As a result of vertex identification rules A and B combined, if any two-edge sequence

fa< E>j, fn< E> 4y in the face boundary cycle of face f» matches in opposite order

a sequence f,< E> ; ... f,< E> ;;1,,, a sequence in the face boundary cycle of face f,

in which there may be n= 0 or more edges between fa<E>;and f,< E> .y, then

the ending vertex of f,< E> ; is the starting veftex of fm< E> ;4 is the ending vertex

of fo< E>; is the starting vertex of f,< E> j+1 is the ending vertex of f,< E> jen 1S

the starting vertex of f,< E> j+1+n (see Figure 11 - 1),

F< E> information is similar to the information which had to be constructed in the

fSESj4n frsEdyq

fn<E>i+1+n ffl(E)i

fm

Figure 11 - 1. Result of application of vertex identification rules A and B

98

first part of the Edmonds embedding technique, except that the additional F< V>

information is not directly available and must be constructed. Direct information on

the vertices of the edges of the face boundaries is not necessary to match up edges

during embedding because uses of the edges already reflect orientation. Therefore

each of the two uses of a given edge in the F< E> information necessarily uses the

edge in a direction opposite to the other use. Vertex identification is more involved

than for V< E> during embedding since vertices are not directly represented in

F< E> and the information must be derived from edge adjacencies by the rules given

above.

If desired, after the embedding process (the identification process) is complete, the

vertices of the embedded graph may be uniquely labeled, and other adjacency rela-

tionships derived.

Theorem 11-2: The F< E> adjacency relationship is sufficient to unambiguously

represent the adjacency topologies of curved surface polyhedra,

proof: Using the identification process above, since every instance of an edge on a face

boundary is matched with another instance of the same edge on a face

boundary, and every vertex use is connected, the resulting embedding is

closed. Since the two instances of each edge are of opposite orientation

for the two adjoining faces, the embedding is oriented. The order of the

rules applied in the identification or ‘‘sewing’’ process does not affect the

outcome since all affects are local. At every step in the sewing process for

any given edge instance remaining to be sewn there is only one possible

other edge instance in a boundary to which it can be matched. By the ver-

tex identification rules there are a finite number of steps to determine

common vertex identity. The process is therefore deterministic, and the

embedding produced unique.

A point of minor interest is the representation of the trivial graph in the three

sufficient adjacency relationships. In V< E> it is represented as a single adjacency

relationship with an empty adjacent group. In E{< E> ¥ and F< E> there is no direct

99

way of representing vertices unattached to edges, so they must represent the trivial

graph as simply the absence of any adjacency relationships.

11.1.2. The Insufficient Individual Adjacency Relationships

Six of the nine element adjacency relationships are individually insufficient for unam-

biguously representing the topologies of polyhedra. These six relationships are E{V},

EFY V<V>,F<V>,V<F>, and F< F>. Additionally, EE definition A, E{{E]},

is also insufficient,

Intuitively, the proofs utilize counterexamples to the unambiguous reconstruction of

a mapping of the graph from the adjacency relationship information under considera-

tion. In these counterexamples, it is shown that for a given adjacency relationship of

the type under consideration there exists more than one mapping. This is not accept-

able for the unambiguous representation of the topology of polyhedra and proves the

insufficiency of the particular adjacency relationship under consideration for represent-

ing topologies of polyhedra.

Proofs of the insufficiencies are most easily given in the form of counterexamples.

All of the insufficiency proofs in this paper have the same basic format, so the format

is described once and referred to from the insufficiency theorems in the following sec-

tions, The general format of the proofs is:

General Format for Insufficiency Theorems 11-3 through 11-5:

Theorem: The X adjacency relationship information is not sufficient to unambiguously

represent the manifold adjacency topologies of curved surface polyhedra.

proof (by contradiction): If the X adjacency relationship is sufficient to unambiguously

represent the manifold adjacency topologies of curved surface polyhedra,

then one could reconstruct the unique mapping of the embedded graph of

the object shown in the Figure X part @ (along with all of the adjacency

relationships up to the labels of the other element type(s) not involved in

the X adjacency relationship) from its X adjacency relationship information

100

alone (Figure X part b). Note, however, that another mapping consistent

with the X adjacency relationship information can be found which is not

consistent with other adjacency relationships in the original, meaning the

two labeled mappings are not homeomorphic (Figure Xpart ¢). The X adja-

cency relationship is ambiguous and does not contain enough information

to uniquely represent the topology (mapped graph) shown in the figure.

Therefore the X adjacency relationship is insufficient to unambiguously

represent manifold curved surface polyhedra topologies.

Proofs of insufficiency for the remaining six element adjacency relationships now fol-

low. Where appropriate, comments are made regarding causes of the insufficiency

and restrictions which would allow the particular element adjacency relationship to be

sufficient.

For completeness, proofs of the insufficiency of E {V } and E{F} are given even though

they are not ordered adjacency relationships.

Theorem 11-3: Each of the E{V}, E{F}, V<V>, F<V>, V< F>, and F< F> adja-

cency relationships are individually not sufficient to uwnambiguously

represent the adjacency topologies of curved surface polyhedra.

proof (by contradiction): Using the insufficiency proof form, and the Figures 11 — 2,

11-3, 11 -4, 11 -5, 11 -6, and 11 - 7, respectively, we can see that

each is insufficient by counterexample,

Given that the £{V} and E {F} adjacency relationships are not truly ordered element

adjacency relationships, it is not surprising they are not sufficient.

While each of the two element adjacency relationships V< V> and F< V> are

insufficient for the general case, they are each sufficient if the range of representation

is restricted to disallow multigraphs and self loops. Intuitively, it is possible to see

this is true because it is only with multigraphs and self loops that edges are not

uniquely identified by the set of their two endpoints. If the restriction is made and

pseudographs are not allowed, then it is fairly straightforward to develop a function

101

a) Mapping 1

b) E{V} information

eV = e{vi val sV} = esfvy vo}
eV = ey{vy va} eufV} = es{vy vi}

c) Mapping 2

©1

Note: while this is a convenient proof, use of pseudographs are not necessary to
prove E{V} insufficient; an example is the hypercube.

Figure 11 - 2. Insufficiency of the E{V} adjacency relationship

102

a) Mapping 1 (and object)

b) E{F} information

e{Ft = e{fy fi}
ex{F} = e{fy fs}
es{F} = es{fs fa}
esfF} = esdfs f4}

¢) Mapping 2

es{f1 fa}
ee{fs fa}
er{f1 fa}

es{fs fa}

Figure 11 ~ 3. Insufficiency of the E{F} adjacency relationship

103

a) Mapping 1

b) V< V> information

i V> = vi< vy vy vy vy> Vi< V> = v vy vavgv>
vk V> = v vy> v V> = v vy>

c) Mapping 2

Figure 11 - 4. Insufficiency of the V< V> adjacency relationship

104

a) Mapping 1

b) F< V> information

f1IRV> = fi< vy vp> fi< V> = fi< vy vy>

[V> = fa< vy vp> fa< V> = fu< vy vp>

¢) Mapping 2

1

v v

Figure 11 - 5. Insufficiency of the F< V> adjacency relationship

105

a} Mapping 1

b) V< F> information

VISEF> = v fifafafo> v F> = v fy o>
Vo F> = vy f3 o> Vs F> = vs< fy o>
Vi< F> = vy f3 fo>

c) Mapping 2 *

(note that orientation of f 4 has changed)

Figure 11 - 6. Insufficiency of the V< F> adjacency relationship

106

a) Mapping 1

4

b} V< F> information

fi<F> = fi<fafafafafafe> fi<F> = fa< fafafo
fi<F> = fo<fi f1 fe> fa< B> = f<fifofifafs fo>

c) Mapping 2

f1

Figure 11 - 7. Insufficiency of the F< F> adjacency relationship

107

that transforms V< V> into V< E> and F< V> into F< E> . Since both V< E> and

F< E> are sufficient without restriction, V< V> and F< V> would be sufficient

under these restrictions. Sufficiency under this restriction is addressed in detail in

Appendix A.

In a fashion similar to V< V> and F< V> under constraint, if we constrain the adja-

cent groups of £ {F} to be unique so that the reference edge element can be uniquely

identified, V< F> and F< F> can be transformed to V< E> and F< E> respectively

and can be considered sufficient under constraint (see Appendix A).

EE definition A, E{[E]}, is also insufficient:

Theorem 11-4: The EE definition A adjacency relationship, E {{E1¥, is insufficient to

unambiguously represent the adjacency topology of curved surface polyhe-

dra,

proof (by contradiction): Using the insufficiency proof form, and the Figure 11 - §,

we can see that E{[E]} is insufficient by counterexample.

11.1.3. Sufficiency of Combinations of Adjacency Relationships

Since some of the individual element adjacency relationships are insufficient, it is

interesting to consider whether combinations of individually insufficient element adja-

cency relationships are together sufficient.

Out of thirty-six possible unique unordered pairs of the nine adjacency relationships,

twenty-one already involve sufficient relationships, Of those remaining, three have

no basis for correspondence and do not appear in the list of twenty-seven correspon-

dences of Figure 10 — 7, We are therefore left with twelve pairs of possible interest.

As previously mentioned, practical modeling systems need to label all three element

types so that additional application related information may be associated with the ele-

ments. This means that at least two adjacency relationships will be needed in these

108

a) Mapping 1

M
I

il

e e

" 2 ' @ ’

83 »

. M

b) E{V} information

e {lEVP= el e; 3]l ez €3]}
e{lEVF= ex{les el e5 (1}
es{ET¥= es{l e, e;]l ey es]}

¢) Mapping 2

vy

Figure 11 - 8. Insufficiency of the E{[E]} adjacency relationship

109

systems so that all three element types are labeled and properly associated to be able

to combine the adjacency information. This makes it interesting to ask whether any

two of the individually insufficient element adjacency relationships which involve all

three element types are together sufficient to represent the topology of polyhedra.

Of the remaining twelve possible pairs of adjacency relationships, only five pairs of

element adjacency relationships involve all three element types. One pair, consisting

of E{V}-E{F}, has the same element type as reference element and therefore has the

strongest correspondence. Two more pairs, E{V}-F< V> and E{F}-V< F> , have

the same element type in their adjacent groups, and the last two pairs, E{V}-V< F>

and E{F}-F< V> are mixed with the common element type in both the reference ele-

ment and adjacent group.

As will be now shown, none of these five pairs of element adjacency relationships are

sufficient to unambiguously represent the topologies of polyhedra. The form of the

proofs is identical to that used in the proofs of insufficiency for the individual rela-

tionships and so will not be repeated here. The only difference is that pairs of rela-

tionships instead of single relationships will be considered.

In the E{V }-E {F} pair it will be assumed that we have access to both of the adjacency

relationships in strong correspondence since this will allow the maximal amount of

information to be available. If E[V]-E[F] in correspondence is not sufficient (as we

will prove next) then the pair E{V} and E {F} together without correspondence is also

not sufficient since even less information is availabie.

Theorem 11-5: Each of the E(VI*E(F, E{VP-F< V>, E{FP-V< F> , E[VP-V< F> ,

and E{fFP-F<V> adjacency relationship pairs with correspondence is

insufficient to unambiguously represent the adjacency topologies of curved

surface polyhedra.

proof (by contradiction): Using the insufficiency proof form, and the Figures 11 ~ 9,

11-10, 11~ 11, 11 - 11, and 11! - 12, respectively, we can see that

EWVIRE[FI,, E{VP-F<V>, E{FP-V<F>, E{YP-V<F>, and E{FP-

F< V> are each insufficient,

110

Another, more complex combination of particular interest is the so called “‘winged-

edge’’ structure polyhedral topology representation which is discussed in more detail

in Chapter 12. This representation is essentially E{V]? - E[{E]]? - E{F)? in correspon-

dence, utilizing each of the adjacency relationships with the edge as the reference ele-

ment including the EE definition A. All three have been proven individually

insufficient previously in this thesis. However, see Section 12.3.2 for proof of the

conditions required for sufficiency of the adjacency relationship pair E [V 1%-E([E])%

The seven other pairs of the original twelve pairs of interest are not examined here

since they do not involve all three element types. Additionally, if one also examines

others pairs involving EE definition A, several more pairs of possible interest can be

generated.

Combinations of three or more individually insufficient element adjacencies are also

not examined here.

11.2. Sufficiency of the Disconnected Graph Adjacency Relationships

Disconnected graph topology representations can always be reduced to connected

graph domain by the addition of artifact edges and faces to eliminated loops and

shells,

The introduction of the new element types does produce some differences in the

sufficiency of the various adjacency relationships for representing polyhedral topolo-

gies. The new adjacency relationships together contain the same information available

with the old adjacency relationships, but the information in some cases has been dis-

tributed over a greater number of adjacency relationships. This directly affects the

sufficiency of the new element adjacency relationships.

Intuitively, the addition of the loop element effectively “‘spreads out’’ the information

for sufficient representation of a polyhedron from the from the information previ-

ously available in the FE relationship over several new element adjacency relation-

111

a} Mapping 1

v,

b) E{V2-E[F}? information

Vy Vi

f1 f2 f2 f2

e[V
Va Vq sV

€4 e, ey[V]
e VY
es(V1?

c] Mapping 2

fy

v2

[
I

=

er vy
ey vy
es]vy

eq[vy

eslvs

V3

Vi

fo | f

Vs
€3

vol ey[FJ?
vil eFT?
vsl e3(F1?
vil e FT?
vyl es[F)?

v3

n
o
a
o
n
o
n
o
n

Vi

fy
ellfi fal
e2lf2 fal V3
e3[fa fal
eslfz f1l
eslf2 fil

f,

€,

V3

fa| fy

Vs
€5

Figure 11 - 9, Insufficiency of the E[V]-E[F] adjacency relationships in strong
correspondence

112

a) Mapping 1

b) E{Vv ¥-F< V> information

alVE = e{vyval fi<V> = fi<v v
VP = exfvi va} fi< V> = fo<vy vp>
sV = e3fvy val fa V> = fi< v vy
VP = eqfvi va} Fe< V> = fu<v v

¢} Mapping 2

Note that both mappings have identical F< V> , E{V} information yet differ in

E{F}.

Figure 11 - 10. Insufficiency of the E{V}F< V> adjacency relationships in

correspondence

117

a) Mapping 1

b) E{FP, E{VP, and V< F> information (E{F} and E{V} not in correspondence)

alV P = efvi vl elf P = eilfi fa} wi<F> = vi<f fa fifa>
VY = exvi val eF P = ex{fs fa} v F> = < fy fo>
eslVP = eslvy v} esfFP = eslfs ol va< P> = v< fy fp>
eV = exvi vs} eofFP = edlfa f1} Vi< F> = vi< fy fo>
eslVY = eslvy vi} esfFP = es{fy f3} vs<F> = vs< f1 fo>
eslVP = eslvy vs} esfFP = eslfy fa}

c) Mapping 2

Note orientation of f4 has changed.

Note that both mappings have identical E{F}V< F> and E{V}-V< F> infor-
mation yet differ in F< V> , F< E> , V< E> , and E{(E)(E)}.

Figure 11 - 11. Insufficiency of the E{F}V< F> adjacency relationships in
correspondence and the E{V}V< F> adjacency relationships in
correspondence

114

a) Mapping 1

b) E{FP-F< V> information

efF P = efi fi} fi<V> = fi<vp
efF P = exfs F3} fax V> = fo<vy vy vp>
es{F¥ = e3{f2 fa} fic V> = fa<vp>

fac V> = fu<vp

¢) Mapping 2

e f1 1

Vi

Note that both mappings have identical E{F ¥, E{V ¥, and F< V> information
yet differ in F< E> , E{[E]P, and V< E>

Figure 11 - 12. Insufficiency of the E{F}-F< V> adjacency relationships in
correspondence

115

ships (F{L} and L< E>) in order to explicitly represent the separate multiple con-

tours of the faces. Thus in this new system L< E> is not sufficient by itself to

unambiguously represent polyhedral topologies, but requires F{L } or L [F]!. The new

system is primarily a change of form for convenience and efficiency; no additional

information (that is, no information which is not derivable from existing information)

was brought to the model compared to the artifact edge technique.

Similarly, V< E> is no longer sufficient because it does not contain the information

giving connectivity across the surface of a face with multiple boundaries; but V< E>

along with V< L> and either L(F]' or F{L} would be sufficient. There are many

other possibilities, but these are not treated in detail here.

11.3. Summary of Findings

Of the nine manifold connected graph adjacency relationships, three of the ordered

adjacency relationships are individually sufficient over the domain specified in Chapter

9. The three are the V< E>, F< E> , and some forms of the EE relationship. These

three sufficient relationships are those which use the edge element type in their adja-

cent groups.

It has been proven here that six of the nine element adjacency relationships are indi-

vidually insufficient to unambiguously represent the topologies of polyhedra under the

domain specified.

Much of this work is based on a theorem due to Edmonds ([Edmonds 60],[Graver &

Watkins 77],[White 73]) which states that the directed circular orderings of the edges

around the vertices in an embedded graph (essentially the V< E> relationships) are

sufficient information to completely and uniquely describe polyhedron topologies. It

can be seen from the duality principle in planar graph environments that the F< E>

adjacency relationship is also sufficient by itself. The proof given here, however,

involves a topological identification procedure.

116

EV

VE

EE

FE

Sufficient

EF

> Sufficient if EV Uniquely Identifies Edge

<] Sufficient if EF Uniquely Identifies Edge

note that only one rarely used form of EE is actually sufficient

(see Section 11.2.1.2)

Figure 11 - 13. Adjacency relationship matrix showing sufficiency of the indivi-
dual ordered adjacency relationships

117

Only twelve of the possible thirty-six pairs of element adjacency relationships do not

involve an already sufficient adjacency relationship and do allow correspondence to be

made. It turns out that there are five possible pairs out of the twelve of individually

insufficient element adjacency relationships in correspondence which reference all

three topological element types. Unfortunately, none are sufficient, however.

Thus, although a minimum of two adjacency relationships are usually required to tie a

graph based representation together, at least one of the two adjacency relationships

must be individually sufficient (must be V< E>, F< E> , or a sufficient form of EE)

in order for the representation to be informationally sufficient.

A detailed proof of the sufficiency of the pair E{{E]Y*-E[V] in correspondence may be

found in Section 12.3.2 under the discussion of the winged edge structure.

Under more restricted environments than the domain specified here, other adjacency

relationships are also individually sufficient. If the two vertices of edges, E{V},

uniquely define edge identity (as in a planar faced polyhedral environment), then

V< V> a‘nd F<V> are also sufficient. If the two adjacent faces of edges, E{F},

uniquely define edge identity then V< F> and F< F> are also sufficient. This subject

is covered in detail in Appendix A.

Figure 11 - 13 summarizes these results and notes sufficiencies under restrictions. It

is interesting to note that the findings appear to support a kind of symmetry in the

diagram when the element adjacency relationships are organized in a regular fashion

as in the adjacency relationship matrix.

Chapter 12

TOPOLOGICAL DATA STRUCTURES

There are many possible topologically sufficient representation schemes for evaluated

manifold boundary object solid models. The focus in this chapter is on several

representational schemes for edge based representations. They are edge based in the

sense that ail the information required to reproduce the entire embedded graph topol-

ogy is contained in the edge related data structures,

There are many reasons why this particular form of representation is interesting, but

one reason is the historical popularity of the existing winged edge representation and

an accompanying, though more general, set of operators called the Euler operators, .

Detailed analysis of the existing winged edge structure in light of the information on

topological sufficiency of the previous chapter led to three new data structures. All

four data structures are described here with proof of their sufficiency,

12.1. Edge Based Graph Data Structures

Four different edge based data structures for representing manifold embedded graph

topologies useful in solid modeling are presented: The winged edge structure, the

modified winged edge structure, the vertex-edge structure, and the face-edge structure. For

brevity, these will also be referred to as the W-E, modified W-E, V-E,and F-E struc-

tures, respectively.

The winged edge structure, will be familiar to many. The modified winged edge

structure and the face-edge and vertex-edge structures originally introduced in

[Weiler 85a] are new. All four are based on use of the edge element as the reference

118

119

element from which adjacencies with other elements are determined. Two of the

structures, the winged edge and the modified winged edge structures, keep the edge

information as a single unit, while the face-edge and vertex-edge structures split the

information related to each edge into two parts based on the specific usage of the

edge in the adjacency relationships. These last two are identical in the form of their

storage format, but differ greatly in the semantic interpretation of their storage for-

mat.

The data structures are discussed in the context of a computer implementation, and

are described in detail after a preliminary section on supporting data structures. For

each data structure a description is given followed by a proof of sufficiency.

A detailed comparison of the four data structures in terms of storage requirements,

accessing efficiency, and algorithmic complexity is given in Appendix B.

12.2. Support Data Structures

Most of the topological information for the structures described here is embodied in

the edge structures, Before the actual edge based data structures are described, how-

ever, we will consider the structure of the other data structure elements in the

embedded graph representation. We will show a representation for these other ele-

ments which is essentially the same regardless of which of the four edge data struc-

tures is used.

Data structures for two of the three element types, faces and vertices, and a structure

to pull together the entire ensemble of elements found on a single surface, called the

shell, are now described.

Descriptions of these support structures are shown in Figure 12 - 1. This figure and

the following figures describing the four edge based data structures show Pascal

record declarations of the structures, a graphic depiction of the storage fields required,

and, in the case of the edge structures, a graphic depiction of the adjacency relation-

120

ships embodied.

Data objects refer to each other by the use of pointers. The naming convention for

the pointers in the data structures described is:

from-element-type to-element-type ptr

where the topological element types are symbolized by the letters s, f, [, e, and v for

a} Pascal declarations

type face_ptr = “face;

edge ptr = “edge; { used for W-E and modified W-E edges }

edgeuse_ptr = “edgeuse; { edge halves - used for F-E and V-E edges }
vertex_ptr = “vertex;

shell attrib_ptr = “shell_attrib;
face_attrib_ptr = “face_attrib;
edge_attrib_ptr = “edge_attrib;
edgeuse_attrib_ptr = “edgeuse_attrib;
vertex_attrib_ptr = “vertex_attrib;

ptr_type = SHELLptr, FACEptr, EDGEptr, EDGEUSEptr, VERTEXptr;

shell = record

sa_ptr: shell_attrib_ptr; { attributes }
sf_ptr: face_ptr { heads circular doubly linked list }
end;

face = record

sf_next, sf_last: face_ptr; { doubly linked list of faces }
fa_ptr: face_attrib_ptr; { geometry and other attributes }
case downptr: ptr_type of { EDGEptr if any edges on boundary }

VERTEXptr: (fv_ptr: vertex_ptr);
EDGEptr: (fe_ptr: edge_ptr {or feu_ptr for edge halves})

end;

vertex = record
va_ptr: vertex_attrib_ptr { geometry and other attributes }
end;

Figure 12 — 1a. Pascal description of the support data structures

. 121

b) Storage allocation description

shell

sf_ptr

sa_ptr

face

sf_next

sf_last (same)

fa_ptr

downptr

fe_ptr or fv_ptr

vertex

| va_ptr |

Figure 12 — 1b. Pascal description. of the support data structures

shell, face, loop, edge, and vertex, respectively. There is sometimes an additional

name before the ‘'ptr’’ suffix when there is more than one pointer of the given type

combination. Circular liniked lists of lower dimension elements maintained by higher

dimension elements often use pointers embedded in the lower dimension elements.

The pointers are usually named in the form:

higher-dimension-type lower-dimension-type next

There is some bias in the design of these support structures in that, together with the

edge structures, they form a hierarchical description of the graph from higher levels

of dimensionality (shell) to lower levels (vertex). This is not the only way to organ-

ize a graph representation. For example, one could use the vertex type as the root of

the data structure. But information hierarchically organized top-down allows

increased time efficiency in many modeling applications because objects can often be

processed at higher levels of abstraction which roughly correspond to grosser

122

geometric features. Thus if a solid modeling system utilizing such boundary topologi-

cal representations provides a top-down hierarchical topological description of an

object, then more abstract (and more concise) levels of the structure can be consulted

before deciding if detailed information is needed for a given application. For exam-

ple, if bounding box or sphere information is associated with higher level topological

elements, interference analysis tasks need only check the higher level shell extents to

eliminate many possible object overlaps without referring to lower level and more

numerous face elements. The support structures given here follow this principle.

Since we are primarily concerned with addressing the topological issues, geometry has

been excluded from the structures for clarity, with the exception of three-dimensional

coordinate values for the vertex element. In a typical complete solid modeling

representation, a face might include plane equation or patch geometric information,

and edges might contain spline or other curve information, as well as additional non-

topological and non-geometric data.

Strictly speaking the boundary of a face refers to the ordered alternating sequence of

edges and vertices which surround the face. In most cases, a sequence of edges, with

orientation information, can be used in place of this list of edges and vertices, and the

vertex information can be derived when needed. It is possible, however, for a boun-

dary of a face to consist of only a single vertex. A Pascal record variant is shown in

the face structure record given here to handle this unusual situation. For connected

graphs this situation usually occurs as only an initial condition, where the entire graph

is the graph consisting of only a single vertex and the face surrounding it. Normally

the face representation structure will point to an edge on its boundary, but in this

case there are no edges and the face points to the single vertex on its boundary, This

solution is more general than others which treat the situation as a special case of the

shell, as will be seen when the structures are extended to handle disconnected graphs

in a later section of this chapter.

When pointers in the structures are not pointing to structures of their own type, they

usually point from higher dimension elements to lower dimension elements, such as

123

from edges to vertices, as might be expected in a top-down hierarchical arrangement.

Backpointers, pointing from lower to higher levels of dimensionality, are generally not

included here for clarity, though an actual implementation often uses them for

increased efficiency, trading space for time by eliminating search. Backpointers typi-

cally included are edge-to-face, face-to-shell, and sometimes vertex-to-edge. Often,

linear lists of vertices, edges, and faces associated with a shell are also maintained for

applications requiring fast enumeration of single element types, such as graphic

display of edges.

12.3. The Winged Edge Structure

12.3.1. Description

The winged edge or W-E structure represents the edge adjacency information as a sin-

gle unified structure. As is true for all four edge structures presented here, it

features a fixed number and length of data fields.

The winged edge structure was originally developed by Baumgart at Stanford in the

early seventies [Baumgart 72]. It served to model environments of planar polyhedral

solids in computer vision research applied towards robotics. The winged edge struc-

ture has often been applied in the solid modeling field to represent the boundary

graph of the topological adjacencies of faces, edges, and vertices embedded in the sur-

face of planar faced polyhedral solid models.

Groups of researchers at Carnegie-Mellon and Cambridge universities independently

enhanced the winged edge representation to allow disconnected graphs by making

additions to the supporting structures ([Eastman & Weiler 791,[Braid et al 80}), an

example of which is discussed here in a later section, These enhanced winged edge

representations were incorporated into these groups’ respective solid modeling sys-

tems, GLIDE [Eastman & Henrion 77}, [Eastman & Thornton 791 and Build2 {Braid

124

79].

The topological information stored in the winged edge structure for each edge is com-

posed of the adjacencies of the given edge with other edges, vertices, and faces. The

“‘winged edge’’ name results from the graphical appearance of the adjacent edges

when drawn in relation to the reference edge (see Figure 12 — 2). Note that this

implies a labeled graph environment, where all three basic elements are uniquely

fabeled or named.

As seen in Figure 12 — 2, the winged edge structure maintains the adjacency informa-

tion with pointers to the two faces, the two vertices, and some of the edges adjacent

to the reference edge. This latter set of adjacencies is divided into two sections, each

section associated with the use of one of the sides of the reference edge in the circuit

of edges around a face. The only edge adjacencies represented therefore are the four

edges which directly follow or precede the reference edge in the edge cycles surround-

ing the two faces adjacent to the reference edge. The ee_cw ptr and ee_ccw pir field

names used here therefore refer to their use in determining the cycle of edges sur-

rounding a face, as viewed from just outside the solid volume looking towards the

surface. This is different from the original Baumgart field names which used cw

(clockwise) and cew (counter-clockwise) to refer to the positioning of the adjacent

edges around a vertex of the edge.

The information in the winged edge structure can be described in adjacency relation-

ship terminology as the E{V]-E{[E]}%-E[F] adjacency relationships in correspondence,

where the adjacent edge information is represented as two ordered lists of length two,

one for each endpoint of the edge. The adjacent groups of the three adjacency rela-

tionships are ordered here to allow the correspondence. The other edge based data

structures embody similar information, though with subtle but important differences.

125

a) Pascal description

side = 1.2;

edge = record
ev_ptr: array [side] of vertex_ptr;
ee_cw_ptr,ee_ccw_ptr: array {side} of edge_ptr;
ef_ptr: array [side] of face_ptr;
ea_ptr: edge_attrib_ptr { geometry and other attributes }
end;

b) Storage allocation description

ev_ptr(1] ev_ptr(2]

ee_cw_ptr{1] ee_cw_ptr(2]

ee_ccw ptr[l] | ee_ccw ptr[2]

ef_ptr(1] ef ptr{2]

ea_ptr

¢) Diagram

ee ccw_p;% /ee cw__ptr{1}

ev__ptr{2] @

ef__ptr(2] | ef_ptr{1}

@ ov__ptr1]

ee_cw_ptr[2]/ &_ccw_pn[?]

Figure 12 - 2. The winged edge data structure

126

12.3.2. Sufficiency

Recently there has been much interest in using the winged edge and other structures

in a curved surface solid modeling domain. Extending the geometric surface

representation capability from a planar surface to curved surfaces widens the range of

graph configurations possible from those of a standard graph to those of a pseudo-

graph. The validity of these structures must therefore be examined in this wider

domain.

It is worth noting that the discussion of sufficiency here concerns the informational

sufficiency of data structures. While information about a sufficient adjacency relation-

ship must be available from the data structures, the use of particular adjacency rela-

tionship information does not imply a particular format for the data structure. Many

data structure formats are possible even with the information of the same sufficient

adjacency relationship, by distributing and partitioning the information in different

ways across different data structure elements. A data structure is sufficient itself as

long as its information content allows for the derivation of some sufficient adjacency

relationship.

As stated before, the W-E representation is essentially the E[V*-E[[ET%-E(F)? adja-

cencies in correspondence, utilizing all of the adjacency relationships which use the

edge as the reference element. All three are individually insufficient (the E{{E}*]?

form of the EE adjacency relationship is shown to be individually insufficient in

[Weiler 83] and here in Section 11.2.2). As mentioned in [Hanrahan 82}, the winged

edge structure can be shown to be equivalent with the Edmonds representation

involving V< E> information. This is clearly true for the case of planar surfaces

where self loops and multigraphs are disallowed. We will demonstrate here in detail,

however, that specifically the adjacency relationship pair £{V*-E{{E1%? in correspon-

dence is sufficient to generate unique topological embeddings for the curved surface

case, but only if some additional mechanisms (but not additional information) are

available.

127

Theorem 12-1: The pair of E[VI*-E{{ET*)? adjacency relationships in correspondence with

an additional form of *‘global’’ memory is sufficient to unambiguously represent adja-

cency topologies of general polyhedra.

The proof involves examination of whether ambiguity can result during an attempt to

uniquely construct V< E> information from the £(V]%-E[(E]%? adjacency relationship

pair in correspondence. If at any point during the derivation of the next edge clock-

wise (looking towards the surface from just above it and outside of the solid volume)

around a given vertex, say vy, starting from a given edge incident to that vertex, say

ey, there is more than one choice of which edge should be the next edge, and that

choice will result in a topologically different embedding, then the E(V2-E{{E]*}? adja-

cency relationship pair is insufficient,

Given access to E[VI-E([E}% vy, and e,, the identity of the next edge clockwise

about the vertex, say e, is always known, but which use is intended (in this case,

which end) is not explicit. The only possible source of confusion would be if the

next edge e, were a self loop. In that case, it is not known which end of e, should be

included next; choosing the wrong end might cause a misordering of the V< E> adja-

cent group being constructed or even cause some edges to be missed unless all edges

were examined to detect errors and backtracking were done. But one can look at

each end of e, and only use the end where the counterclockwise edge from e, is ¢

(note that this makes the ee_ccw pwr fields mandatory in the W-E structure). The

only possible source of confusion then would be if ¢, were also a self loop, for only

then would it be possible for e; to be counterclockwise from e, about vy at two places,

So far we have a possible situation where e; and e, are self loops, where e, is clock-

wise from e; about v, in at least one place, and where ¢, is counterclockwise from ey

about vy in two places (see Figure 12 — 3a), But if ¢; is counterclockwise from e, in

two places, then ¢, must be clockwise from e, in two places also (see Figure 12 - 3b).

Given this configuration any additional structure in the graph can only exist in

sequential positions A and/or B (see Figure 12 ~ 3b). No matter how these addi-

tional structures are configured, the V< £> relationship for v, will be of the form

128

vi< E> = vi< e ey edges—of —A ey e, edges—of —B> .

The key feature of the vi< E> adjacent group is the repeating sequence (e; ¢, some-

thing). Because the sequence repeats, a choice of either end of e, following ¢, (or a

choice of either end of ¢; following a structure, or a choice of either additional struc-

ture following e,) will generate identical topological results when one considers that

the sequences in the V< E> adjacent group forms a circular list.

Another way of looking at it is that the E[[E1%? adjacencies are the same for both

positions A and. B and there is no basis in adjacency topology for distinguishing

between them given E [V *-E[{E14%

Note, however, that in order for this adjacency relationship pair to be sufficient, the

ability to recognize (remember) which of the ends of an edge have been used already

~must be present; otherwise spurious and infinite sequences could be generated for

vi< E> . This is the “‘global’”” memory we previously referred to — an ability to mark

an edge end and return to it later to determine its status. We assume this capability

since both adjacent groups of E(V?-E[[EJ%]? are ordered as part of correspondence,

and a marker field would be easy to add to the W-E structure. It is also possible to

embed this memory in the local state of procedures which operate on the W-E struc-

ture,

To further demonstrate that identical embeddings will be generated regardless of

which ends of the edges are used in the only ambiguous situations, all three possible

configurations of additional structures are shown: /) no additional structure (Figure

12 - 3b) 2) one additional structure at A or B (Figure 12 - 3¢) 3) two additional

structures at A and B, These structures may be disconnected (Figure 12 - 3d) or

connected (Figures 12 — 3e and 12 — 3f). In any of the cases it is the repeating

sequence in the circular group which is controlled by the original adjacencies of ¢; and

e, about v, that guarantees a choice of either end of an edge will generate an identical

embedding in the only situation where confusion could arise, as long as the edge is

used only twice, which can be guaranteed by use of a marker field.

It should be noted that objects with multiple self loops are not necessarily totaily

129

a) b) <)
- - Structure

Alternalive
Structure

x

vi<E>=v <e.e50,.0,> v<E>=v,<e e,A0,6,8> Vy<ED> = v,<0,0)K X,8,8)>
or

<818,8,8,X,X,>
which are cyclicly equivalent

dy e) f)

Structure Structure Structure

Structure

Y

v‘<E>=v‘<e‘ezx‘xze,ezy,y2> Vi<E> = v,<0,08,%,X,8,8,%,%,> v <E>=v <e e X, X,8,8,%,X,>
or of

<€,8)Y,Y90485X Xy > <84€,X,X€8,XXg>

which are cyclicly squivalent which are cyciicly squivatent

Figure 12 - 3. Sufficiency of E[V]-{[E]]

130

esoteric or of little concern; Figure 12 — 4 shows a fairly familiar example of such an

object.

Since F< E> is also a sufficient adjacency relationship, the configurations of vy, ey,

and e, shown will also create repeating or identical sequences in the adjacent groups

of the F< E> information. We would also need marker fields or procedural state

memory to remove any confusion, but in this case the sequence would be associated

with each of the two edge sides instead of ends. Note that the purpose of using these

additional mechanisms of extended pointers and mark bits is to easily distinguish

which use of the edge is intended in a given adjacency relationship (which end or

side).

Since the derivation of V< E> information is therefore unique, E[VI*-E[[E}*? is

sufficient to represent polyhedral topologies by way of the Edmonds theorem.

a) OBJECT b} BOUNDARY GRAPHA

Figure 12 — 4, An object with multiple self loops using the same vertex

131

Perhaps more importantly, this verifies in detail that the winged edge structure

E{VP-E{[E1)*E(F}? used in several solid modeling systems, is indeed sufficient for

the representation of polyhedral topologies for planar faced polyhedra since it is a

superset of the information in the sufficient adjacency relationship pair E[V1%-E [[E]2

As has been demonstrated, it is also sufficient for curved surface polyhedra, however,

some additional and complex mechanisms, but not additional information, are neces-

sary in order to effectively use the winged edge structure.

While the W-E structure is informationally sufficient, additional marker field space

and comparatively intelligent algorithms (which check the mandatory backpointers)

are required to determine the next edge around a vertex or the next edge around a

face in curved surface domains. Even in the planar face environment, however, sim-

ple adjacent edge field access is not sufficient to handle traversals of the edges around

faces, especially in cases involving struts. Traversal and adjacency relationship access

algorithms for the W-E structure must perform conditional testing to derive the

proper adjacencies,

12.4. The Modified Winged Edge Structure

12.4.1. Description

The modified winged edge or modified W-E structure is a slight but important varia-

tion on the W-E structure. Like the W-E structure, it represents the edge adjacency

information as a single unified structure. In fact, it is identical to the W-E structure

except that it contains additional data. The difference is that each of the ee_cw _ptr

and ee_ccw_ptr pointers are accompanied by edge ee_cw_half and ee_ccw_half fields

which indicate exactly which side of the unified edge pointed at is intended. As will

be seen later, this reduces algorithm complexity which is particularly troublesome in

curved surface domains.

The structure is shown in Figure 12 - 5; its diagram description is similar to the W-E

132

structure.

12.4.2, Sufficiency

Being a superset of the information contained in the W-E structure, the modified W-

E structure is also sufficient. In fact, another proof of the sufficiency of the modified

W-E structure can be constructed which is similar to the proof of sufficiency of the

F-E structure, described later, since the sufficient F< E> adjacency relationship can

be trivially derived from it even under curved surface conditions. The proof is

simpler than the proof of the F-E structure, however, since the other side of the edge

is already known.

a) Pascal description

side = 1..2;

edge = record
ev_ptr: array {side] of vpir;
ee_cw_ptr,ee_ccw_ptr: array [side] of eptr;
ee_cw_half,ee_ccw_half: array [side] of side;
ef_ptr: array [side] of fptr;
ea_ptr: edge_attrib_ptr { geometry and other attributes }

end;

b) Storage allocation description

ev_ptr{i] ev_ptr{2]

ee_cw_ptr{1] ee_cw_half{1] ee_cw_ptr[2} ee_cw_half{2]

ee_ccw ptr[1] | ee ccw halffl] | ee ccw_ptr{2] | ee_ccw_half{2]

ef ptr[l] ef ptr{2]

ea_ptr

Figure 12 — 5. The modified winged edge data structure

133

The modified W-E structure avoids the computational complexity of algorithms for

the W-E structure by explicitly including information concerning the which of two

possible uses of an edge element is intended, via the ee_cw_half and ee_ccw_half fields.

This simplifies accessing algorithms compared to the W-E structure, especially in

curved surface environments. The additional fields do cause more complexity in

accessing than for the V-E and F-E structures, however, as can be seen in the access-

ing procedures described in the Appendix B.

12.5. The Vertex-Edge Structure

12.5.1. Description

The vertex-edge or V-E structure represents the adjacency information of the edge by

splitting it into two structures, each of which is related to one of the two edge ends

which is found adjacent to other edge ends around a vertex.

The structure is shown in Figure 12 - 6. The adjacency of edges around a vertex

represents a circular ordered list and is represented using the ee_cw _psr fields. The

opposite vertex (shown as the solid dark circle), one of the adjacent faces, and the

other end of the edge are also available through pointers. The ee_cew prr field is

optional, but is usually included for access time efficiency. The reference element

vertex is shown in the diagram as the outlined circle.

The opposite vertex information was chosen to be included in the vertex-edge struc-

ture for efficiency in recovering the V< V> adjacency relationship (see Appendix B).

The choice of which face should be included is an arbitrary one.

12.5.2. Sufficiency

Access to the other half of the edge is mandatory in the V-E structure even in a gen-

eral planar faced domain since E{F} does not uniquely determine edge identity

134

a) Pascal description

edgeuse = record
ev_ptr: vertex_ptr;
ee_cw_ptr, ee_ccwptr: edgeuse_ptr;
ef ptr: face_ptr;
ee_mate_ptr: edgeuse_ptr;
ea_ptr: edgeuse_attrib_ptr { geometry and other attributes }
end;

b) Storage allocation description

ev_pir

ee_cw ptr

ee ccw_pir

ef ptr

ee_mate_ptr

ea ptr

c) Diagram

ee__cw__ptr ee__ccw__ ptr

ef__ptr

® ev_ptr

Figure 12 - 6. The vertex-edge data structure

135

without some additional connectivity restrictions (see Figure A — 1).

Sufficiency for the V-E structure is most easily shown by deriving the V< E> adja-

cency which proves its sufficiency by the Edmonds theorem. This can be obtained

directly from the ee_cw_ptr pointers of edge end structures. First one can find one

edge adjacent to each vertex by using the ee_mare_ptr field of an edge whose ev_ptr

field matches the vertex in question. Then, for each vertex, follow the ee cw prr

fields of each edge in sequence until the cycle of edge ends around each vertex is

complete. This is not ambiguous even in the presence of self loops because edge

ends are pointed to instead of entire edges.

12.6. The Face-Edge Structure

12.6.1. Desecription

The face-edge or F-E structure represents the adjacency information of the edge by

splitting it into two structures, each of which is related to one of the two edge sides as

found around the periphery of faces.

The structure is shown in Figure 12 - 7. The adjacency of edges around a face

represents a circular ordered list and is represented using the ee_cw_per fields. Access

to one vertex, the opposite adjacent face, and the other side of the edge is also avail-

able through pointers. The ee_ccw ptr field is optior{al, but is usually included for

access time efficiency.

The opposite face information was chosen to be included in the face-edge structure

for efficiency in recovering the F< F> adjacency relationship (see Appendix B). The

choice of which vertex should be included is an arbitrary one; the one chosen here is

shown as the solid dark circle in the diagram,

Each side of an edge is used only once as a boundary of a face, and the side implies

an orientation towards that face. This orientation is specified here as the area to the

136

a) Pascal description

edgeuse = record
ev_ptr: vertex_ptr;
ee_cw_ptr, ee_ccwptr: edgeuse_ptr;
ef_ptr: face_ptr;
ee_mate_ptr: edgeuse_ptr;
ea_ptr: edgeuse_attrib_ptr { geometry and other attributes }

end;

b) Storage allocation description

ev_ptr
ee_Cw_ptr
ee_ccw_ptr

ef ptr

ee_mate_ptr
ea_ptr

¢) Diagram

ee__cwe_ ptr

(o}

ef__ptr

@ ev_ptr

ee__ccwe__ptr

Figure 12 - 7. The face-edge data structure

137

right of the edge side when traveling along the edge side from the vertex specified in

the ev_ptr field to the other vertex of the edge. Each edge is therefore used twice and

in opposite directions by face boundaries when the entire embedded graph is con-

sidered.

The CRIPL-edge representation structure was an early edge based representation with

an edge structure similar to the face-edge structure but intended for the planar faced

domain [Stoker 74]. It utilized ev_ptr, ee_cw ptr, and ef ptr fields, but not an

ee_mate_ptr field. As will be seen, the missing ee_mate_ptr field is critical for curved

surface applications, The CRIPL-edge representation had some unusual initialization

conditions and other limitations because of design decisions unrelated to the edge

structure chosen. The representation was used in the Carnegie-Mellon solid modeling

effort [Eastman & Henrion 77} until replaced by an enhanced winged edge representa-

tion [Eastman & Weiler 79].

It is interesting to note the structural similarity between the face-edge and vertex-

edge structures; their semantics, however, are quite different.

12.6.2. Sufficiency

The F-E structure is sufficient if it can be used to correctly and unambiguously derive

the singly sufficient F< £> adjacency relationship.

In the case of a planar faced domain the F-E structure can easily generate F< E> us-

ing only its ev_ptr and ee_cw_ptr fields. This can be done by traversing all of the edge

half structures which represent the edge sides surrounding each face, following the

ee_cw_ptr fields of the edge half structures until one arrives back at the starting edge

half structure. The vertex field is necessary for determining the adjacency of the

faces, as explained below. The ev prr and ee_cw ptr fields alone are therefore

sufficient information for the planar faced domain.

Finding the other side of the edge is possible without the ee_mate_ptr field since the

138

other vertex of the edge can be found as the vertex of the next edge; in a planar

faced domain E {V} uniquely determines the identity of an edge. Edge sides with the

same two vertices therefore belong to the same edge. This allows the total surface

mesh of faces to be assembled into the whole closed surface with a topological

identification procedure. The identification procedure matches edge halves together

by using the vertex information to find the identity of the full edges to which the

halves belong. Identifying the edge sides together brings the whole surface together,

much like a picture puzzle is put together by matching up patterns on the edges of the

puzzle pieces.

In a curved surface domain, however, access to the other half of the edge must be

explicit in order to handle self loops and multigraphs unambiguously. Since all edge

related pointers are to edge halves, specifically edge sides, which side of the edge is

intended in the adjacency representation is explicit. Each edge side can only be used

in one direction, and this direction is unambiguous, due to the convention that an

edge side is a boundary of the face area found to its right when traveling from its

specified vertex to its sec< ond vertex. Access to the other side of the edge is expli-

citly required in order for the individual faces to be assembled into a complete closed

surface mesh, since in a curved surface domain E{V} does not in general unambigu-

ously identify a specific edge.

Thus with access to the other side of the edge given by the pointer in the ee_mate ptr

field, the F-E structure is topologically sufficient over the specified curved surface

domain.

12.7. Topological Elements and Their Uses in Adjacency Relationships

It is important to distinguish between the occurrence of edge element identity infor-

mation in adjacency relationships and a representation of the edges themselves.

As can be seen from the analysis of the sufficiency of the last three data structures

versus that for the winged edge structure, explicitly representing the use of the ele-

139

ments in the adjacency relationships is unambiguous and produces more straightfor-

ward access algorithms.

This is what was meant by the difference between use of an edge by an adjacency rela-

tionship and the edge itself, The primary purpose of the last two edge structures

presented is to represent the adjacency relationships of the edges, not the edges them-

selves. In this case, for the V-E structure, we are referring to a particular end of an

edge around a vertex, and an edge half refers to the end of the edge immediately ad-

jacent to the vertex. In the case of the F-E structure, we are referring to a side of the

edge used to bound a face and the edge half there refers to the side rather than end

of the edge. Since by the definition of the V-E and F-E structures the end and side

information is coordinated, references (in context) to- either edge sides or ends are

unambiguous for either structure.

When edges are described in a single structure, rather than two edge halves, howev-

er, and simple pointers to the full edges are used, confusion can result because the

two possible uses of a single edge in a given situation cannot always be easily dis-

tinguished from one another (in one case which of the two ends should be used, and

in the other case which of the two sides should be used) without additional process-

ing.

This is why proving sufficiency for a curved surface domain in the case of the W-E

structure is more difficult than for the F-E or V-E structures. The W-E structure uses

an edge as a single structure rather than representing each of its two uses in adjacen-

cies separately. This results in a situation where one must use pointers to full edges

for a given use of each edge in the adjacent group of an adjacency relationship. The

problem with this is that it leaves the burden of determining which half of the edge

was intended to be used in the adjacent group up to the algorithms which manipulate

the structure (as well as leaving it to the proofs to show there is no ambiguity).

Representing uses of edges (sides or ends) in adjacent groups eliminates such com-

plexity.

This particular weakness of the W-E structure is addressed by the modified W-E

140

structure. While the modified winged edge structure essentially provides access to

edge uses, the information is still distributed between its half fields and the edge

pointers, which causes greater algorithmic complexity for accessing than is the case

for the V-E and F-E structures which provide a direct representation of the edge uses.

(see Appendix B).

To carry out the concept of direct use representation in a more uniform manner, ver-

tex uses can be specified for the V-E and F-E structures. This would have allowed

upward hierarchical access from the vertex to all edges using the vertex. This wasn’t

done in the data structures presented here because the ‘‘extra’’ information was not

necessary for sufficiency, and the applications considered during design primarily used

top-down traversals. In many applications, however, traversal in both directions is

more important and vertex uses should be specified. When using parametric space

representations with the F-E structure, vertex uses would also be important for speci-

fying coordinate locations in parametric space (see Chapter 20).

12.8. Variations

Minor variations are possible with all four of the edge structures presented; more

backpointers can be included, with the exception of the W-E structure the ee_cow ptr

pointers could be removed even with curved surfaces, the ef ptr field of the V-E and

F-E structures could point to the other face, and the ev_per field of the V-E and F-E

structures could point to the other vertex. Most of these variations are compute vs.

store issues which require statistical usage data to support rational preferences.

Many major variations in the form of the data structures are also possible, particularly

if more information is moved away from the edge and into other element types such

as the vertex or loop (introduced later) elements. In this and other cases, other ele-

ment types can be used as reference elements. Such alternatives are not discussed

here.

Adding vertex uses can also be an advantage in many applications, as described

141

above, at a cost of increased storage requirements.

12.9. Extensions for Disconnected Graphs

Until this section the assumption was made that the embedded boundary graphs being

used were connected graphs. This restriction is now dispensed with in favor of exten-

sions of the previously given support data structures and topological elements in ord-

er to allow direct representation of faces with multiple boundaries and objects with

multiple shells,

12.9.1. Multiply Connected Faces

There are several ways to handle multiply connected faces (faces with more than one

boundary contour yet still possessing a single connected surface area — such as a face

with a hole in it) in boundary graph based solid modeling representations. Unrestrict-

ed use of multiply connected faces can lead to disconnected graph conditions,

although presence of a multiply connected face does not necessarily mean the total

graph is disconnected.

Multiply connected faces can be simulated by the artifact edge technique where an ad-

ditional edge joins each boundary contour to some other contour on the same face

(see Figure 10 — 8). The artifact edge therefore has the same face adjacent to both of

its sides. This technique is not as desirable as an explicit approach, however, since it

not only demands that the modeling system determine exactly how to connect the

contours with artifact edges, but also increases the number of edges in a model,

which can be made worse when a model is subjected to many modeling operations

which further subdivide the artifact edges (such as Boolean operations or section

cuts).

Changes to the graph data structures to directly support multiply connected faces

without use of the artifact edge technique do not affect the data structures at the edge

level, but rather at the face level.

142

There are several ways to modify the face structures already described to explicitly

handle multiply connected faces. One explicit technique is an additional fixed length

structure called a loop which is required for each boundary contour associated with a

face. In this scheme the face points to a list of loop records, which contains one loop

record for each contour associated with the face. Each loop record points to an edge

(for the winged edge structure) or some form of edge-half (for the other structures),

or, if it is a single vertex contour, to the vertex. The pointers in the edge records

themselves store enough information to obtain the complete boundary contour

definition. An alternative explicit implementation is to simply have a variable length

face record which keeps a pointer for an edge (or the single vertex) for every contour

associated with the face,

While the two approaches are informationally equivalent, we prefer the fixed length

loop structure approach, since most current popular programming languages are not

adept or efficient at providing data objects with dynamically variable length.

As shown in Figures 12 — 8, and 12 ~ 9, the loop structure simply provides the face

structure with a mechanism to maintain a linked list of pointers to boundary contours

using fixed size record structures. Thus each contour adjacent with the face has a

loop structure in the linked list which has a pointer to one of the edge structures (or

the vertex) associated with it.

Of note in the loop structure presented is the Pascal record variant to handle the case

where the particular contour consists of a single vertex rather than a series of edges.

This situation was handled in the face record structure definition given earlier. This

is the case previously mentioned where an initialization step in the creation of an ob-

ject allows the object to consist of only one shell, one vertex, one face, and no edges.

This general situation can also happen, though, in a situation where a face contains

many separate vertices on the interior of its surface, perhaps as a transitional state.

For this reason the record variant approach, associated with the loop level in the data

structure, is preferable to treating the situation as a special initialization condition at

the shell level.

143

flbr= fi{lih}
< V> = i< vivyvavy>

L V> = Is< vgvyvgvg >

Figure 12 - 8. Loop structure adjacency relationships

144

Pascal declarations

type loop_ptr = “loop;

face = record

sf_next,sf_last: face_ptr;

fi_ptr: loop_ptr

end;

loop = record

fl_next: loop_ptr;
case downptr: ptr_type of

VERTEXptr: (lv_ptr: vertex_ptr);

EDGEptr: (le_ptr: edge_ptr {or edgeuse_ptr})
end;

Storage allocation description

face

sf_next

sf last .

fl_ptr

loop

fl_next (same)

downptr

le_ptr or Iv_ptr

Figure 12 - 9, Modified and additional data structures for loop

Naturally, if backpointers are used in the edge records, as is the case with the four

edge structures presented, what were previously edge-to-face pointers would become

edge-to-loop pointers when the loop structure is added to the scheme.

Since the loop structure explicitly stores the boundary contour relationships it is

biased towards the top-down hierarchical approach of maintaining relationships

between higher to lower level dimensionality elements. The use of this structure

seems more natural with the W-E and F-E structures for this reason. A representa-

tion using the V-E edge structure would probably be vertex centered rather than face

centered in organization. In this case loops may not be considered an important con-

cept; equivalent information can be derived if the edge-to-face pointers are preserved.

The top down hierarchical approach is often preferable, however, for reasons already

discussed.

12.9.2. Multiple Shell Objects

Another situation encountered in solid modeling is where a solid object contains one

or more hollow cavities, but still consists of a single connected volume. This case also

requires the ability to handle disconnected graphs. Unlike the multiply connected face

situation discussed above, however, more than one surface is necessary. This re-

quires changes in the data structure above the face level. This can be handled most

simply as a list of separate shells in an object.

In keeping with a hierarchical approach, however, it is also possible to maintain topo-

logical information on the containment relationships of the shells. This can be done

utilizing a binary tree structure where one branch of a node is used to list shells in-

side the shell associated with that node, and the other branch to list those shells out-

side it (see Figure 12 - 10). Maintaining this additional topological information can

increase efficiency in many geometric modeling applications, such as interference

detection, for example. This approach can be used to represent not only single solid

volumes with multiple voids, but can also be used to represent solids within the

voids, voids in those solids, and so on, in what amounts to a containment

classification of space.

Both the loop and shell containment techniques were utilized in a solid modeler based

on the W-E structure [Eastman & Weiler 79), although they are equally applicable to

146

S, Shell with
multiple cavities

S

Binary sheli
containment tree

Inside

modified and additional data structures Outside

Pascal declarations

type shell ptr = “shell;

shell = record
ss_inside_ptr,ss_outside_ptr: shell_ptr;
sf_ptr: face_ptr
end;

Storage allocation description

shell

ss_inside_ptr

ss_outside ptr

sf_ptr

Figure 12 - 10. Shell structure

147

the other three structures presented here.

Chapter 13

EULER OPERATORS

The Euler operators are a set of operators which can manipulate manifold boundary

graph based topology representations in a low level, incremental and systematic

fashion, constructing a topology primarily edge by edge. Euler operators can be used

with any of the four previously described edge based data structures.

This chapter describes the basic functions of the Euler operators and describes in de-

tail the external interface of a specific implementation.

13.1. The Euler Operators

The Euler operators were originated by Baumgart [Baumgart 72] as a means of mani-

pulating the winged edge data structures. The operators provide a relatively high lev-

el way of constructing such adjacency topology graphs without getting into the details

of the underlying data structure. In general these operators create and manipulate the

model of the embedded graph on an edge by edge basis in a systematic way indepen-

dent of the actual data structure,

The advantage of this approach is that it provides a flexible base for higher level

operators while insulating them from the details and complexities of the data struc-

tures utilized. Indeed while an implementation of the Euler operators is specific to the

data structure actually used (for example, any of the four data structures described in

the previous chapter), the external interface to the operators can remain the same, and

the implementation of all higher level operations can be identical regardless of the

data structure chosen.

148

149

There are many variations on how the Euler operators can be implemented. The ver-

sion of the operators described here were designed and implemented by the author at

Carnegie-Mellon University and were originally part of the GLIDE system [Eastman

& Weiler 1979].

The description is included here because it offers an example of how the Euler Opera-

tors have been provided for a complete implementation of a manifold solid modeling

system, and because they have strongly influenced the design of the new non-

manifold operators described in a later section. Alternative versions of the Euler

operators have also been defined for GEOMED [Baumgart 1974], Build2 [Braid et al

19781, and more recently GWB [Mantyla 1982]. A discussion of the theoretical

>sufficiency of the Euler operators to cover the representation space is given in [Man-

tyla 847,

13.2. The Basic Operators

Five of the basic Euler operators presented below, MSFLV, MEV, ME, GLUE, and

KE are sufficient to create any topology, but others are included to add convenience

and flexibility to the surface construction process.

The names of the Euler operators traditionally follow those originally defined by

Baumgart. They describe, with a few exceptions, the effect the operators have on the

existence of topological elements as well as the genus of the graph. The M stands for

"Make" or create, and K stands for "Kill" or delete. Each of these is followed by

letters signifying the types of topological elements created or deleted; S, F, L, E, and

V stand for shell, face, loop, edge, and vertex, respectively, and G stands for "genus".

Thus MEV stands for "make edge, vertex”, and KEMSFL stands for "kill edge, make

shell, face, loop". Other operators, such as GLUE and ESPLIT, have names describ-

ing their more generic functionality.

The eight basic operators and their subcases, and a few additional operators are

shown in Table 13 — 1. The destructive operators which are complements to the con-

150

structive operators are shown in the same row alongside each constructive operator.

Also shown are compound operators which could be implemented as sequences of the

basic operators, as well as an additional miscellaneous operator. More detailed func-

tional descriptions will follow.

The operator names are shown in upper case; below each in lower case are the names

of the subcases which each operator can distinguish and handle automatically.

The Euler Operators create small incremental changes in the numbers of the com-

ponents in a topology. These effect of these changes, as well as their effect on the

genus of the graph, are described in Table 13 — 2. The subscripted numbers are vari-

able quantities whose values depend on the number of elements of the specific type

which involved in the operation. The type in this case is indicated by the subscripted

letter. In some cases, such as for kflevs, the number of elements involved may be

the same for more than one element type, in which case the subscript used is the

same for all of those which are related and must have the same quantity. Note that

these incremental changes, when substituted into the Euler-Poincaré equation, will al-

ways balance the equation. Thus if Euler operations are treated as atomic (non-

interruptible) operators, the data structures are always constrained to represent a valid

manifold topology at every stage.

13.3. Direction-Edge-Vertex Positioning Specification

One of the problems in designing an interface to the Euler operato;s is in how to

unambiguously specify the exact placement of new edges. For example, in Figure

13 - 1, if we know we want to attach a new edge to an existing vertex v, should the

new edge be attached to the vertex above or below the edge between vertices v; and

vy ? Various implementations have solved this problem in different ways.

One approach is to restrict the constructive operators so that it is not possible to

create a situation like that shown in Figure 13 - 1, where the result could be ambigu-

Table 13 - 1. The Euler Operators

MSFLV
MEV

ME
mefl

mekl
meksfl

GLUE
kflevmg
kflevs

constructive destructive

KSFLEV
ESQUEEZE(KEV)
KE

kefl

keml
kemsfl

UNGLUE
mflevkg
mflevs

compound

MME
ESPLIT
KVE

miscellaneous

LMOVE

Table 13 - 2. Operator Effect on the Numbers of Topological Elements

.

operator

MSFLV
MEV
ME

mefl

mekl

meksfl

GLUE
kfleving

kflevs

KSFLEV
ESQUEEZE
KE

kefl

keml

kemsfl

UNGLUE
mflevkg
mflevs

+1

+1

+1

changes in number of topological elements

Shells Faces Loops

+1 +1

+1 +1

-1

-1 -1

-2 -2

-2 -2

—ngp -ny

-1 -1

+1

+1 +1

+2 +2

+2 +2

Edges

+1

+n,

+n,

Vertices

+1

+1

+n,

+n,

Genus

151

152

Figure 13 - 1. Specification of placement for an edge

ous unless additional information is specified. This has the effect of restricting the

order in which the operators can be applied. The advantage of the approach is that no

explicit positioning specification is necessary. The disadvantage is that knowledge of

the restrictions on the order in which operators can be applied to achieve a given

result must be embedded in all the algorithms which use the Euler operators. The

destructive operators must similarly be restricted so as not to create graph

configurations which could lead to ambiguous situations for the constructive opera-

tors,

Braid, Hillyard, and Stroud {Braid et al 78] used a mixed mode approach where the

additional information needed to unambiguously specify the desired action of the

operation could either be the identity of related topological components (such as

specifying which loop an MEV operation should place its new edge into) or the rela-

tion of the new component to an existing one (such as specifying that an MEV opera-

tion should place its new edge clockwise of some specified existing edge).

153

The direction-edge-vertex edge placement specification technique [Eastman & Weiler

791 uniformly requires the explicit inclusion of the required positioning information

in all situations where additional information is necessary for disambiguation of the

semantics of the Euler operators. In this technique the exact position of a new edge

is specified unambiguously with a vertex, edge, and rotation direction (clockwise or

counter-clockwise). The new edge will use the vertex specified as one of its end-

points and will lie in the specified rotation direction from the specified edge about the

specified vertex (see Figure 13- 2). The new edge can be said as being

“(counter)clockwise from edge e, about vertex v,’’'. The direction is specified as be-

ing clockwise or counter-clockwise from the point of view of an observer looking to-

wards. the vertex from just outside the solid volume above the surface in which the

vertex is embedded. The advantage of this technique is that it provides an unambi-

guous specification of placement without any restrictions on ordering the sequence of

Figure 13 - 2, Direction-edge-vertex edge placement specification

154

operators. The disadvantage is that the positioning information must be specified ex-

plicitly, creating an explicitly more complex interface.

13.4. A Specification of the Euler Operators

Specific functional descriptions of the individual operators follow.

The version of the operators described here were designed and implemented by the

author at Carnegie-Mellon University and were originally part of the GLIDE system

[Eastman & Weiler 1979]. The naming convention has been changed, however; the

older name body used in the original version has been replaced with the name shell

for consistency with the rest of the material here.

The operators described use the direction-edge-vertex specification described earlier.

Thus direction parameters must be specified as clockwise or counter-clockwise.

The interface to each operator is described in a Pascal style, listing its input parame-

ters, followed by its set of output parameters specified as var (call-by-reference)

parameters. Optional input parameters are italicized; if not specified they should be

nil valued pointers or unspecified rotational directions. This calling sequence descrip-

tion is then followed by a detailed description of the operator functionality and the

various subcases handled by the operator. References to topological element types in

the calling sequence descriptions refer to pointers to the elements rather than the ele-

ments themselves.

The operator specifications are independent of any specific underlying data structure.

The operator specifications are followed by diagrams illustrating their function in Fig-

ures 13 -3, 13~ 4, and 13 - 5. The diagrams follow the same order as the

specifications.

13.4.1. Basic Operators

MSFLYV (var face_ptr: newf; var loop_ptr: newl; var vertex_ptr: newv)

“Make Shell, Face, Loop, Vertex’’ creates a new manifold surface in the

topc;logy, and is therefore the first operator used in any topology con-

struction. The new shell resulting from the operation is always treated

implicitly rather than explicitly, since all further operations deal with

lower level topological elements, and never explicitly require the iden-

tity of the shell. MSFLV creates a new shell, the face newf, the loop

newl, and the vertex newv. The single vertex created, newv, can be

used as a starting point for subsequent construction of additional topo-

logical features on the manifold surface.

MEYV (vertex_ptr: v; edge ptr: e; dir_type: dir;

var edge_ptr: newe; var vertex_ptr: newv)

“Make Edge, Vertex” creates a new edge and vertex, The new edge

newe starts at the existing vertex v and ends at the new vertex newv.

If the optional placement arguments e and dir are specified, newe will

be positioned in direction dir (clockwise or counter-clockwise) from

edge e about vertex v, as seen when looking towards the manifold sur-

face from just outside the volume above the vertex v.

ME (vertex_ptr: vl; edge ptr: el; dir_type dirl;

vertex_ptr: v2; edge_ptr: e2; dir_type dir2;

var edge_ptr: newe; var face_ptr: newf; var loop_ptr: newl)

“Make Edge” creates an edge between the existing vertices v/ and v2.

If optionai placement is specified, the new edge, newe, will be direction

dirl (clockwise or counter-clockwise) about vertex vl from edge el,

and direction dir2 (clockwise or counter-clockwise) about v2 from e2.

mefl: ““make edge, face, loop”” occurs when the new edge will close

Base. T s iser the new face, pows amd Toope wewt wh
lie to the dirl side of newe about vi.

mekl: “make edge, kill loop” occurs when the new edge will not

156

close off one portion of the face it is on from the rest of '
the face. In ‘this case, the vertices v/ and v2 were on
different loops of the same face, but afterwards will be lo-
cated on the same loop. The surviving loop is the loop as-
sociated with vl.

meksfl: “‘make edge, kill shell, face, loop” occurs when the two
specified vertices are on different shells. The new edge
links together the two shells into a single shell. The shell
of v/ is the surviving shell.

GLUE (face_ptr: f1; edge_ptr: el; face_ptr: 2; edge_ptr: e2)

“Glue Faces” merges two single loop faces together, deleting both

faces and loops and one set of edges and vertices, with the effect of

joining together the volumes which the two faces are bounding. Both

loops must have the same number of edges and vertices, and must

have no edges in common. The merge is performed so that el of fI

and e2 of f2 are merged into the same edge. The surviving set of

edges and vertices are those of f1.

kflevmg: “*kill face, loop, edge, vertex, make genus’’ occurs when
both faces exist on the same shell. The glue operation in-
creases the genus of the shell by one, which is topologically
equivalent to adding a handle to the surface.

kflevs: “kill face, loop, edge, vertex, shell’ occurs when the two
faces exist on different shells. The glue operation merges
the two shells together into a single shell, with the sheil of
fI being the survivor.

13.4.2. Complement Operators

KSFLEV(vertéx_ptr: v)

“Kill Shell, Face, Loop, Edge, Vertex” determines the sheil of the

specified vertex v and deletes the shell and all its constituent topologi-

cal elements (including the specified vertex).

ESQUEEZE (edge_ptr: e; vertex_ptr: v; var vertex_ptr: vsurvivor)

“Edge Squeeze’’ (also known as “Kill Edge, Vertex’’) ‘‘squeezes’ the

ends of the specified edge e together, deleting the edge and a vertex

while preserving adjacencies. The optional parameter v, if specified,

designates which vertex of the edge e will survive; in any case, the

157

surviving vertex is indicated by the vsurvivor return parameter.

KE (edge_ptr: el; vertex_ptr: vl; var loop_ptr: newl)

“Kill Edge” deletes the specified edge e.

kefl: “'kill edge, face loop” occurs when the edge to be deleted
separates two different faces. In this case, the edges of the
two loops using the deleted edge are merged and one face
and loop are deleted. - The surviving face and loop are
those found to the right of the edge to be deleted, when
traversing the edge from the optionally specified vertex v/
to the other vertex. Any other loops of the deleted face
are moved to the surviving face,

keml: “kill edge, make loop” occurs when the edge to be deleted
occurs twice on a loop of a single face. In this case, a new
loop, newl, will be generated on the same face.

KEMSFL (edge ptr: el; vertex_ptr: vl;

var face_ptr: newf; var loop_ptr: newl)

“Kill Edge, Make Shell, Face, and Loop” deletes the specified edge, e,

which is required to have the same face on both sides. The two

disconnected graph components that result are each treated as separate

shells. KEMSFL is shown as a subcase of KE in the tables and di-

agrams because of its functional similarity to other subcases of KE.

Differentiating kemsfl from kem! cannot be done without explicit indi-

cation of intent, however, which is why a separate operator, KEMSFL

is provided. The face and loop to be left on the original shell are

those found to the right of the edge to be deleted, when traversing

the edge from the optionally specified vertex v/ to the other vertex.

Any other loops of the original face are also left on the specified face.

UNGLUE (edge_ptr: el; var face_ptr: newf1,newf2; var loop_ptr: newll,newl2)

“Unglue Faces” takes a single circuit of edges starting with edge el

which have marked using an edge marking facility, separates the

model along the circuit, replicating edges and vertices as necessary.

The process creates two new faces newfl and newsf2, and their respec-

tive loops newll and newl2 which utilize the edges on each side of the

separated circuit. This keeps the volume closed in order to maintain a

closed manifold representation. The circuit marked for the UNGLUE

158

must be complete, have no struts or self loops, and must not cross it-

self.

mflevkg: “make face, loop, edge, vertex, kill genus’’ occurs when
the separation induced by the operation leaves the graph
still connected. In this case the specified circuit lies on a
handle of the shell which has a genus of one or more. The
handle is removed, and the single shell with genus reduced
by one is the result,

mflevs: “‘make face, loop, edge, vertex, shell” occurs when the
separation induced by the operation creates a disconnected
graph. Each component of the result is treated as a
separate shell; thus two separate volumes is the result,

13.4.3. Composite Operators

MME (integer: number; vertex_ptr: v; edge_ptr: e; dir_type: dir;

var edge_ptr: ebeg,eend; var vertex_ptr: vend)

“Make Multiple Edges” creates a connected chain of number edges

starting at the specified vertex v. If the optional placement arguments

e and dir are specified, ebeg, the first edge created, will bE positioned

in direction dir (clockwise or counter-clockwise) from edge e about

vertex v, as seen when looking towards the manifold surface from just

outside the volume above the vertex v. The action is equivalent to a

series of MEV’s, and if vertex v is not specified, a MSFLV followed by

a series of MEV's,

ESPLIT (edge_ptr: e; vertex_ptr: v; var edge_ptr: newe; var vertex_ptr: newv)

“‘Edge Split” splits the specified edge e into two connected edges, e and

newe. A new vertex, newv, is created between these two edges. The

optional parameter v, if specified, designates which vertex of the edge

¢ will be found on the new edge. The effect of this operator could be

simulated by application of the KE operator followed by MEV and ME

operators, but unlike ESPLIT, edge e would be entirely replaced rather

than modified in place and, by side effect, a face could be deleted and

replaced with a new one, perhaps shifting ownership of interior loops.

159

KVE (vertex_ptr: v)

“Kill Vertex, Edge” deletes the vertex specified by v and any edges us-

ing this vertex. If necessary, faces and their loops are also deleted.

Ownership of additional loops of deleted face falls the remaining sur-

rounding face. Three cases may occur. First, when the vertex is the

only boundary of a shell, it is equivalent to a KSFLEV. Second, when

the vertex is a single vertex loop of a face, it is equivalent to an appli-

cation of ME(meki) followed by an ESQUEEZE. Third, when there

are n edges using a vertex, the result is equivalent to # - KE’s fol-

lowed by ESQUEEZE,

13.4.4. Miscellaneous Operators

LMOVE(loop_ptrA: 1; face_ptr: f)

“Loop Move” moves the loop !/ from its current face to the face f

This can be useful for moving loop$ from an original face over to the

new face created by application of the ME(mefl) operator. It is not

strictly an Euler operator since it doesn’t involve any changes to the

terms of the Euler equation,

160

MSFLV newv
(o}

MEV nevv e e
‘\/ .\/fi"l 9

newe
v v

ME
et el

—eovi vi
dirt]

mefl 4
newf , hewe

) dirz/' ! R
—ov — L 4

2 02 v
vi vi

v2 . newe

J] v2

vl newe v2 vi v2

meletl /‘\ /\ /‘\/’\

'S1 52

Figure 13 - 3. Action of the Euler operators

161

el e
GLUE

kfleving

f2
kflevs <o17 o2

2

)

KSFLEV % v

ESQUEEZE

e

\4

KE

kef!

keml

AV
81 $q

tace to
be

deleted

vi

e

v2

el

<%

1Y
NI/

= poofl —

N 7

[e R70)

VAN
Figure 13 - 4. Action of the Euler operators

162

UNGLUE .

o () @@

MME vend vstart
vstart Q

: ~_ebeg
\ \ _hewe

eend H dir ?

1
1 '

L R il)

KVE

ESPLIT
e e newe

v , -V
: newv

LMOVE

HtI fz -

Figure 13 ~ 5. Action of the Euler operators

163

13.5. Building Higher Level Functions on the Euler Operators

As previously stated, a great deal of the attraction of the Euler operators is that they

provide a flexible base for higher level operators while insulating those new operators

from the details and complexities of the actual data structures utilized.

They are flexible, because they are fairly low level operators which systematically

manipulate the model of the embedded graph on an edge by edge basis, providing au-

tomatic topological integrity checking, Almost any other kind of commonly found

modeling operator or procedure can be built on top of the Euler operators, including

parametric primitives, sweeps, and cham fers.

Boolean operators may aiso be implemented using the Euler operators. Many imple-

mentations of the Boolean set operations in Euler operation based systems, however,

opt not to use the Euler operators in some circumstances in favor of direct data struc-

ture manipulation. This is done mostly to delay integrity checking until the end of

the set operation and removes algorithmic restrictions caused by topological integrity

requirements enforced by the Euler operators. It is sometimes claimed that delays in

integrity maintenance may also improve efficiency.

For detailed examples of how the Euler operators can be used to build some of these

higher level operators, see [Eastman & Weiler 79] and {Braid 79].

SECTION III

NON-MANIFOLD REPRESENTATIONS

Chapter 14

INTRODUCTION

Non-manifold is a geometric modeling term referring to topological situations which

are not restricted to be two-manifold. Non-manifold representations are defined here as

geometric modeling representations which allow volume, both manifold and non-

manifold surface, curve, and point elements in a single uniform environment. This

allows topological surfaces which are not constrained to be homeomorphic to a two-

dimensional topological disk at every point (such as when a cone touches upon

another surface at a single point, when more than two faces meet albng a common

edge, or when a wire edge begins at a point on a surface (see Figure 3 — 3). A non-

manifold representation therefore allows a general wire mesh with surfaces and

volumes embedded in space and can be a functional superset of wireframe, surface,

and traditional manifold solid modeling forms (see Figure 3 - 2).

Non-manifold conditions naturaily arise as the result of closed form Boolean set

operations, even when input is restricted to be manifold. Representation of interior

features of models also require a non-manifold domain. Of special interest, non-

manifold representations can allow a uniform representation of any combination of

wireframe, surface, and solid modeling forms,

Little work has been been done in the area of non-manifold geometric boundary

modeling, and non-manifold boundary representations which explicitly store topologi-

cal adjacency information is an entirely new area of research. While the occurrence of

non-manifold results from Boolean operations with manifold inputs has been noted,

and the existence of non-manifold equivalents to the Euler operators conjectured

{Requicha & Voelcker 83], the topic has not previously been addressed by geometric

166

modeling technology.

This major section describes a non-manifold domain useful for geometric modeling, a

data structure, called the Radial Edge structure, for an object based evaluated non-

manifold boundary topology representation along with proof of its completeness, and

general low-level operators, cail the non-manifold topology operators, to manipulate

non-manifold topologies.

14.1. Application Areas for Expanded Modeling Capabilities

Several geometric modeling application areas can be supported by non-manifold

representations in ways different from existing manifold solid representations.

1. Modeling - The new uniform non-manifold representation allows wireframe,

surface, solid, and non-manifold modeling techniques to be utilized

simultaneously in the same modeling system using the same represen-

tation. This allows a smooth transition in modeling applications from

wireframe to surface to solid including the automatic detection of solid

enclosures without any need for restructuring or translation. Non-

manifold boundary representations also allow storage of arbitrary

geometric information, such as center line axes and cutting planes,

along with the shape description directly in a single model. Composite

objects consisting of several distinct materials, such as that used in air-

craft and other applications, can be modeled with adjacencies explicitly

available in the model without extensive derivation. This flexibility

can reduce overall implementation and maintenance costs, and allows

development of a uniform user interface to serve all common aspects

of the modeling system. It also provides more flexibility in the imple-

mentation and marketing of a geometric modeling system. Closed

form implementations of the Boolean operators are possible.

2. Analysis - FEM (Finite Element Method) meshing can be performed on the

167

same representation as the original modeling representation and, using

the modeling representation as the communication medium, results

can be passed directly back to the modeler for modification, bypassing

the traditional manual process of updating models based on FEM

analysis results. This may lead to integrated tools which automatically

perform certain kinds of modification of the original model based on

analysis results directly available from the model representation, and

eventually, it could lead to tools which model and analyze simultane-

ously, optimizing the design as modeling proceeds. Non-manifold

results of Boolean operations are allowable for the representation and

analysis of points, curves, and areas of overlap as well as volumes of

overlap.

3. Composite Objects - The extended domain of the new representation will sup-

port the representation of interior structures directly. Areas of com-

mon boundary and volume are represented explicitly, allowing

specification and analysis of such relationships during the design

phase,‘ removing the need to re-derive these relationships during

analysis.

4. VLSI (Very Large Scale Integration) - Non-manifold representations can sup-

port advanced integrated circuit fabrication through easy caleulation of

material area and volume adjacencies, allowing for analysis of electrical

properties. It can support current two and one-half dimensional and

future three-dimensional chip building capabilities.

14.2. Organization of This Section

This section is organized into the following five chapters concerning non-manifold

topology representations,

First, the domain of interest is described in Chapter 15.

168

Chapter 16 describes the non-manifold adjacency relationships.

Chapter 17 describes the Radial Edge data structure for non-manifold topology

representation.

Next, Chapter 18 briefly outlines information reiated to the theoretical sufficiency of

the non-manifold adjacency relationships, and discusses completeness of the Radial

Edge structure.

Last, Chapter 19 describes general operators for manipulating non-manifold topolo-

gies.

Chapter 15

DOMAIN

This chapter describes the non-manifold domain addressed in this major section. The

domain conditions will provide the context which will be assumed in the rest of this

major section on non-manifold geometric modeling representations, unless explicitly

noted otherwise.

15.1. Specification of Domain

The non-manifold representations addressed here are assumed to be boundary based

object based evaluated forms of geometric modeling representations, where topologi-

cal adjacency information is used as a framework for the entire representation. A

series of further specifications on the geometric and topological domain for a non-

manifold representation follows.

L. Non-manifold Surfaces - The representation is a non-manifold topological represen-

tation which allows the uniform representation of wireframe, surface, and

solid modeling representations, allows Boolean operations in a closed

form, and provides an extended domain which includes representation of

the interior features of objects.

The representation contains topological information in a graph structure

embedded in three-dimensional Euclidean space. This embedded topologi-

cal boundary graph structure provides a framework for the remaining

geometric model information. The entire non-manifold structure is finite

169

170

in extent. Any surfaces in it are orientable in the sense that the identity of

the volume on each side of the surface is known.

The representation must provide the ability to represent arbitrary three-

dimensional meshes embedded in space. A cycle in the mesh may or may

not have a surface piece (a face) associated with it. A group of adjacent

faces may entirely enclose a volume of space; in this case the closed

volume is given a unique identity and the elements adjacent to it are

known, Thus any combination of wireframe, surface, and solid modeling

techniques is permissible within the constraint that all element intersection

information (intersection of surfaces, edges) is explicitly represented in the

embedded graph structure.

2. Manifold Faces - A face is defined as a cqnnected and bounded portion of a surface,

but does not include its boundary. While an entire surface may be non-

manifold, the individual faces of an object are required to be manifold.

This means that no face is allowed which self-intersects {except at its

boundary). This forces the topology to carry all surface (as well as edge)

intersection information. Thus the non-manifold characteristics of the

representation occur only at the boundaries of individual faces which are

otherwise manifold. A single non-manifold surface face may therefore be

represented by ensuring a boundary occurs along all non-manifold points

and curves.

3. Faces Mappable to a Plane - Every individual face is required to be mappable to a

plane without cutting or creating new boundaries in the face. This forces

the topological framework to carry all genus information. Note this is a

further restriction not implied by the previous specification. This restric-

tion is the same as saying that faces may not contain handles, noting that

faces do not include their boundaries.

4. Non-intersection Properties - Regions may not intersect with each other except along

their boundaries. Faces may not intersect each other except along their

171

boundaries. Edges in the embedded graph structure may not intersect

except at their endpoints. Vertices must be distinct in three space.

Further, as a corollary to the face non-intersection property, edges may

not intersect faces except along or at their boundaries. Thus topological

elements of two given types may only intersect each other at a level of

hierarchy (top down the levels are regions, shells, faces, edges, vertices) at

least one level lower than the lowest of the two levels. This restriction is

necessary to prevent topological elements from penetrating faces and

volumes without knowledge of the embedded graph representation struc-

ture.

5. Finiteness - Vertices are at finite positions in space, edges are finite in length, faces

are finite in surface area, and enclosed regions are finite in volume. This

includes the semianalytic requirement discussed by Requicha [Requicha

80a], where surfaces must not have infinitely varying oscillations. The

shapes allowable must be representable with a finite number of topological

elements.

6. Pseudographs - Generalized graphs, pseudographs, are allowed. This means that

self loops and multigraphs are allowed. This allows curved edges without

constraint on the geometry (other than the embedded graph constraint

that edges must not intersect except at endpoints).

7. Disconnected Graphs - Disconnected graphs are allowed. This allows multiply con-

nected faces without the necessity for ‘‘artifact edge’ bridges between

multiple contour boundaries belonging to the same face. It also allows

direct representation of multiple shelled objects, such as an object with one

or more voids in it.

8. Labeled Graphs - All graph elements are labeled. Since all labeled elements are

unique as a result, this allows non-geometric information to be associated 1

with them. This has implications on the minimum number of element

adjacency relationships required in the topological representation, since the |

172

label of every element must be mentioned in the combination of all adja-

cency relationships in the topological representation.

Chapter 16

ADJACENCY RELATIONSHIPS

This chapter describes the specific topological adjacency relationships found in the

non-manifold domain specified in the previous chapter. The basic concepts behind

the topological adjacency relationships have been described in Chapter 6.

16.1. The Non-Manifold Topological Elements

Since topological element adjacency relationships concern the relationships between

individual topological elements, we must now define the elements more carefully

before describing the adjacency relationships themselves.

At least seven distinct element types, including six basic topological element types are

involved in a non-manifold evaluated object based boundary topology representation.

They can be seen as being related in a hierarchical fashion, where lower dimensional

elements are used as boundaries of higher dimensional elements.

The portions of the descriptions which differ from their manifold counterparts are

italicized.

A model is a single three-dimensional topological modeling space, consisting of one or

more distinct (though perhaps adjacent) regions of space. A model is not strictly a

topological element as such, but acts as a repository for all topological elements con-

tained in a geometric model, allowing the naming and manipulation of multiple

models by a geometric modeling system.

A region is a volume of space. There is always at least one in a model. Only one

173

174

region in a model may have infinite extent; all others have a finite extent, and when

more than one region exists in a model, all regions have a boundary. For example, a

single solid would require two regions in the model, one for the inside of the object,

and one for the outside (which has an infinite extent).

A shell is an oriented boundary surface of a region. A single region may have more

than one shell, as in the case of a solid object with a void contained within it. A

region may have no shell only where all space exists as a single region, as in the ini-

tial state where no modeling has been done, or after all components of a model have

been deleted. A shell may consist of a connected set of faces which form a closed

volume or may be an open set of adjacent faces, a wireframe, or a combination of these, or

even a single point.

A face is a bounded portion of a shell. It is orientable, though not oriented, as two region

boundaries (shells) may use different sides of the same face. Thus only the use of a face by

a shell is oriented. Strictly speaking, a face consists of the piece of surface it covers,

but does not include its boundaries.

A loop is a connected boundary of a single face. A face may have one or more loops,

for example a polygon would require one loop and a face with a hole in it would

require two loops. Loops normally consist of an alternating sequence of edges and

vertices in a complete circuit, but may consist of only a single vertex. Loops are also

orientable but not oriented, as they bound a face which may be used by up to two different

shells. Thus, it is the use of a loop that is oriented.

An edge is a portion of a loop boundary between two vertices. Topologically, an edge

is a bounding curve segment which may serve as part of a loop boundary for one or

more faces which meet at that edge. Every edge is bounded by a vertex at each end

(possibly the same one). An edge is orientable, though not oriented; it is the use of

an edge which is oriented.

A vertex is simply a topologically unique point in space, that is, no two vertices may

exist at the same geometric location (although the topology alone does not specify any

175

exact geometric location beyond these constraints). Single vertices may also serve as

boundaries of faces and as complete shell boundaries.

Although not directly represented in the adjacency relationships as described here, at

least four additional types of topological element adjacency uses associated with the

face, loop, edge, and vertex elements may also be defined. In some representations

they may be directly represented.

A face-use is one of the two uses (sides) of a face. Face-uses, the use of a face by a shell,

are oriented with respect to the face geometry.

A loop-use is one of the uses of a loop associated with one of the two uses of a face. It is

oriented with respect to the associated face-use.

An edge-use is an oriented bounding curve segment on a loop-use of a face-use and

represents the use of an edge by that loop-use, or if a wireframe edge, by endpoint vertices.

Orientation is specified with respect to edge geometry. There may be many uses of a

single edge in a model, but there will ahways be an even number of edge-uses (since each

use by a face produces two edge-uses, one for each face side). A wireframe edge produces

two edge-uses, one for each end of the edge.

A vertex-use is a structure representing the adjacency use of a vertex by an edge as an

endpoint, by a loop in the case of a single vertex loop, or by a shell in the case of a sin-

gle vertex shell.

16.2. Adjacency Relationships_in a Non-Manifold Model

The topological information stored in a non-manifold boundary representation con-

sists of the existence and adjacencies of the six basic topological elements. Queries

and traversals of the topological representation are related to accessing this adjacency

information.

An adjacency relationship is the adjacency (in terms of physical proximity and order) of

176

a group of topological elements of one type (vertices, edges, loops, faces, shells, or

regions) around some other specific single topological element.

Thirty-six topological element adjacency relationships are possible in a non-manifold

boundary representation, as outlined in Figure 16 — 1.

Information related to specific adjacency relationships might be stored directly in a

representation, but need not be; as long as information involving a sufficient set of

adjacency relationships is available, information about all other adjacency relationships

is derivable.

An expanded example showing actual values of the non-manifold adjacency relation-

ships for an object which is a non-manifold superset of the example in Figure 10 - 3

is given in Figure 16 — 2. The figure shows a tetrahedron with a wire emanating

from one vertex, a lamina face sharing one edge, and an additional single vertex

Vivi VIE} ViL} Vi{F} Vst ViR}

E{V} E{ [E}>} E{<L>} l E{< F>1} E{<S>} E{<R>}

L{i<V>P { Li<E>P |L{ic<L>>}F L{FY L{SY LRYP

FU< V> Fl<E> P F{L} Fc <F>> 1} F{SP FRP

S{vi S{E} S{L} S{F} S{5} SRY

R{V} R{E} R{L} R{F} ‘ RS} R{R}

Figure 16 — 1. Adjacency Relationship Matrix of the Non-manifold Topological Elements

177

shell. Region r; is inside of the tetrahedron volume, which has shell s, ; everything

outside the interior of the tetrahedron is adjacent to region r;. The diagram in the

figure consists of a pictorial view of the non-manifold object, followed by a planar

graph representation of the object in three parts, part a showing the tetrahedron, part

b showing the lamina face with its single vertex loop, and part ¢ separately showing

the wire edge and single vertex shell. These are followed by the adjacency relation-

ships. For brevity, those adjacency relationships which have two orientations induc-

ing identical adjacent groups in opposite order are only shown in one orientation.

This includes E{< [E]> P, E{<L> P, E{< F> ¥, E{< $> ¥, and E{< R > P, where each

end of the edge induces the opposite orientation implied by the outer unordered

group brackets, and F{{< V> 1P, F{<E> P F{c<F>> W, Lk V> ¥ L<E> P,

and L{< <L>> }, where the two sides of a face induce the opposite orientation

implied by the outer unordered group brackets.

178

v v
§ 1

C) ——
e&

L

VB ! sfl

Figure 16 ~ 2a. Actual adjacency relationships for a non-manifold object

179

V{vi VIE} ViL}

vilV} = vi{vav3vsvel vi{E} = vifeiesep a9} nifl}= viillsls}
va{V'} = valva vy vgvst valE} = vylesese, es) vall }= vallilslyls}
va{V'} = vatvy vy vy vs) va{E} = vafesezeseq} vall }= valilslsls}
va{V'}= velva v v} va{E} = vifesegeg} va{l }= vallihalyd
vs{V}= vsvavs} vs{E} = vsfegeq} vs{L }= vsils}
velV}= vetvi} velE} = vgleo} ve{l }= vgi}
vV '} = v} vifE}= v1{} vi{l }= viilg}
ve{V}= vsi} va{E} = v} vell }= ve{}

VI{F} Vis} VIR}

vi{fF} = viffafsfad vifS}= vitsysa} vi{R} = vi{ryray}
volF} = valf i fafafs} va{S1 = valsisy) va{R } = valryra}
vifF} = valf 1 fafsfs} va{S} = valsysod va{R } = vatrira}
valF} = vatf 1 fafad valS} = valsisa} valR } = valrira}
vs{F} = vsifs} vs{S}= vsisy) vsiR } = vsirg}
velF} = vei} velS} = veisi} velR } = veiry}
va{F} = vi{fst va{S}= volsy} vi{R } = vairy}
vg{F} = vg{} ve{S} = vgiss} vgiR } = vgiry}

E{vy E< [E}>

er{V}= evivy e [E]> = ei<leqeslleseyl>
ex{V}= exvy vy} e [E]> = eg< lesesllegeql>
e3{V}= esfvivy} ex< [E]> - e3<(eqeqllesesl>
eqfV'} = eqvavyl e< [E]> = eq< [eseglles eql>

es{V} = estvyvs} es< [E]> = es< (egeqlieq eglley e3)>
es{V}l= esfvaval ee< [E]> = eg<leqeslie; enl>
er{V}= esfvsvs} < [E]> = eg<lesegl>
eg{V} = eslvyvsi eg< [E]> = eg<(eqes)>
eg{V'} = eofvivg} e9< [E]> = eg<>

Figure 16-2b. Actual adjacency relationships for a non-manifold object

180

E<L> E< F>

ei<L> <« e<lylypy e<F> = e<fyrfe

e L> = eycliyly e F> = ex<fafs>

ey< L> = eyclylyp e3< F> = ey fafsp

eq< L> = eyclly e< F> = ex<fif»

es< L> < es<lylsly> es< F> es< f1fsfa

eg< L> < egc iyl eg< F> es<fife

e< L> < exls ey< F> €< fs>
eg< L> = egcls> eg< F> eg< f5>

eg< L> = eg<> eg< F> €9< >

E<S§> E<R>

e §> = e(<S§i5p> e<R> ey<ryry

ek §> = e3< 518> e,< R > ey<ryiry

e3< §> = e3< 58y €< R > e3< ryry

e4< §> = e4< 515> e4< R > eg<riry

es< §> = e5< sy 85> es< R> = es<ryriry
2g< §> = e4< 515> eg< R > eg< riry>

€< 8> = eg<sp> e1< R > eq<ry>

eg< §> = eg< s> eg< R> = egery>

P eg< $> = eg< s> €< R> = eg<r>

L<V> L< E>

i< V> = licvyvgvyp W< E> = li<xegeges>

< V> = lyevavyvp> < E> = lyceqeqep>

i< V> = I3cvivyvs < E> = Iycegeses

Iy V> = Licvyvavey < E> = lyceyeger>

Is< V> = lscvyvsvy> Is< E> = lycegeqes>

le< V> = lg<vp le< E> = lg<>

L<<L>> L{FY

i< <L>> = li<clilsly <ljly <lilp> LFY= L

< <L>> = Ix<lhlp <lylp <lylp> LIFY = Lif)

I < L>> = lic<lylpy <l3lsly> <lylp > L{F} = Li{f 3}
i< < L>> = Lic<lgly <dglp <lylp> L {FY = Ldfay

Is< < L>> = lscclslily <l <l > Is{F} = s{f s}
le< <L>> = lgc<>> 1{F} = lelf s}

Figure 16-2c. Actual adjacency relationships for a non-manifold object

181

F{icV>1}

LSy LRP

L{S}t= liisysy)
L{S}= Lyisy sy}
IS} = liisysa)
[4{S} = l4isysa}

Is{S} = Istsysi}
Is{S}= lgtsy sy}

LR Y= litrirad
iR} = Liryry}
LR Y = I3fryray}
LR Y= lytrira
IsR} = Istryry
16fR } = lsiryryd

Fi< E>}

fi{- V> 1= fricvavgve)
faA V> b falevgvyvp }
f3l< V> 1= falcvivave}
F< V>)= faevivave }
Fsfe V> 1= fstevavsve <vp)

F{L}

FHAE> 1} ficeseses }

foA<E>}= falceqesep }
f3{<E>}= falcejesep }
FA<E>}= fygcerese}
fs{<E>}= fslcegerses <> }

F< < F> >

fll} = ftgy
fafl } = fatla}
Fall '} = fails)
fall '} = falla}
Fsil} = Fstlsisr

F{SP

Fi<<F>> =« fic<fifsfo <fifp <fife>
fa< < F>>

fi< < F>>

fa< < F>> [

FRRP

fac<faf> <fafp <fafp>
fa<<fsf <fasfsfe <fsfe>
fac<faf <fafv <fafp>

fs<<F>> = foe<fsfifp <fo <fs>

S8t fiisisay
f2S} = falsysa
f3iS} = fatsysy}
FalSY= fatsysa}

FsiSY= fstsisy

Figure 16-2d. Actual adjacency relationships for a non-manifold object

FRY= fitrira)

F2fR Y= falrira}
F3lR Y= fatrira
falR} = fatriry)

fsiRY= fstriry

182

SV} S{E}

si{V }= s1{vivavavavsveva} si{E} = silerezeseqesege7e5e0}
s2{V}= sa{vivavivel s2{E} = sy{e1eze3e4€5€6)
s3{V'} = s3{vs} s3{E} = 53{}

S{L} S{F}

sp{l 3= sitliladalalsy sifft= silf1fafafafst
sa{le Y= sadliladsla} s2{F Y= salf 1 fafsfad
s3iL}= 5503 s3{F}= 8303

S{S} SRRY

si{S}= siisad si{R}= si{ri}
s2{St= 5251} $2{R } = s3{ra}
53{8}= 5303 3R} = sard

RV} R{E}

1V} = rivivavyvevsve vy vl r{E} = rifereseseqesegegegeg)
ra{V} = rp{vyvavave} r{E} = rafereseseqesegt

R{L} RiF}
rifl }= ridlidalslalsy ri{fY=riififafsfafs
rofL b= ratlilylsls} r{Ft= ratf i fafsfar

R{S} R{R}

rfSte rifsiss} ri{R} = riira}
r2{S 1= rafss} R} = rafry}

Figure 16-2e. Actual adjacency relationships for a non-manifold object

183

16.2.1. Adjacency Relationship Semantics

The non-manifold domain is a more complex one than the manifold domain, and the

semantics of the adjacency relationships reflect some of the complexity.

As in the manifold domain, there are multiple interpretations for the semantics of

some of the adjacency relationships. The definitions utilized in this thesis are

described here.

The adjacency relationships where the type of the reference element and the adjacent

group are the same are particularly prone to multiple interpretations. The V {V} adja-

cency relationship is defined here as the set of all vertices which are adjacent to the

reference vertex by being at the other end of the edges specified by the V{E} adja-

cency relationship. The E{< [E]*> ¥ adjacency relationship is defined as the set of

clockwise and counterclockwise edges to the reference edge for each loop found radi-

ally around the edge. The L {< < L> > } adjacency relationship is defined as the cyclic

ordered list of radially adjacent loops sharing an edge with the reference loop for each

edge in the cyclic list of edges in the.reference loop; the outermost brackets are for

the two orientations the information can take based on which side of the face one

views the relationships from. The F{{< < F> > }} adjacency relationship is defined as

the cyclic ordered list of radially adjacent faces sharing an edge with the reference face

for each edge in the cyclic list of edges in each loop of the reference face; the outer-

most brackets are for the two orientations the information can take based on which

side of the face one views the relationships from. The § {5} adjacency relationship is

defined as the set of all sheils which share a face with the reference shell. The R {R }

adjacency relationship is defined as the set of all regions which share a face with the

reference region.

The adjacency relationships where the edge is the reference element also are open to

multiple interpretations. The E{< L > ¥ adjacency relationship is defined as the set of

loops using the edge, with each use listed radially around the reference edge, with the

same radial ordered group occurring twice, once in opposite order, once from the per-

184

spective of each end of the edge. The E{< F> }* adjacency relationship is defined as

the set of faces using the edge on a loop. boundary, with each use listed radially

around the reference edge, with the same radial ordered group occurring twice, once

in opposite order. The E{< §> ¥ adjacency relationship is defined as the set of shells

using the edge on a face boundary, with each use listed radially around the reference

edge, with the same radial ordered group occurring twice, once in opposite order.

The E{< R> } adjacency relationship is defined as the set of regions using the edge

on a shell boundary, with each use listed radially around the reference edge, with the

same radial ordered group occurring twice, once in opposite order. A wireframe edge

would therefore have two empty E{< F> } radial ordered adjacent groups but would

have one member in each of its E{< §> ¥ and E{< R> ¥ radial ordered adjacent

groups.

The L {< V> } and L {< E> } adjacency relationships would have the expected meaning

of representing the ordered lists of vertices and edges around a loop; the outermost

brackets are for the two orientations the information can take based on which side of

the face is used to view the relationships.

The F{{< V> }} and F{{< E> }} adjacency relationships are similar to the L {< V> } and

L{< E>} adjacency relationships above, except that an additional unordered list

bracket pair encloses the innermost group to provide for the multiple loops that may

be found in a face.

The remaining adjacency relationships follow their expected definition in terms of

their function as downward or upward hierarchical adjacency relationships. A more

complete interpretation of the semantics of the adjacency relationships, specifically

applied to the Radial Edge structure, can be found in the completeness proof in

Chapter 18 and Appendix D.

Correspondence is not discussed here in detail, but there are several characteristics of

the non-manifold environment which allow correspondence between adjacency rela-

tionships, including the two ends of an edge, the radial ordering of loops around an

edge, the two sides of a face, and the loops in a face. These characteristics are

185

utilized in the correspondence information kept in the Radial Edge structure dis-

cussed in Chapters 17 and 18.

Chapter 17

TOPOLOGICAL DATA STRUCTURES

This chapter discusses a specific data structure for the representation of an object

based evaluated non-manifold boundary topology representation which explicitly

stores adjacency relationship information.

First, design issues for the non-manifold environment outlined in Chapter 15 are dis-

cussed. Next, the Radial Edge data structure is described. The detection of volume

enclosure, a condition maintained by operators manipulating the structure, is then

discussed in relationship to the data structure.

17.1. Design Issues in Non-Manifold Representations

Many issues arise in the design of a representation to support non-manifold environ-

ments, some similar to those found with manifold representations, and some unique

to non-manifold representations. Specific resolutions to these issues are described in

the following subsection discussing the actual data structures.

One perspective on issues in non-manifold modeling can be seen from a comparison

of non-manifold with manifold modeling environments.

There are many differences between the manifold and non-manifold environments.

The non-manifold environment, being able to model objects unrepresentable in mani-

fold environments, is correspondingly more complex. The non-manifold domain in

an intuitive sense has a higher level of representational dimension than that of a

manifold domain, simply because a manifold domain restricts itself to surface junc-

tures which are topologically two dimensional, while non-manifold domains support

186

187

more complex junctures. There are also some similarities, however. Many of the

issues in manifold representation design exist in non-manifold representation design

not only at the same dimensional level, but also appear in a similar fashion at a higher

level of dimension,

Several representation design issues of concern in a non-manifold environment are

now discussed.

17.1.1. Direct Representation of Adjacency Uses

A key simplification principle found with manifold representations that equally applies

in a non-manifold environment is that directly representing the use of topological

representation structures (uses of the topological face, loop, edge, and vertex ele-

ments) in the adjacency relationship information, rather than the topological elements

themselves, simplifies accessing by eliminating the need for procedural decision mak-

ing dul:ing traversals of the topology structures [Weiler 85a]. This is usually done at 3

cost of at least some increase in storage requirements.

Even simple operations such as traversal of the edges around a loop of a face can not

use the edge identity as an indicator of where it is in the loop traversal since the same

edge may be used twice in the loop (as in a strut edge). In fact, an edge identity with -

a vertex identity is also not sufficient since self loops are allowed, and when non-

manifold edges occur, even edge identity with orientation information is not sufficient

since an edge may be used many times in both directions. When the uses of ele-

ments are represented directly, however, these problems disappear since positioning

in a list of adjacencies is uniquely defined.

17.1.2. Non-Manifold Conditions Along an Edge

A situation where more than two faces meet along a common edge is a major

headache for manifold representation application developers since it can appear as a

188

result of the standard and the regularized Boolean operations, yet is not directly

representable in manifold representations (see Figure 17 — 1).

How this situation is handled is a key issue in the design of a non-manifold represen-

tation, Representing non-manifold situations directly tends to simplify manipulation

and modeling algorithms and remove special case considerations.

Figure 17 - 1. Non-manifold conditions at a point and along an open curve

189

17.1.3. Non-Manifold Condition at a Vertex

A similar problem for manifold representations is the situation where several distinct

volumes or faces are connected only by a single vertex (see Figure 17 — 1), In some

cases this can be represented while still using a manifold representation by decompos-

ing the object by a process of duplicating vertices. This manifold solution has the

undesirable characteristic of losing adjacency information (unless additional informa-

tion is added, essentially creating a partial non-manifold representation as a special

case). Again, these non-manifold situations are possible as a result of Boolean opera-

tions, even when the input is manifold; correct implementations of these operators

for manifold representations therefore must either decompose the output or give up.

A non-manifold representation must preserve such adjacency information so that the

information is available locally. Since the vertex is the only common structure

between such adjacent structures, the vertex structure is the logical place to store

such adjacency information. This also is a logical place to store connectivity informa-

tion for wireframe edges.

Note that in manifold representations an upward pointer from a vertex to higher

dimensional element structure levels was optional; in a non-manifold representation it

is logically mandatory. It is therefore necessary to consider whether it is also as

necessary to isolate uses of a vertex as it was necessary to isolate uses of faces and

edges.

Another concept related to non-manifold vertices is separation surfaces, detailed later.

17.1.4. Non-Manifold Wireframe Representation

A wire edge is defined as a single edge, possibly a self loop or multiply connected

edge, which has no adjacent face. Each end of the edge may or may not be attached

to other edges. These adjacent edges may or may not also be wire edges. A

wireframe is a collection of connected wire edges.

190

With only a little extra care, a non-manifold representation can be designed to be

flexible enough to equally accept wireframe, surface, or solid models, or any combi-

nation of them at the same time. Non-manifold solid models, fully developed with

interior partitions, have many complex adjacency relationships.

Several desirable properties for a wireframe representation should be preserved. The

representation structure should implicitly or explicitly keep track of what shell (what

boundaries of what volumes) any given wire edge or shell vertex is part of. The adja-

cencies between edges should be available, sorted by which end of the edge was adja-

cent. The two vertices at each end of an edge should be available.

17.1.5. Separation Surfaces

Another situation to be considered is a complete surface formed by the juncture of

faces around a vertex that effectively separates the space immediately around the ver-

tex into two half-spaces, distinguishable from each other because the surfaces are

orientable (see Figure 17 — 2). These surfaces are called separation surfaces, and may

be composed of one or more faces as long as they together form a continuous mani-

fold or lamina which creates the half-space division at the vertex.

This means an edge attached to a vertex at the center of a separation surface could be

intended to fall on one side or the other of the separation surface (see Figure

17 - 2).

At a single vertex there may exist many separation surfaces, which effectively form a

tree of separation adjacency relationships between the surfaces. For example, in Fig-

ure 17 — 3, the separation surface tree for the illustrated vertex has three branches at

the top level, and one of the branches itself has two sub-branches. The resulting

separation surface tree is shown in the figure symbolically as well as pictorially. This

kind of information must be available in a non-manifold representation; there are

many ways it may be represented. A purely topological approach might represent the

separation surface adjacency tree directly; a hybrid approach might involve the use of

191

Figure 17 - 2. A separation surface completely surrounds a vertex and divides
the space around the vertex into two half spaces.

192

Figure 17 - 3. A nested tree of separation surfaces

both topology and geometry to determine such information.

if separation surface information is supported directly by the representation, topologi-

cal elements may be inserted into the model with respect to their adjacencies to

separation surfaces. This would have the effect of reducing operation ordering depen-

dencies during model creation and manipulation. Keeping such information easily

available in a representation is problematic, however, since the most convenient

193

places to store such information change as the model is manipulated. Furthermore,

the separation surface tree information must either be derived using geometry and

topology together or must be produced by a somewhat complex interface protocol for

any manipulation operators provided.

Notice that a similar problem exists for manifold representations concerning where

struts attached to a vertex should lie when a new edge is attached to a vertex. Some

systems, simply put limitations on how and when such struts could be made. Other

systems handle it by explicit designation of the adjacencies on the manifold (see

Chapter 13). No such direct specification exists in three space, however, unless

separation surfaces are an explicit part of the representation and the operators pro-

vided use such specifications.

17.2. A Description of the Radial Edge Data Structure

17.2.1. Design Decisions

Several decisions were made during design of the Radial Edge non-manifold data

structure with respect to the design issues raised in the previous subsection and some

of the practical constraints identified in the previous chapters.

1. The top-down hierarchical relationships of the topological elements, from
higher dimensional elements to lower dimensional elements, and the
bottom-up hierarchical relationships of the topological elements, from
lower dimensional elements to higher dimensional elements are
directly represented in the data structures, as shown in Figure 17 - 4.
The terms ‘‘up pointer” and “‘down pointer’ used in later data struc-
ture descriptions refer to these relative positions in this hierarchy.

2. The V{E} adjacency relationship consisting of the unordered list of edges
incident to a vertex is represented in order to capture the adjacencies
of separate volumes touching at a single non-manifold point, as well
as to capture the edge adjacencies in a wireframe. Since the vertex is
the only common structure between such adjacent structures in these
situations, the vertex and vertex-use structures are the logical place to
store such adjacency information.

3. The E< L> adjacency relationship consistin of the ordered list of loops sur-
rounding an edge is represented. This is required because the same
volume may be adjacent to an edge from several directions at once;
the radial face ordering around an edge is necessary to allow the

194

model

region

face use «+—— face

--»loop use <+—— loop

---»edge use <—— edge

L...l¥vertex use <+———= vertex

Figure 17 - 4. Radial Edge structure relationships

adjacencies of the volumes at the edge to be correctly represented.
This a key feature of the Radial Edge data structure, giving rise to the
name ‘“‘Radial Edge’’.

4. No separation surface information is represented. It was felt intuitively that
such information would be expensive to maintain under the effécts of
typical modeling operations on such a representation, especially in
view of the expected frequency of use of such information in normal
modeling situations.

5. The adjacency uses of the face, loop, edge, and vertex elements are directly
represented. In particular, representing each face with two face-use
(face side) structures and each edge with an edge-use structure for
each use by each face-use are some of the other key ideas of the
Radial Edge structure described here.

6. Wireframe edges are represented by two edge-uses, one for each end of the
edge. Connectivity to other edges is maintained through the vertex-
use structures.

In fact, it is not necessary to have any direct representation of the basic face, loop,

195

edge, and vertex elements themselves; representations of their uses are sufficient to

indicate their position in the model. It is convenient, however, from a system archi-

tecture point of view if programmers using the operators to manipulate the data struc-

tures deal with the more intuitive concept of topological elements rather than topolog-

ical uses of elements as much as possible. Additionally, dealing only with basic ele-

ments at the interface level helps insulate higher levels of a geometric modeling sys-

tem from data structure dependencies. This is one of the few justifications for the

representation of the face, loop, edge, and vertex elements directly in this representa-

tion. It may also be desirable on the basis of high speed traversal of all faces, edges,

and vertices in a model, although the overhead in the Radial Edge structure for these

operations is not overwhelming except perhaps in the largest models. Geometry may

also be stored in the face, edge, and vertex elements directly, but programming

modularity, desire for multiple geometric representations, ease of manipulation, and

the desire to represent variable and symbolic geometric dependencies and constraints

make implementing a separate geometry representation more desirable.

For parametric surface geometry representations, the edge-use approach of the Radial

Edge structure provides a one-to-one correspondence of topological elements to

oriented parametric space curve segment geometry elements. This is a particularly

useful bookkeeping feature when curve geometries exist only as parametric space

curves; otherwise procedural testing is necessary. This is discussed in Chapter 20.

There are several secondary design issues which, while not as fundamental as those

discussed previously in this chapter, are nevertheless important. These design issues

mostly concern tradeoffs of data structure space for speed and/or simpler manipuia-

tion algorithms. Examples include decisions regarding search vs. upward pointers,

variable size structures vs. lists of fixed size structures, and doubly vs. singly linked

lists. The basic strategy chosen here is to utilize explicit upward pointers to avoid

necessity for search, to utilize fixed size structures, and to use doubly linked circular

lists. These choices trade space for speed and simplicity of algorithms. Other choices

are possible, but optimal choices would involve careful statistical analysis of actual

usage patterns. This latter approach might yield overall better space and time

196

performance, but is not foolproof, since usage patterns can change drastically based

on even minor changes in heavily used application code.

The main purpose of the shell and loop structures is to function as variable length list

mechanisms which allow disconnected graph conditions within surfaces (the loop),

and between surfaces as well as between other boundary structures (the shell). In the

case of a shell, the highest dimension of the boundary elements may range from a

surface (2D), an edge (1D), or a vertex(0OD). In a loop it may range from an edge to

a vertex, Note that while the element-use structures also effectively provide a vari-

able length list mechanism, their primary advantage is still in providing unique

identification for each element usage to simplify later adjacency queries and traversals.

17.2.2. Data Structures

The data structures of the Radial Edge structure are described in the form of Pascal

data structures in Figures 17 — 9 to 17 - 16.

Figure 17 — 5 illustrates some of the adjacency relationships represented in the edge-

use structure. Two adjacent faces are shown; the edge they share in this case gives

rise to four edge-use structures, one by each of the two sides of each of the two

faces, Any given edge-use structure keeps track not only of the eweu_mate_ptr edge-

use structure found on the opposite side of the face, but also of the eueu_radial ptr

edge-use structure on the face-use radially adjacent to the face-use of the givpn edge-

use. In this way, the full radial ordering of faces about the edge can be maintained.

Figure 17 - 6 depicts the eueu_radial_ptr and eueu_mate_ptr edge-use relationships in a

cross-sectional view.

Figure 17 —~ 7 depicts how edge-uses in a loop-use are connected for the representa-

tion of the cyclic ordered list of edges around a loop. Figure 17 — 8 shows pointers

for a wireframe vertex touched upon by several edges and illustrates how connectivity

is maintained through common vertices.

197

Figure 17 — 5. Radial Edge representation of two faces joining along a common
edge showing how the four edge uses of the common edge (each side
of each face uses the edge) are connected

198

face use
mate

pointers

edge use
mate

pointers

[] [J
/ ey, euz\

edge use
radial

pointers
@ ey

ety
® ey i.

| eu, A ey ‘o

Figure 17 - 6. Cross-section of three faces sharing a common edge in the Radial

Edge representation

199

vueuptr euvuptr eu,

vu, . [— vu,
Iueulast lueunext \

euluptr

e L. [T — eu,

<~
vu, . ™ —— “~~—@ vu,

eu 3

Figure 17 - 7. Plan view of a loop of edges in the Radial Edge structure

200

euvuptr

vueuptr

eu,

vy

vu, .

4 | N et
\v\ulasl

Yy > < I

Figure 17 — 8. Radial Edge representation of a vertex and its uses by five in-
cident edges. Vertex-use to edge-use pointers are required for
representation of adjacencies of wire edges incident to a vertex.

201

As in the descriptions of manifold data structures, data objects refer to each other by

the use of pointers. Similarly, the naming convention for the pointers in the data

structures described is:

from-element-type to-element-type ptr

where the topological element types are symbolized by the letters r, s, f, I, e, v, fu, lu,

eu, and vu for region, shell, face, loop, edge, vertex, face-use, loop-use, edge-use,

and vertex-use, respectively, There is sometimes an additional name before the

“ptr’’ suffix when there is more than one pointer of the given type combination. Cir-

cular linked lists of lower dimension elements maintained by higher dimension ele-

ments often use pointers embedded in the lower dimension elements. The pointers

are usually named in the form:

higher-dimension-type lower-dimension-type next

It should be noted that the actual orientations of orientable elements are associated

with the usage structures rather than basic element structures since it is the use of an

element that forces an orientation. The orientation is meaningful primarily with

regard to‘ geometry stored in the geometry attribute of the face and edge basic topo-

logical elements. A consistent interpretation of orientation is therefore necessary for

face normals and edge directions.

The model structure simply maintains a down pointer to a list regions in the model,

and a region structure maintains a list of shells bounding the region. The shell struc-

ture maintains a down pointer to the highest dimensional element type which bounds

the shell: a list of face-uses, a wire edge-use, or a single vertex-use.

The face, loop, edge, and vertex records are merely convenient places to put attribute

information such as geometry, and also assist by providing unique identities for basic

topological elements if operators are based on basic elements rather than use ele-

ments. They are not topologically necessary in the representation, however.

The face-use structure represents the use of one side of a face by a shell. It main-

tains a down pointer to an associated list of loop-use structures, as well as a pointer to

the face-use of the other side of the face.

202

type

{ topological element structures }

model_ptr = “model;
region_ptr = “region;
shell_ptr = “shell;
face_ptr = “face;
loop_ptr = “loop;
edge_ptr = “edge;
vertex_ptr = “vertex;

{ topological element adjacency usage structures }
faceuse_ptr = “faceuse;
loopuse_ptr = “loopuse;
edgeuse_ptr = “edgeuse;
vertexuse_ptr = “vertexuse;

{ pointer type indicator values }

ptr_type = (MODELptr, REGIONptr, SHELLptr, FACEptr, LOOPptr, EDGEptr,
VERTEXptr, FACEUSEptr, LOOPUSEptr, EDGEUSEptr, YERTEXUSEptr);

{ attribute/ geometry structures }
model_attrib_ptr = “model_attrib;
region_attrib_ptr = “region_attrib;
shell_attrib_ptr = “shell attrib;
face_attrib_ptr = “face_attrib;
faceuse_attrib_ptr = “faceuse_attrib;
loop_attrib_ptr = “loop_attrib;
loopuse_attrib_ptr = “loopuse_attrib;
edge_attrib_ptr = “edge_attrib;
edgeuse_attrib_ptr = “edgeuse_attrib;
vertex_attrib_ptr = “vertex_attrib;
vertexuse_attrib_ptr = “vertexuse_attrib;

{ usage vs. element orientation type }
orientation_type = (SAMEorientation, OPPOSITEorientation, UNSPECIFIED orientation);

{ note: general pointer variable naming convention is the concatenated string
from-element to-element **_ptr”’

where the element types are m,r,5,f,l,e,v,fu,lu,eu, and vu.
All ““next’,**last’’ pointers are for circular doubly linked lists.

Figure 17 - 9. General types for Radial Edge structure in Pascal notation

203

var
Models: model_ptr; { root of data structure; list of all models }

type

a) Pascal Declaration

model = record
m_next,m_last: model_ptr; { list of all active models }
mr_ptr: region_ptr; { list of regions in modeling space }
ma_ptr: model_attrib_ptr { attribs }
end;

b) Storage allocation description

m_next

m_last

mr_ptr

ma_ptr

a} Pascal Declaration

region = record
rm_ptr: model_ptr; { owning model }
mr_next,mr_last: region_ptr; { regions in model list of regions }
rs_ptr: shell_ptr; { tist of shells in region}
ra_ptr: region_attrib_ptr { attribs }
end;

b) Storage allocation description

rm_ptr

mr_next

mr_last

rs_ptr

ra_ptr

Figure 17 - 10. Types for Radial Edge basic topological elements in Pascal nota-

tion

204

a) Pascal Declaration

shell = record

Sr_ptr: region_ptr; { owning region }
rs_next,rs_last: shell_ptr; { shells in region’s list of shells }
sa_ptr: shell_attrib_ptr; { attribs }
case downptr: ptr_type of { mutually exclusive alternatives }

FACEUSEptr: (sfu_ptr: faceuse_ptr); { list of face-uses in shell }
EDGEUSEptr: (seu_ptr: edgeuse_ptr); { shell is wireframe }
VERTEXUSEptr: {(svu_ptr: vertexuse_ptr) { shell is single vertex }

end;

b) Storage allocation description

sr_ptr

rs_next (same) (same}

rs_last

sa_ptr

downptr

sfu_ptr or seu_ptr or sVu_ptr

a) Pascal Declaration

face = record
ffu_ptr: faceuse_ptr; { list of uses of this face - use fu mate field }
fa_ptr: face_attrib_ptr { attribs including geometry }
end;

b) Storage allocation description

ffu_ptr

fa ptr

Figure 17 - 11. Types for Radial Edge basic topological elements in Pascal nota-

tion

205

a) Pascal Declaration

loop = record
Hu_ptr: loopuse_ptr; { list of uses of this loop - use eu mate eulu fields }
la_ptr: loop_attrib_ptr { attribs }
end;

b) Storage allocation description

flu_ptr

la_ptr

a} Pascal Declaration

edge = record

eeu_ptr: edgeuse_ptr; { list of uses of this edge - use eu radial/ mate fields }
ea ptr: edge_attrib_ptr { attribs including geometry }
end;

b) Storage allocation description

eeu_ptr
ea_ptr

a) Pascal Declaration

vertex = record
vvu_ptr: vertexuse_ptr; { list of uses of this vertex - use vunext fields }
va_ptr: vertex_attrib_ptr { attribs including geometry }
end;

b) Storage allocation description

vvu_ptr

va_ptr

Figure 17 - 12. Types for Radial Edge basic topological elements in Pascal nota-

tion

206

a) Pascal Declaration

faceuse = record { will always be exactly two uses of face }
fus_ptr: shell_ptr; { owning shell }
sfu_next,sfu_last: faceuse_ptr; { fu’s in shell’s list of fu’s }
fufu_mate_ptr: faceuse_ptr; { opposite side of face }
fulu_ptr: loopuse_ptr; { list of loops in face-use }
orientation: orientationtype; { compared to that of face geom definition }
fuf ptr: face_ptr; { face definition and attributes }
fua_ptr: faceuse_attrib_ptr { attribs }
end;

b) Storage allocation description

fus_ptr

sfu_next

sfu_last

fufu_mate_ptr

fulu_ptr

orientation {

fuf ptr

fua_ptr

Figure 17 - 13. Types for Radial Edge adjacency usage topological elements in

Pascal notation

207

a} Pascal Declaration

loopuse = record
lufu_ptr: faceuse_ptr; { owning face-use }
fulu_next,fulu_last: loopuse_ptr; {lu’s in fu’s list of lu’s }
lulu_mate_ptr: loopuse_ptr; { loopuse on other side of face }
lul_ptr: loop_ptr; { loop definition and attributes }
lua_ptr: loopuse_attrib_ptr; { attribs }
case downptr: ptr_type of { mutually exclusive alternatives }

EDGEUSEptr: (lueu_ptr: edgeuse_ptr); {list of eu’s in lu }
VERTEXUSEptr:(luvu_ptr: vertexuse_ptr) { loop is one vertex oaly }
end;

b) Storage allocation description

lufu_ptr

fulu_next

fulu_last {same)

luly_mate_ptr

lul_ptr

fua ptr

downptr

lueu_ptr or luvu_ptr

Figure 17 — 14. Types for Radial Edge basic topological elements in Pascal nota-

tion

208

a} Pascal Declaration

edgeuse = record
euvu_ptr: vertexuse_ptr; { starting vu of eu in this orientation }

eueu_mate_ptr: edgeuse_ptr; { eu on other fu of face or end of wire }
eue_ptr: edge_ptr; { edge definition and attributes }
eua_ptr: edgeuse_attrib_ptr; { parametric space geom }
case upptr: ptr_type of { mutually exclusive alternatives }

SHELLptr: (
eus_ptrishell_ptr { owning shell }

)
LOOPUSEptr: (

{ cw/cew eu’s in lu’s ordered eu list }
lueu_cw_ptr,Juen_ccw_ptr: edgeuse_ptr;
eueu_radial_ptr: edgeuse_ptr; { eu on radially adjacent fu }
orientation: orientationtype; { compared to geom }
eulu_ptr: loopuse_ptr { owning loop }

)
end;

b) Storage allocation description

euvu_ptr
eueu_mate ptr -

eue_ptr (same)

eua ptr
upptr

lueu_cw_ptr or eus_ptr
lueu_ccw_ptr

eueu_radial_ptr

orientation
eulu_ptr

Figure 17 — 15. Types for Radial Edge basic topological elements in Pascal nota-

tion

209

a} Pascal Declaration

vertexuse = record

vu_next,vu_last: vertexuse_ptr; { list of all vu’s of vertex'}
Vuv_ptr: vertex_ptr;
vua_ptr: vertexuse_attrib_ptr;
case upptr: ptr_type of

SHELLptr:(vus_ptr: shell_ptr);
LOOPUSEptr: (vulu_ptr: loopuse_ptr); { loop consists of only this vu }
EDGEUSEptr: (vueu_ptr: edgeuse_ptr){ eu causing this vu }

end;

b) Storage allocation description

vu_next

vu_last

vuv_ptr

vua_ptr

upptr

(same)

vus_ptr or vulu_ptr or

{ vertex definition and attributes }

{ parametric space geom & attribs }
{ mutually exclusive alternatives }

{no fu’s or eu’s on shell }

(same)

vueu_ptr

Figure 17 - 16. Types for Radial Edge adjacency usage topological elements in

Pascal notation

The loop-use structure also maintains a pointer to the equivalent loop-use structure

on the other side of the face. It has a down pointer either to a list of connected

edge-use structures or to the single vertex-use in the case of a single vertex loop.

The edge-use structure has two configurations. A wireframe edge is represented by

two edge-use structures, one for each end of the edge, and each maintains a direct

pointer to the shell it bounds as well as to the other edge-use. If the edge-use

bounds a face, it also maintains pointers to allow forward and reverse traversal of the

loop-use it is associated with. A downpointer to a vertex-use is also maintained; the

210

vertex-use at the other end of the edge-use is found from the corresponding field of

the mate edge-use. The radial and mate pointers which give ordered access to the

edge-uses associated with faces which radially use the edge is a very important aspect

of the Radial Edge structure,

The vertex-use structure maintains an up pointer to the lowest dimensional element

directly using it: an edge-use in the case of a wire or loop-use edge, a loop-use in the

case of a single vertex loop, or a shell in the case of a single vertex shell.

17.2.3. Geometry and Other Attributes

Geometry information is not directly described here since many forms of geometric

surface, curve, and vertex coordinate representations are possible, and their definition

is not necessary to understand the adjacency topology structures.

Typically, a vertex would have coordinate geometry or procedural coordinate descrip-

tions associated with it. Edges would usually either directly store or refer to curve

information', and faces would maintain or refer to a description of the geometric sur-

face geometry. This geometry would be directly associated with the basic topological

face, edge, and vertex structures. Models, shells, and sometimes faces can have spa-

tial extent information such as bounding boxes for the efficiency of applications.

Geometry information as it relates to edge-uses and vertex-uses in a system using

parametric surface geometry formulations is described in Chapter 20.

Orientation information, as found in the face-use and edge-use structures are binary

values which indicate whether the orientation required by the structure agrees or

disagrees with the orientation specified by geometry attributes. Orientation informa-

tion is not strictly related to the adjacency topology information but is included in

these structure definitions because they are necessary to specify orientations with the

non-manifold topology operators described in Chapter 19. They are included for no

other reason.

211

In most implementations the geometry implementation can be layered on top of the

topology implementation so that the topology and geometry packages can be imple-

mented and maintained separately.

Many other kinds of attribute can be associated with the various elements. In

mechanical engineering applications, volumes, densities, and other mass properties

may be attributes of region and other element types. Color, translucency, and surface

finish are other common properties.

17.2.4. Variations in Data Structures

The many variations possible are primarily related to speed vs. storage issues. Algo-

rithmic complexity is also an important factor affecting the implementors’ ability to

write and maintain applications. The usual relationship is that reducing storage

requirements will increase processing time and algorithmic complexity.

Doubly linked lists are not required for virtually any of the lists maintained in the

Radial Edge structure, although search would be required to replace the lost func-

tionality for those lists which are ordered. Deletion is usually slower in singly linked

lists, however. The optimization trick here is in statistically determining the lists for

which search is relatively inexpensive in a given application.

Some of the upward pointers can be eliminated without great hardship; again a statist-

ical profile of the applications using the representation would be useful in making

these decisions.

Face, loop, edge, and vertex structures are not required. Even operators based on

specifying basic topological elements can be implemented without them if unique

naming mechanisms are provided.

In applications requiring heavy use of wireframe elements, storage may be saved by

representing wire edges in a single edge-use structure which has pointers to both

vertex-use structures at each end of the edge. This does mean that the manipulation

212

operators must perform procedural checking for wire edges as a special case, however.

Variable length structures could also be investigated to reduce overhead from loop

and shell structures, and some of the use structures. As can be seen in the algo-

rithmic complexity comparison of the four manifold data structures in Appendix B,

however, there can be drastic complexity costs involved.

17.3. Detecting Volume Closure by Face Additions

A great many new situations arise in a non-manifold environment which do not

directly exist in standard manifold environments, simply because the domain is much

larger and is correspondingly more complex. Yet there are also correspondences

between non-manifold and manifold environments, often similar to correspondences

between problems in three dimensions versus problems in two dimensions.

An example is the problem of determining when a new volume has been enclosed as

a result of adding a new face to an existing structure in a non-manifold environment,

This is a basic task which must be performed repeatedly during modeling operations,

The same problem does not directly exist in the manifold environment since all face

operations take place on an existing manifold, and any new volumes must be expli-

citly created by creating a new manifold. However, a corresponding but simpler prob-

lem that exists in the manifold environment is a new face being created by the addi-

tion of an edge between two existing points.

In a manifold environment, connecting an edge between two points may close off a

new face, but only if there is already some other connection in the graph structure

between the two endpoints. The only way to discover such situations is through the

equivalent of a potentially global search around the edges adjacent to the surface

starting on one side of the new edge. If one eventually reaches the other side of the

edge from which one started, then a new face has not been enclosed. Such algorithms

are automatically carried out in manifold modeling systems by operators such as the

Euler operators.

213

In a similar fashion, determination of the enclosure of a new volume in a non-

manifold environment should also be made by an automated algorithm in order to

maintain the integrity of the representation, since the representation must always

know what volumes exist and where their boundaries are. It is not reasonable to

expect applications to provide such information since the information is essentially

available in the modeling structure itself, and applications should not be concerned

with intimate details of the representation system.

As in the manifold environment problem of connecting an edge between two points,

some form of search is necessary in order to determine when a new region has been

enclosed by the addition of a face in a non-manifold environment. Similarly, the

search is essentially a potentially global search of the face-uses adjacent to the original

volume in which the face addition operation is being performed. To determine

whether a potential new volume is enclosed by the addition of the new face, one

must traverse all face-uses adjacent to the original volume to be sure that the poten-

tial new volume is not open to the original volume at some location. If a new

volume actually has been enclosed, then the search restricts itseif only to the face

sides (uses) directly adjacent to the new volume. The basic algorithm relies on the

principle that if one starts out on one of the sides (face-uses) of the new face and

traverses all face sides (face-uses) adjacent to it by volume (and recursively, adjacent

to each of those), and eventually the other side of the face from which one started is

reached, then a new volume has not been formed. If the traversal is complete but did

not include the other side of the new face, a new volume has been formed.

The ease with which this basic idea can be implemented is primarily determined by

the ease with which information for traversal can be obtained from the data struc-

tures. The Radial Edge structure is optimized for obtaining such adjacency informa-

tion, however, and the algorithm for determining volume enclosure is correspond-

ingly simple.

The algorithm can be described in terms of the two procedures presented here,

Record structure access is given in Pascal notation.

214

{ traverse all face-uses (face sides) adjacent by common volume
to the chosen original face-use (face side) }

traverse(fu):
1. mark the face-use fu that you are currently on.
2. trave:fe all edge-uses eu of all loop-uses of the face-use fu. For each pointer to

edge-use eu:
a)gnewfu « eu”.eueu_radial ptr*.eulu_ptr*.lufu_ptr
b) if newfu is not marked, then traverseé(newfu)

{ determine enclosure of new volume after face addition of newf }
enclosure{newf):

1. traversef(newf‘ ffu ptr)
2. if (newt" ffu_ptr" .Ffufu_mate_ptr is marked)

then return FALSE { no enclosure }
else return TRUE { enclosure found }

Note that this specialized traversal effectively ignores all wire edges and any faces

lying at the end of these wires. This is because any change in the status of a region

due to face creation cannot be propagated through an infinitely thin wire (through a

0-dimensional boundary point at its endpoint); it must occur due to a change in acces-

sibility involving faces adjacent through a l-dimensional boundary element (a curve)

to the one just created.

Chapter 18

TOPOLOGICAL SUFFICIENCY

There are three main issues regarding the topological sufficiency of non-manifold

boundary topology representations which store adjacency relationships.

First, what is the theoretical minimal amount of topological information required to

reconstruct a non-manifold topology for the specified domain ?

Second, what is the practical minimal amount of topological information required to

reconstruct a non-manifold topology for the specified domain ? In other words, what

is the minimal topological information required to be stored in an implementation of

a geometric modeling system ?

Third, are the data structures to be used, in this case the Radial Edge structure,

sufficient ?

This chapter outlines some aspects of these issues.

The first issue is still an open research question. This chapter does not prove

minimal theoretical topological adjacency relationship information but does conjecture

which adjacency relationship information is particularly critical to non-manifold topol-

ogy representations.

The second issue, as discussed here, is straightforward given the solution to the first,

using the same techniques established for obtaining a practical minimum sufficient set

of adjacency relationships as used for manifold representations.

Finaily, proof of completeness of the Radial Edge structure is then discussed.

218

216

18.1. Minimal Theoretical Sufficiency for Non-Manifold Environments

Identification of a minimal sufficient set of adjacency relationships and a formal proof

of their sufficiency remains an open problem at this time, A rigorous mathematical

basis for minimal sufficiency of non-manifold boundary topology representations, and

operators which manipulate them, has not yet been developed.

Several characteristics of the non-manifold adjacency relationships related to

sufficiency can be noted on an informal basis, however.

The adjacency relationships which seem to be most convenient in non-manifold

modeling representations are the downward and upward hierarchical diagonal adja--

cency relationships. Examining the relationship between these two sets of adjacency

relationships is instructive with regard to exploring sufficiency.

The downward hierarchical diagonal adjacency relationships from E{V}to R {S} would

normally be expected to fall among the commonly useful relationships because they

directly indicate the hierarchical relationships between topological elements of various

dimensionality,

All of the upward hierarchical diagonal adjacency relationships can easily be derived

from their counterpart downward hierarchical adjacency relationships (where E{V} is

the counterpart to V{E}, for example), except for the E{< L > } adjacency relationship

which seems to have substantially different information from its counterpart L {< E> }

adjacency relationship.

The E{< L>} adjacency relationship, indicates the radial ordering of loops using an

edge, and therefore (with the other hierarchical adjacency relationships) the radial

ordering of all higher dimensional elements about the reference edge. This would

therefore appear to be required in order to maintain the adjacency between faces

unambiguously.

Certainly for a practical system requiring a labeled graph, a set of five adjacency rela-

tionships spanning all the element types (such as the downward hierarchical diagonal

217

adjacency relationships) would be required.

This set is not minimal if labels are not important, however, as in the theoretical case

being considered here. S{F}, the faces around a shell, could be derived because of

the cofinectivity between faces offered by the E{< L> } adjacency relationship, assum-

ing that L {F} or F{L} was available. R {S} cannot be derived from the other down-

ward hierarchical diagonal adjacency relationships, since, for example, a single vertex

shell could be located in virtually any region. R {V} could be useful as a more power-

ful alternative in this regard since it does not depend on shell labels.

Other information which must be derivable includes similar situations where direct

edge-to-edge connectivity is not available, such as the regions associated with single

vertex shells and wireframes, and the faces or loops associated with single vertices

forming loops.

18.2. Practical Sufficiency for Non-Manifold Environments

As in the case of manifold modeling representations, a practical non-manifold imple-

mentation would not only include information related to the sufficient set of adja-

cency relationships, but would also include information related to additional adjacency

relationships so that information associating all element types is available. This ties

the representation together; all elements are uniquety labeled and non-topological data

may then be unambiguously associated with the topological model. Thus boundary

graph based geometric modeling systems normally require information equivalent to

at least (n—1) adjacency relationships (where n is the number of basic topological ele-

ment types) to associate all element types together into a cohesive whole. In this case

n=6, so at least five adjacency relatiohships would be required as a practical minimum

sufficiency requirement.

From the previous discussion on minimal sufficiency, it might be conjectured that a

set of adjacency relationships equivalent to the downward hierarchical diagonal adja-

cency relationships and E {< L > } adjacency relationship would be a practical minimum

218

sufficient set (shown surrounded by boxes in Table 16 - 1), as long as additional

information about the region associations of wireframe edges and single vertex shells,

and face associations of single vertex loops are also maintained.

The next subsection discusses how the Radial Edge structure maintains this informa-

tion,

18.3. Sufficiency of the Radial Edge Structure

18.3.1. Adjacency Relationships in the Radial Edge Structure

The adjacency relationship matrix containing the thirty-six non-manifold topological

element adjacency relationships is given in tables 18 — 1 and 18 - 2, and provides a

more detailed description of the adjacency relationships as found in the Radial Edge

structure.

The major difference between this adjacency relationship matrix and the general one

shown in table 16 — 1 is that the correspondences are being shown, making some of

the unordered groups ordered. One other difference is that the radial ordering of the

interior group of the LL and FF adjacency relationships are represented by ordered

pairs consisting of those elements before and after the given element in the radial

ordered list under consideration.

The upward and downward hierarchical diagonal adjacency relationships, which are all

directly represented in the Radial Edge structure (as wiil be shown shortly), are boxed

in the tables. In addition, six other adjacency relationships are also represented

directly under the special conditions of a single vertex shell (V{S}and S{V}), a single

vertex loop (V{L} and L (< V>]), and a wireframe portion of a shell (E[< §>] and

S{ED.

Note that linear ordered lists are used in a number of adjacent groups where the

219

Table 18 — 1. Left Half of Adjacency Relationship Matrix for the Radial Edge
Structure

reference adjacent group ele-

element ment type

type

vertices edges loops

vertex Viv]VeEl VIE] VL)

edge E[V}? E[< [E]E<L> 15 JEV] E[< L> JEVN

loop Li< Vs L<E>)PsH L{< E> i Li< L] L<E> sy

face Fll< V>))FE8H Fll< E>]]¥I5H F{L]

shell S{V} S{EY S{L}

region R{¥V} R{E} R{L}

220

Table 18 - 2. Right Half of Adjacency Relationship Matrix for the Radial Edge

Structure

reference adjacent group ele-

element ment type

type

faces shells regions

vertex ViF} V{s} V{R}

edge El{< F> [E<L> !}!E[Vll Ef< S> [E<L> l]lE[V]l E[{<R> IE<L> l]!E[VH

loop L{FY L{s]¥sH LR 1¥FEH

face F([< [F)*> |FEpFIST FIST F[R]FBI

shell S{F} S{S} SRY

region R{F} R{S} R{R}

general description of the non-manifold adjacency relationships indicated unordered

adjacent groups. This indicates situations where correspondence information is avail-

able from the Radial Edge structure; the ordering between corresponding adjacency

relationships with the same reference element is in correspondence. Further, the

adjacency relationships which are in correspondence with a directly represented adja-

cency relationship have the cardinality of their adjacent group specified as the cardi-

nality of the adjacency relationship originating the correspondence.

221

18.3.2. Completeness of the Radial Edge Structure

It is necessary to prove two aspects of a topological data structure to prove that it is

sufficient. First, it must be proven complete, meaning that all adjacency relationships

are derivable from the data existing in the data structure. Second, it must be proven

unambiguous, meaning that there is a one-to-one correspondence between the topolog-

ical representation and the full topological adjacency relationship information. This

means that a unique set of data in the data structure will result in a unique set of full

adjacency information. Note that we are not talking about a canonical form for

representation of a given shape but rather a unique representation for a given set of

full topological adjacency relationship information.

Proving unambiguity for a specific data structure is likely as difficult as finding the

minimal sufficient adjacency relationships for the non-manifold environment. Since

this information has not yet been found, this section will concentrate on proving

completeness of the Radial Edge structure rather than proving full sufficiency. This

provides some (but not total) assurance of its sufficiency., Therefore, while it is con-

jectured that the Radial Edge structure is sufficient, it is not proven here.

Proving completeness, that all adjacency relationships are derivable from the data

existing in the Radial Edge data structure in the specified non-manifold environment,

involves thirty-six separate derivations, one for each adjacency relationship.

In general, given the upward hierarchical diagonal adjacency relationships, the upward

hierarchical relationships above the upward hierarchical diagonal may be derived from

their neighboring adjacency relationships, where

Ao coumn = I (A row,cotumn~1 > Acotumn—1,column)

Similarly, given the downward hierarchical diagonal adjacency relationships the down-

ward hierarchical relationships below the downward hierarchical diagonal may also be

derived from their neighboring adjacency refationships:

Ao cotimn = (Arowcotamns 1 » Acotumns 1,cotumn)

222

Roughly speaking, this means that an adjacency relationship AC can be obtained from

AB and BC adjacency relationships. An example of this derivation in adjacency rela-

tionship terminology is the following, where L [< V> 1? is derived from L {< E> }* and

E[V]? information for loops consisting of more than a single vertex:

““iterate over reference element type”’
L;,ie1l.n

create adjacency relationship Ly< V> with empty < V> adjacent group

“initialize status variable”

v e~(LiI< E> 1)V
“iterate over adjacent group”

LiI< E> jly, jelan
I viag= (Lil< E> ;1p{V]

then vgg (L [< E> ;1) ([V],
else vy (Li[< E> ;1) {V],

append v, to L;< V> adjacent group

output Li< V>

Derivation of the main diagonal is a less regular process in terms of the positions of

the required adjacency relationships in the matrix.

There are several choices of notation that can be used in showing how the adjacency

relationship information is derived, however.

While the derivation process can be described in adjacency relationship notation as

shown, in this case it does not accurately reflect the derivation process that would

actually be used with the Radial Edge structure. The Radial Edge structure contains

enough correspondence information that determination of which vertex is associated

with the traversal of each edge in L [< E> 1* is explicit and need not be derived with

conditionals, as implied in the algorithm above. This is because the individual com-

ponents in the adjacency relationship terminology refers to entire topological elements

rather than the uses of the topological elements. The Radial Edge structure

represents these uses directly, so the actual process to generate adjacency relation-

ships is often simpler.

A programming notation using accessing and traversal operations similar to the ones

to be described in Chapter 19 but tailored specifically to the Radial Edge structure can

223

also be used to describe the derivation algorithms in a way that corresponds more

closely with the information actually present in the Radial Edge structure. For exam-

ple, the equivalent function to the above conversion algorithm in a programming

notation would be:

foreach_loop_in_model(l,m,statusl)

create adjacency relationship I< V> with empty < V> adjacent group
foreach_edgeuse_in_loopuse(eu,!" .llu_ptr,status2)

append eu” .euvu_ptr’ .vuv_ptr to i< V>
output I< V>

end {foreach}

Complete algorithms for the derivation in both cases are actually more complex than

the versions presented above since they must account for single vertex loops and the

fact that two different orders of the adjacent group are possible based on orientation.

A complete version of the conversion algorithm is given in Appendix D.

The proof of completeness of the Radial Edge structure is demonstrated by showing

that all thirty-six non-manifold adjacency relationships can be derived.

The detailed algorithms proving completeness are contained in Appendix D, First, it

is shown that all ten of the upward and downward hierarchical diagonal adjacency

relationships are directly available from the Radial Edge structure. Second, the

remaining twenty upward and downward hierarchical adjacency relationships are

derived from the existing adjacency relationship information. Lastly, the final six

adjacency relationships on the main diagonal of the adjacency relationship matrix are

derived.

Since all of the adjacency relationships can be derived from information present in the

Radial Edge structure, it is complete.

Traversal as well as other routines are defined in relationship to the Radial Edge

structure are used in the Algorithms and are defined in Appendix C,

Chapter 19

NON-MANIFOLD OPERATORS

Operators to build, modify, and traverse non-manifold boundary graph representa-

tions, which also insulate higher levels of modeling functionality from specifics and

complexities of the data structure, are a necessity for a well structured implementa-

tion of a non-manifold modeling system.

While the possibility of non-manifold boundary graph operators have been conjec-

tured [Requiché & Voelcker 831, no work has been published in this area to date.

This chapter outlir.les a set of basic construction operators developed for building and

modifying non-manifold geometric modeling boundary graph topology r'epresenta;

tions. This particular set of operators was designed for their primitive functionality,

allowing other more complex operators to be built using them, for their convenience

in the construction process, and for their conceptual compatibility with existing mani-

fold operators, the Euler operators. The external interface to these operators is

independent of the actual underlying data structures used; for interface simplicity they

refer to topological elements rather than topological adjacency uses whenever possi-

ble.

19.1. The Non-Manifold Topology Operators

A key feature of the operators described is that they impose little restriction on the

order in which they can be applied during the construction or manipulation of a

model. Some sets of operators can provide reduced complexity by restrictions on the

application order; this has the unfortunate side effect that knowledge of such restric-

224

tions must be embedded in higher level applications based on the operators. This is

regarded as undesirable and therefore such restrictions are minimized.

The non-manifold topology operators can be classified by two characteristics.

First, some of the operators described here are specialized to handle either manifold

or non-manifold situations, because in some cases substantially different kinds of

specifications are required to unambiguously construct a model, The separate mani-

fold versions of the operators incidentally provide compatibility with existing higher

level geometric modeling functions originally designed for manifold situations using

the Euler operators, although some additional information is required because of the

non-manifold environment. When no difference in specification is required, general

operators are provided which will handle both manifold and non-manifold situations.

Second, the operators can also be classified as to whether they are functionally con-

structive O destructive in terms of the number elements existing in the model after

application of the operators. Several other operators which can be easily implemented

as an application of a series of other constructive and/or déstructive operators are

classified as compound operators although, as will be described, low level implementa-

tions can offer some advantages in continuity of the identity of adjacent elements,

Some operations, such as deleting an edge, require different actions based on the

situation in which they are applied. When these situations do not require additional

specification from the user of the operators, a general operator is provided to handle

all subcases. These subcases are shown in Table 19 — 1 with their associated opera-

tor, although they are not directly specified during use.

The names of the operators utilize 2 naming convention similar to the Euler opera-

tors, as described in Chapter 13, describing the effect of each operator on the

numbers of topological elements in the boundary graph. The names consist of the

letters M and K (standing for “‘Make’’ or *‘create’’ and “*Kill” or ‘‘delete’’) each of

which is followed an underscore and by one or more of the letters M,R,S8 F L,E,

and V, symbolizing the element types model, region, shell, face, loop, edge, and ver-

226

tex, respectively. The underscore distinguishes the non-manifold operator names

from the traditional Euler operator names. In some cases, strictly manifold version of

the operators exist, in which case they are preceded by a capital M to indicate they are

manifold operators. Major operator names are capitalized, and subcases which can be

automatically detected are written in lower case. Thus mekl stands for ‘‘make edge,

kill loop”’, which is an automatically distinguished subcase of MM _E.

Table 19 — 2 outlines the changes in the numbers of topological elements as a result

of application of each of the operators. In some cases the number of elements

involved is variable; these are indicated by subscripted variables in the table.

Table 19 — 3 shows the complementary relationship between specific constructive and

destructive operators.

19.1.1, - Non-Manifold Positioning Specification

As in the manifold Euler operators, positioning of elements must be specified com-

pletely to avoid ambiguity in the semantics of the non-manifold topology manipula-

tion operators. The non-manifold environment is much more complex, however, and

more sophisticated positioning information is required.

One possible non-manifold counterpart to the manifold direction-edge-vertex position-

ing specification is the non-manifold f orientation-face-edge-e_orientation positioning

specification. This specification technique is useful in some situations for specifying

how the edge of a face should be glued into the radial ordering of faces around

another edge: the given edge of the face can be glued to the target edge on the

f_orientation side of face face about the target edge edge. Note, however, that an

e_orientation is also required to specify which part of the face should be the reference

for the positioning when the face uses the edge twice in a manifold manner, as in the

case of a cylindrical face which meets itself along that edge.

In general, however, even this is insufficient if the face specified is a non-manifold

Table 19 - 1. Topology Representation Construction Operators

constructive

destructive

compound

general non-manifold manifold

M_MR M_EV MM _EV
M_SV M_E MM _E

me mefl
meks mekl

M _RSFL M_F

mfl
mflrs

KV KF
kvfle kfirs
kve kAl
kvl kflms
kvims
kvs
kvrsfl
kvsfle
kvrsfle

KE
ke
kems
keml
kefl
keflms
KM
GV
gvksv
gvkv

G E
geke
gekfle
gekev
geksev

G_F
gtk sflev

gfiflev
ESPLIT
ESQUEEZE
esqeezekey

esqeezeke

227

228

Table 19 — 2. Operator Effect on Numbers of Topological Elements

operator changes in number of topological elements

Models Regions Shells Faces Loops Edges Vertices

M_MR +1 +1
M_SV T+l +1
M_RSFL +1 +1 +1 +1
KV
kvfle ~ns ~ny -n, -1
kve -n, -1
kvl —n; -1

kvims +ng -n -1
kvs -1 -1
kyrsfl -1 -1 -1 -1 -1
kvsfle -1 -1 -1 -1 -1
kvrsfle -n, -n, —np -m -n, -1

K E
ke -1
kems +1 -1
kem! +1 -1
kefl -1 -1 -1
keflms +n -1 -1 -1
KM -1 -a, - A —ng - -n, -n,
GV
gvksv -1 -1
gvky -1

G E . .
geke -1
gekfle -1 -1 -1
gekev -1 —2o0r-1
geksev -1 -1 -2

GF
gfksflev -1 -1 -1 —n, — Ryns
gfkfley -1 -1 ~Nops — Ryns

ESPLIT +1 +1
ESQUEEZE -1 -1
esqueezekev -1 -1
esqueezeke -1

M_EV +1 +1
M_E
me +1
meks -1 +1

M_F
mfl +1 +1

mflrs +1 +1 +1 +1
K F
kflrs -1 -1 -1 —ny
kfl -1 —n;
kflms +1 -1 -n

MM_EV +1 +1
MM_E

mefl F1 1 41
mekl -1 +1

229

Table 19 - 3. Complementary Relationships Between Construction Operators

constructive destructive

M_MR KM

M_SV K_V (kvs)

M_RSFL K_F (kflrs)

M _EV ESQUEEZE (esqueezekev)

MM_EV ESQUEEZE (esqueezekev)

ESPLIT ESQUEEZE (esqueezekev)

M_E K E

me ke

meks kems

MM_E K E

mefl kefl

mekl keml

M_F K F

mfl kAl

mflrs kflrs

face which uses the edge more than once with the same orientation. The only unam-

biguous specification to handle this situation is to directly utilize edge uses or their

equivalents in the specification (such as a position in an adjacent group of an adja-

cency relationship). Edge uses can be used to specify precisely where along the face

boundary the glue is supposed to take place.

The need for this more detailed specification arises with the G_E, G_F, and M_F

operators when the non-manifold portions of non-manifold faces are involved.

Thus at least two versions of interface specifications for the non-manifold topology

operators can be specified. One version, useful in a more limited adjacent environ-

ment including some but not all non-manifold conditions, utilizes orientations with

respect to adjacent basic topological elements. These operators recognize and complain

if asked to handle situations where an ambiguity could occur. The other directly util-

izes topological element uses for specification applicable to all non-manifold conditions.

230

The specifications given here are primarily of the basic topological element variety,

although the glue operations are specified in the element use form, and both forms of

the M _F operator are given.

19.1.2. A Specification of the Non-Manifold Operators

Specific functional descriptions of the individual operators follow. The interface to

each operator is first described in a Pascal style, listing its input parameters (optional

parameters are italicized; if not specified they should be nil valued pointers or

unspecified valued orientations), followed by its set of output parameters specified as

var (call-by-reference) parameters. This calling sequence description is then followed

by a detailed description of its functionality and the various subcases handled by the

operator. References to topological element types in the calling sequence descriptions

refer to pointers to the elements rather than the elements themselves.

The operator specifications given are independent of any specific underlying data

structure, within the assumption that separation surface information [Weiler 86a] is

not utilized,

Each operator is constrained to meet additional practical criteria. Each returns a value

indicating whether the function was completed successfully, or if not, the reason for

failure. An operator may not modify the data structures unless no errors will occur

and it has sufficient storage to successfully complete the operation. Thus each opera-

tor may be regarded as an atomic operation, and the data structure will be consistent

both before and after the operator is executed.

Definition of terms used in the operator specifications which have not already been

defined are now given. An orientation may refer to face orientations, meaning a

specific side of the face, or may refer to edge orientations, meaning a specific direc-

tion from one end to the other. An orientation specification may have values of same,

opposite, or unspecified, and refers to agreement or disagreement with the geometric

orientation specified for the face or edge. Closing off a region with a new face means

231

that the creation of the face has divided a region into two distinct new regions; that

is, it is not possible to connect a point inside one new region with a point inside the

other without penetrating a face, edge, or vertex. The same concept applies in two

dimensions when closing off a face.

The operator specifications are followed by diagrams in the same order illustrating

their function in Figures 19 — 1, through 19— 5.

19.1.3. General Operators

M_MR(var model_ptr: newm; var region_ptr: newr)

“Make Model, Region’’ creates a new model newm containing a new region

newr.

M_SV(region_ptr: r; var shell_ptr: news; var vertex_ptr: newv)

“Make Shell, Vertex” creates a new shell news in region r, consisting of the

single vertex newv.

M_RSFL(vertex_ptr: v; region_ptr: r;

var region_ptr: newr; var shell_ptr: news; var face_ptr: newf;

var loop_ptr: newl)

“Make Region, Shell, Face, Loop” creates a new region newr inside region

r, with a shell news which consists of the single face newf, which has the

single loop newl consisting of the existing single vertex v. The operator

can be thought of as creating a spherical surface containing region newr

which touches upon vertex v in region r.

K_V(vertex_ptr: v)

“Kill Vertex” deletes the vertex v and any edges which touch upon it,

deleting loops, faces, shells, and regions as necessary. X_V will not delete

a vertex when deletion of the vertex (and/or edges incident to it) would

cause the creation of a non-manifold face. In this case an error will result

232

and no action will be performed. There are more subcases than the ones

listed below involving combinations of the described graph conditions (for

example, one can always add a single wire edge which is not a self loop to

the situations described below for which the operator has an “¢” in its

name, and the result will also create a single vertex shell), and the situa-

tions handled can actually be more complex than is described below (for

example, one can always add self loop wire edges to the situations

L1
described below for which the operator has an ‘‘¢”’ in its name and the

result is that those edges will also be deleted).

kvfle: “kill vertex, d;"aces, loops, edges” occurs when the vertex lies on a
surface and has one or more incident manifold edges which
se}i)arate different faces. In this case the edges are deleted,
deleting a face and a loop for each edge segaratmg two faces.

kve: "kill vertex, edge’’ occurs when the vertex has incident manifold
isthmus or strut, or wireframe edges whose deletion does not
result in a disconnected graph.

kvl: "kill vertex, loop” occurs when the vertex has no incident edges
and is a single vertex loop vertex on one or more faces which
have other boundaries. If there is more than one face, they all
must have one or more common boundaries other than the
vertex.

kvims: “kill vertex, loop, make shell” occurs when the vertex has no
incident edges and is a single vertex loop vertex on more than
one face, all of which whicfi have other boundaries, but at least
two of which have no other common connection to each other.
In this case the faces become separated and additional shells are
enerated. (not shown in diagram)

kvs: “*kill vertex, shell” occurs when the vertex has no incident edges
and is a single vertex shell. If it was the only vertex in the
moge}, only a single region will remain in the essentially empty
model.

kvrsfl: ““kill vertex, shell, face, loop’”’ occurs when the vertex has no
incident edges and is a single vertex loop vertex on a face
which has no other boundary. If it was the only vertex in the
moge%, only a single region will remain in the essentially empty
model.

kvsfle: "“kill vertex, shell, face, loop, edge’’ occurs when the vertex is an
endpoint of a single self loop edge on a lamina face which has
no other boundaries. If it was the only vertex in the model,
only a single region will remain in the essentially empty model.

kvrsfle: “kill vertex, region, shell, face, loop, edge” occurs when the ver-
tex is an endpoint of one or more self loop edges on two or
more faces which have no other boundaries. If it was the only
vertex in the model, only a single region will remain in the
essentially empty model. Xnot shown in diagram)

K_E(edge_ptr: e; vertex_ptr: v; face_ptr: fsurvivor;

var loop_ptr: newl; var shell_ptr: news)

“Kill Edge” deletes the edge e. K_E will not delete an edge when deletion

233

of the edge would cause the creation of a non-manifold face; this condition

is always true of non-manifold edges where an edge is used three or more

times a single face. In this case an error will result and no action will be

performed

ke: “kill edge” occurs when the specified edge is a wireframe edge that

kems:

keml:

kefl: *

is not the only connectivity path between its two vertices.
“kill edge make shell’ occurs when the specified edge is a

wireframe edge which is the only path of connectivity between
its two vertices, If specified, the vertex v is the vertex with the
original shell; the other vertex of the deleted edge is part of the
new sheil.
“'kill edge make loop” occurs when the specified manifold edge
lies in a face and is an ‘‘isthmus’’ or ‘‘strut” edge, that is, it
occurs twice in the loop of the face.
‘kill edge, face, loop” occurs in two cases. The first is when the
specified manifold edge lies between two different faces. In this
case, the face specified by fsurvivor is not deleted, The deleted
face has its loop appropriately merged with the surviving face’s
loop, and any other loops of the deleted face become part of
the surviving face. The second case is when a lamina edge is
deleted, causing the face and loop using it to be deleted.

keflms: “kill edge, face, loop, make shell’ occurs when the edge is a

K_M(model_ptr:

lamina edge boundary of a face which has multiple loops which
are not otherwise connected except through the face. The face
and its loops are destroyed when the edge is deleted, and the
elements connected to each former loop become part of their
own separate shell,

m)

“Kill Model” deletes the model m and all of its constituent topological ele-

ments.

G_V(vertexuse_ptr: vul, vu2)

“Glue Vertex”” merges the vertices of vul and vu2 together, preserving the

adjacencies of elements, The vertex of vul is the surviving vertex; the

vertex of vu2 is deleted. Both vu/ and vu2 must be adjacent to the same

region or an error will result and no action will be performed.

gvksv:

gvkv:

‘‘glue vertex, kill shell, vertex’ occurs when the two specified
vertices are not connected by any path (not located on the same
shell). The surviving shell is the shell of vertex
‘‘glue vertex, kill vertex” occurs when the two specified vertices
a;le”a)xlready connected by some path (located on the same
shell).

G_E(edgeuse_ptr: eul,eu2)

“Glue Edge” merges the edge of eul together with the edge of eu2,

preserving the adjacencies of elements. The edge of eul is the surviving

234

edge; the edge of eu2 and any of its vertices which are not shared with the

edge of eul are deleted. The orientations with which to glue the edges

together are specified by the edge-use input parameters themselves; they

are glued together in the specified orientation. Both eu/ and eu2 must be

adjacent to the same region or an error will result and no action will be

performed. Note that if the edges of eul and eu2 share any vertices, the

acceptable orientations for glue operations are already fixed; if they are

improperly specified, an error will result and no action will be performed.

geke: ‘‘glue edge, kill edge’” occurs when the two edges already share
the same vertices,

gekfle: “‘glue edge, kill faces, loops, edge’’ occurs when the two edges
share the same two vertices and both edges form the loop
boundary of one or more faces, then the merging of the two
edges eliminates any of these faces and loops.

gekev: ‘‘glue edge, kill edge, vertex” occurs when the two edges share
one vertex.

geksev: “‘glue edge, kill shell, edge, vertex’’ occurs when the two edges
are not connected by any {)ath (are not on the same shell). The
surviving shell is the shell of edge e/ in the region common to
the two edges.

G_F(faceuse_ptr: ful; edgeuse_ptr: eul; faceuse_ptr: fu2; edgeuse_ptr: eu2)

“Glue Faces” merges the single loop faces of ful and fu2 together, preserv-

ing the adjacencies of elements. The face-use input parameters specify

which side of each face to glue together. eul and eu2 specify exactly how

and in what direction the two loop boundaries match up; the loops are

glued together with the edge-uses in opposite orientation. The face of ful

is the surviving face; the face of fu2 and its loop, and edges and vertices

not shared with the face of ful, are deleted. The face sides specified by

both ful and fu2 must be adjacent to the same region and must each have

one only loop with the same number of edges with self loop, isthmus, and

strut edges in an identical order in both loops or an error will result and

no action will be performed. Note that if the faces of ful and fu2 share

any edges or two or more vertices the acceptable orientations for glue

operations may already be fixed; if they are improperly specified, an error

will result and no action will be performed. The manifold glue operation

often found in implementations of the Euler operators can be emulated by

235

performing an additional K_F after the G_F to remove the surviving face

of ful.

gfksflev: ‘‘glue face, kill shell, face, loop, edges, vertices’ occurs when
the specified faces are not connected by any path gare not on
the same shell). The surviving shell 'is the shell using the
orientf] side of f1.

gfkflev: ‘‘glue face, kill face, loop, edges, vertices’ occurs when the
sge(fiified faces are connected by some path (are on the same
shell).

gfksflv: “‘glue face, kill face, loop, edges, vertices”” occurs when the
specified faces have a single loop consisting of one vertex and
bound single face shells which are adjacent to the same region.
The surviving shell is the shell of fI. znot shown in diagram)

ESPLIT(edge_ptr: e; vertex_ptr: v; var edge_ptr: newe; var vertex_ptr: newv)

“Edge Split” splits the specified edge e into two connected edges, ¢ and

newe. A new vertex, newv, is created between these two edges. The

optional parameter v, if specified, designates which vertex of the edge e

will be found on the new edge. For manifold situations the effect of this

operator could be simulated by application of the X_E operator followed by

MM_EV and MM _E operators, but unlike ESPLIT, edge e would be

entirely replaced rather than modified in place and, by side effect, a face

could be deleted and replaced with a new one, perhaps shifting ownership

of interior loops. In non-manifold situations where the edge is used three

or more times by one or more faces, X_E will not allow deletion of the

edge since non-manifold faces would be created, so ESPLIT is the only

alternative,

ESQUEEZE(edge_ptr: e; vertex_ptr: v; var vertex_ptr: vsurvivor)

T “Edge Squeeze squeezes’” the ends of the specified edge ¢ together,

deleting the edge and a vertex while preserving adjacencies. The optional

parameter v, if specified, designates which vertex of the edge e will sur- |

vive; in any case, the surviving vertex is indicated by the vsurvivor return :

parameter. For manifold situations the effect of this operator could be i

simulated by application of the X_E operator followed by the G_V opera- |

tor, but unlike ESQUEEZE, by side effect a face could be deleted and |

replaced with a new one, perhaps shifting ownership of interior loops. |

236

esqueezekev: "‘esqueeze, kill edge, vertex’’ occurs when the specified
edge is not a self loop edge.

esqueezeke: “‘esqueeze, kill edge” occurs when the specified edge is a
self loop edge. If the edge forms the boundary of one or more
faces, the races remain but with that boundary reduced to the
single vertex vsurvivor.

19.1.4. Non-Manifold Operators

M_EV(vertex_ptr: v; region_ptr: r; var edge_ptr: newe; var vertex_ptr: newv)

“Make Edge, Vertex"” creates a new wire edge newe which connects vertex v

with a new vertex newv. The new edge and vertex will exist in region r. v

must be adjacent to region r or an error will result and no action will be

performed.

M_E(vertex_ptr: v1,v2; region_ptr: r; var edge_ptr: newe)

“Make Edge” creates a new wire edge, newe, between the specified vertices

vl and v2. The new edge will exist in region r. v/ and v2 must be adja-

cent to region r or an error will result and no action will be performed.

me: ‘‘make edge’”’ occurs when the two specified vertices are alrea{dy
connected by some path (are on the same sheil).

meks: ““make edge, kill shell” occurs when the two specified vertices

e wreising shil 13 ine shell taing vy, "t O the same shelbs
M_F(edgelist:Aedges; facelist: faces; f orientlist: f orients; e_orientlist: e_orients;

var face_ptrinewf; var loop_ptr: newl;

var region_ptr: newr; var shell_ptr: news)

“Make Face” creates a new face newf with its single loop new! bounded by

the single circuit of edges as specified in edges. The list of edges specified

by edges must form a true circuit or an error will result and no action will

be performed. Specification lists faces, f orients, and e_orients are of the

same length as edges and are used to specify the radial positioning of the

new face whenever the edge specified is already a manifold edge or one of

a few forms of non-manifold edge. The new face will be attached to the

edge specified in edges so that it lies to the side of the face specified by

f_orients from the part of the face using the edge in the orientation

237

specified by e_orients. Note that this is sufficient for some but not all cases

where the edge is non-manifold, and is not a sufficient specification for

creating faces forming non-manifold surfaces. In these cases the U M_F

version of the operator should be used. Individual specifications in the

specification lists are optional whenever the specific edges in edges are

wireframe and/or lamina edges. In this case #il and unspecified orientations

are placed in the proper position in the face and face orientation lists. If

all edges meet these criteria, the entire specification lists themselves are

optional. The specifications given must meet the connectivity constraints

of the existing graph. Otherwise, an error will result and no action will be

“performed.

mfl: “‘make face, loop” occurs when the new face will not close off cne
portion of the region it is in from the rest of the region.

mflrs: “make face, loop, region ,shell’ occurs when the new face does
close off one portion of the region it is in from the rest of the
region. In this case the new region, newr, and shell, news, lie to
the specified orientation side of the face of the first face
specified in facelist.

U_M_F(edgeuselist: edgeuses; e_orientlist: e_orients;

var face_ptr:newf; var loop_ptr: newl;

var region_ptr: newr; var shell_ptr: news)

“Element Use Make Face” is the full non-manifold version of ‘“‘Make

Face’’ utilizing the element use input specification. It creates a new face

newf with its single loop newl bounded by the single circuit of edges as

specified in edgeuses. The single specification list edgeuses specifies not

only the edges to use, but also states that the new face will lie between any

face owning the specified edgeuse and the face found radially opposite to

the specified edgeuse. The optional input specification list e_orients is used

to specify which orientation of an edge to use in cases of self loop edges.

Similar restrictions to and subcases of M_F apply to U_M _F, except that it

handles all non-manifold situations. Note that this element use version of

the M_F operator is only required in situations involving edges used more

than once in a single orientation by a single face, and for creating faces

which themselves form non-manifold surfaces.

238

K_F(face_ptr: f; orientationtype: orient)

“Kill Face” deletes the face f and all loops associated with it. It does not

delete any edges or vertices. There are actually more subcases than

described here.

kflrs: “’kill face, loop, region, shell” occurs when the specified face has
different regions on each side. In this case, deletion of the face
brings together the two regions. If specified, the surviving
region is the region lying to the orient side of the face. All
loops associated with the face are also deleted.

kfl: “%kill face, loop” occurs when the specified face has the same
ge 1ondon both sides. All loops associated with the face are also
eleted.

kflms: “‘kill face, loop, make shell’ occurs when the specified face has
the same region on both sides, has one or more loops consist-
ing entirely of lamina edges. All loops associated with the face
are also deleted, but an additional shell is generated for each
loop which had no connection to the boundaries of the other
loops except through the face.

19.1.5. Manifold Operators

MM _EV(vertex_ptr: v; edge_ptr: e; dir_type: dir; { CW or CCW }

face_ptr: f; orientationtype: orient;

var edge_ptr: newe; var vertex_ptr: newv)

"“Manifold M ake Edge, Vertex” creates a manifold edge and a vertex. The

new edge newe starts at existing vertex v and ends at the new vertex newv.

The edge and vertex are created in the face £ If optional placement is

specified, newe, will be positioned in direction dir from edge e about vertex

v, as seen when looking towards the orient side of face £ Vertex v, and if

specified, edge e must be on the boundary of face f or an error will result

and no action will be performed.

MM_E(vertex_ptr: v1; edge_ptr: el; dir_type dirl; { CW or CCW }

vertex_ptr: v2; edge ptr: e2; dir_type dir2;

face_ptr: f; orientationtype: orient;

var edge_ptr: newe; var face_ptr: newf; var loop_ptr: newl)

“Manifold Make Edge” creates an edge between the existing vertices v/

and v2. The edge is created in the face f If optional placement is

239

specified, the new edge, newe, will be direction dirl about vertex v/ from

edge el, and direction dir2 about v2 from e2, as seen when looking towards

the orient side of face f. Vertices v/ and v2, and if specified, edges e/ and

e2 must be on the boundary of face f or an error will result and no action

will be performed. Note that the meksfl case of the Euler operators is not

relevant in the non-manifold environment.

mefl: “make edge, face, loop” occurs when the new edge will close off
one portion of the face it is on from the rest of the face. In
this case, the new face, newf, and loop, newl will lie to the dirl
side of newe about vl, as seen when looking towards the orient
side of face f.]

mekl: “‘make edge, kill loop” occurs when the new edge will not close
off one portion of the face it is on from the rest of the face, In
this case, the vertices v/ and v2 were on different loops of the
same face, but afterwards will be located on the same loop.
The surviving loop is the loop associated with vi.

19.1.6. Other Operators

Several other operators, not described in detail here, are also useful but do not mani-

pulate the graph structure in the same way as the other operators described above.

Examples are move operations, such as SMOVE, to move shells into different regions

and models, and LMOVE, to move loops into different faces adjacent to the same

region. Copy operations are also useful, such as SCOPY, to copy shells and place

them into different regions and models, and MCOPY, to copy entire models.

19.2. Sufficient Set of Construction Operators

While many operators can be designed to promote efficiency or convenience for given

applications, one interesting issue is to determine a minimal set of operators which

can define any model in the representation. There can be many such minimal sets of

operators, since many different operators can be designed which have overlapping

functionality. These operators may incrementally push construction of a model

towards a given specification in different sized steps, with eventually the same result.

240

M_MR

M_SV

M_RSFL

kve

kvl

kvs (m)

kvrsfl (m)

kvstle {m)

nothing aregionina

modeling space

Figure 19 — 1. Action of the non-manifold topology operators

241

K_E

ke AN

kems 'd S
kem|

kefl

keflms 1
$ I:ISZ

j e |

N
K-M —poofl—

7/ l AN

G-V
gvksv — e

vl v2 vi

vi v2 vi

Figure 19 - 2. Action of the non-manifold topology operators

242

G-E

geke

gekfle

gekev

gfksflev

gfkflev

Figure 19 - 3. Action of the non-manifold topology operators

243

ESPLIT

ESQUEEZE
esqueezekev 4
esqueezeke

M-EV

M-E
me

o
[~ o

3

<\

Eii!
NG

.V2, S2 '/eov2,s1 meks

< -

(2]

-

M.F

mfi

mflrs

K-F

kflrs

kfl

kflms

Figure 19 - 4. Action of the non-manifold topology operators

244

MM_EV

MM_E

mefl

meki

Figure 19 - 5. Action of the non-manifold topology operators

245

The set of operators shown in Figure 19 ~ 6 is one such minimal set. It was chosen

for simplicity of the functionality of the operators as well as a minimal number of

operators. While any possible model may be constructed with them, it is not a partic-

ularly convenient set to manipulate existing models (without additional operators).

To construct any model with this set of operators from some existing specification of

the final boundary model, the following algorithm may be used:

1.
2.
3.

4.

Do aM_MR to create the model and initial region.
Do a M_SV for every vertex to be in the finished model.
Do a M_E between appropriate vertices for every edge to be in the

finished model.
Do a M_E to connect together loops which share the same face. This

includes ‘“*hole’’ loops in faces and vertices which will be a single
loop vertex in the finished model. Thus all edges and vertices shar-
ing a common face are connected, and a face with n loops (where
a2 2) in the finished model requires n—1 M_E operations to be per-
formed. Call these additional edges loop edges.

. Do a M_F for every face in the finished model (excepting faces with a
single vertex as the sole boundary), being sure to appropriately
include loop edges into the boundary descriptions.

. Do a M_E to create a self loop edge for every vertex which will be the
sole boundary of a face in the finished model, making sure they will
be created in the appropriate regions. Call these additional edges
face edges.

- Do two M_F’s for each self loop edge in the face edge list, creating the
new regions.

. Do a K_E to eliminate each loop edge (causing a keml! to be performed)
and face edge (causing a kefl to be performed).

While this algorithm is also not particularly efficient, it is conjectured to be a

M
M_S <

X

M
M
K SR

N

Figure 19 - 6. A minimal sufficient set of operators to construct any model

246

minimally sufficient set for the job for the following reasons. First, M_MR and M_SV

are required to start any model. Second, the only useful alternative besides M_E for

creating edges is M_EV, but in that case M_E would still be required to close a circuit

of edges. Third, the only useful alternative besides M_F for creating faces, and in

particular lamina faces, is M_RSFL combined with K_F, but that alternative uses two

operators instead of one. Fourth, K_FE is required to create disconnected graphs in a

manifold surface and, with this set of operators, to create faces with only a single ver-

tex loop for a face boundary.

For efficiency and convenience, a practical modeling system would offer more than

this minimal set, however. Adding more operators to the minimal set described

removes inconvenient restrictions on the order of operations necessary to construct

and modify objects. A reasonable order of usefulness for adding more operators to

this minimal set might be first M_EV to complete basic wireframe construction capa-

bilities, and then M_RSFL, MM _EV, and MM_E for convenience in manifold model-

ing situations, followed by the others for more specialized situations and destructive

operators for convenience in modification.

19.3. Examples of Use of the Non-Manifold Operators

A short example of applying the non-manifold topology operators to build the object

shown in Figure 16 — 2 is now given,

For brevity, a list notation is used to describe the edge lists for the M_F operator.

The face orientation initially chosen for the manifold operations, shown here as ous-

side is arbitrary but must be used consistently.

247

"start the model"
M _MR(m,rl);

"“create the tetrahedron’
M_SV(rl,slvi);
M_RSFL(vl,rl,r2,52,f1,11); ““create face f "’
MM _EV(vl,nilunspecified fl el ,vd);
MM _EV(vd,el CCW fl,outside,ed,v2);
MM _E(vl,el CCW ,v2,e4,CCW fl,0rient,e3,£2,12); “close face f 4"
MM _EV(v2,e3,CCW fl,outside,e5,v3);
M E(v3,e5,CW vl,e3,CW fl,outside,e2 f3,13); “close face f4"
MM _E(v3,e5,.CW ,v4,e4,CCW f1,outside,e6 f4,14); “close face f 4"

“create the lamina face™
M_EV(v3.rl,e7v5);

M_E(v5,v2,rl,e8); i
M_F(< e5.e8.e7> < f3.nil.nil> < outside,unspecified,unspecified> ,

< unspecified,unspecified,unspecified> f5,15,r_dummy,s_dummy);

“create the single vertex loop'
MM _EV(v5,68,CCW f5,0utside,el0,v7);
K_E(el0,nil,nill6,5_dummy);

“‘create the wire"
M_EV(vl.ri,e9,v6);

““create the single vertex shell
M_SV(rl,s3,v8);

19.4. Specification of the Access Operators

Operators to access data must be specified as carefully as the manipulation operators

in order to maintain the major advantage of being able to layer application code on

top of the topology implementation in a manner independent of the actual data struc-

tures utilized. In the past, efficiency constraints have prevented access operator

specifications being made for manifold edge based boundary representations, but the

wide availability of macro processors for a variety of languages largely nullifies this

concern,

The topological adjacency information stored in any non-manifold model consists of

the existence and adjacencies of the six topological element types. Queries and

traversals are related to accessing this adjacency information.

248

Queries are single accesses to adjacency relationship information to determine a single

element of the adjacent group of a specified element, which perhaps also meets some

additional set of characteristics. When the adjacency relationship is ordered, the addi-

tional characteristic specified might be that the adjacent group element being sought

directly follows or precedes a specified adjacent group element in the ordering,

Traversals are repeated queries to determine all members in an adjacent group of the

adjacency relationship, even if none are originally known. Traversals may therefore

be constructed by repeated queries, as long as termination and status information is

available.

As an example of the need for status information during traversal, in a manifold

topology situation involving strut edges (manifold edges which have the same face on

either side), a traversal to find all edges around a loop could not simply terminate on

encountering a given edge a second time, since it might be used either once or twice

in the loop; some other criteria is required (usually an edge and a vertex is kept for

status if self loops are disallowed, or a marking scheme is used). In a non-manifold

environment a similar situation exists in the radial traversal of faces around an edge;

a face is not sufficient status information since a face may be bounded by the edge

multiple times. In this case a specific edge use is required for non-ambiguity in cases

involving faces which would be non-manifold if their boundaries were included, such

as the éxample in Figure 19 — 7 where the same face meets itself three times along an

edge.

If the adjacent group of the adjacency relationship is ordered, then the traversal

accesses are also ordered.

Following is a specification of access and traversal operators, which are independent

of the underlying data structure, and for simplicity, many of which are independent of

the concept of uses of topological elements. As seen with the M_F, G_F, and G_E

operators, the element use concept is a natural and necessary one in some of the

more complex non-manifold cases. For this reason, additional traversal operations

which utilize the notion of element uses are also included.

249

vy &V

v, e, V,

Figure 19 - 7. A non-manifold face using an edge three times

For uniformity of syntax, all of the traversal and relevant access operators include

status variable parameters, even though they are not required in some implementa-

tions of some operators.

19.4.1. Query Operators

Single queries to adjacency relationship information can be classified according to

whether the requested information involves downward or upward hierarchical adja-

cency relationships. Repeated queries can form the basis for full traversals.

250

19.4.1.1. Downward Hierarchical Accesses

E(V)
get_vertex of edge(var vertex_ptr: v; edge_ptr: e) .

L I§et_other_vertex_of_edge(vau' vertex_ptr: v; vertex_ptr: v_existing; edge_ptr:)
< E>

get_edge_in loop(var edge_ptr: e; loop_ptr: 1; var status_type: status)
get _next_edge around_loop(var edge_ptr: e; var status_type: status)

FIL get last edge ‘around _Toop(var edge_ptr: e; var status_type: status)

}
get_loop_in_face(var loop _|13tr: I; face ptr: f; var status_type: status)
get nex{_loop_in_face(var loop_ptr: [} var status_type: status)

get_face in_shell(var face_ptr: f; shell ptr:s; var status_type: status)
RIS get nexf_face in_shell(var face_ptr: f; var status_type: status)

{St
get_shell_in_region(var shell_ptr: s; region_ptr: r; var status_type: status)
get “next _shell_in_region(var shell_ptr:'s; var status_type: status)

19.4.1.2. Upward Hierarchical Accesses

V{E}
get_edge using vertex(var edge_ptr: e; vertex_ptr: v; var status_type: status)

g I%et_next_edge_using_vertex(var edge_ptr: e; var status_type: status)
< L>

get_loop_using_edge(var loop_ptr: I; edge_ptr: e; var status_type: status)
get next_loop_around_edge(var loop_ptr: I; var status_type: status)

L{F}get:last_]'oop_around_edge(var loop_ptr: I; var status_type: status)

F{S}get_face_using_loop(var face_ptr: f; loop_ptr: I; var status_type: status)

get_shell _using_face(var shell_ptr: s; face_ptr: f; var status_type: status)

get_region_using_shell(var region_ptr: r; shell_ptr: s; var status_type: status)

19.4.2, Traversal Operators

Traversal operators also need status variables for the same reasons as the query

operators.

Traversals can be implemented in common procedural languages such as Ada, C,

Modula, or Pascal in at least two ways. The first involves explicitly utilizing the native

control structures of the language along with the query operators previously given to

produce the traversal. The second technique utilizes macros to provide syntactically

new traversal control structures which are simpler to use than the explicit technique.

251

Examples of each technique are shown below.

Pascal version

var loop_ptr: ;
edge_ptr: e;
status_type: status;

et _edge_in_loop(e,l,status);
\%/hfle (e<> NFL) do begin

'get next_edge_in_loop(e,status)
end;

macro version

var loop_ptr: l;
edge_ptr: e;
status_type: status;

foreach_edge_in_loop(e,l,status)

énd_foreach;

The traversal operators are given in four groups, utilizing the macro style specification

shown above, but the output parameters are marked as Pascal var parameters. First,

global traversals involve enumerating all topological elements of a given type, regard-

less of their positioning in the topology. Second, downward hierarchical traversals

enumerate all elements in the lower dimension adjacent group of a reference element

of higher dimension, such as the enumeration of all faces in a shell, S{F}. Third,

upward hierarchical traversals enumerate all elements in the higher dimension adjacent

group of a reference element of lower dimension, such as the enumeration of all

edges around a vertex, V{E}. Fourth, element use traversals, relevant to systems

implementing the element use concepts such as those of the Radial Edge structure,

enumerate all uses of a specific element. Implementations of many of these traversals

for the Radial Edge structure can be found in Appendix C,

19.4.2.1. Global Traversals

foreach_region_in_model(var reFion_ptr: r; model: m; var status_type: status) foreach”shell_in_model(var she 1_ptri's; modek: m; var status_type: status)

252

foreach_face_in_model(var face_ptr: f; model: m; var status_type: status)
foreach loop_in_model(var loop_ptr: I; model: m; var status_type: status)
foreach_edge_in_model(var edge_ptr: ¢; model: m; var status_type: status)
foreach”vertex_in_model(var vertex_ptr: v; model: m; var status_type: status)

19.4.2.2. Downward Hierarchical Traversals

R{S}
foreach_region_in_model(var region_ptr: r; model: m; var status_type: status)

foreach_shell_in_region(var shell_ptr: s; region_ptr: r; var status_type: status)

foreach_face_in_shell(var face_ptr: f; shell_ptr:s; var status_type: status)

foreach_loop_in_face(var loop_ptr: I; face_ptr: f; var status_type: status)

Le l%‘(?reach_edge_in_loop(var edge_ptr: e; loop_ptr: I; var status_type: status)

foreach_vertex_in_edge(var vertex_ptr: v; edge_ptr: e; var status_type: status)

19.4.2.3. Upward Hierarchical Traversals

;iEI}f(;reach_edge_using_vertex(var edge_ptr: e; vertex_ptr: v; var status_type: status)

L{F}foreach_loop_using_edge(var loop_ptr: {; edge_ptr: e; var status_type: status)

FiS }foreach_face_using_loop(var face_ptr: f; loop_ptr: I; var status_type: status)

foreach_shell_using_face(var shell_ptr: s; face_ptr: f; var status_type: status)

foreach_region_using_shell(var region_ptr: r; shell_ptr: s; var status_type: status)

19.4.2.4. Element Use Traversals

foreach_faceuse_in_face(var faceuse_ptr: fu; face_ptr: f; var status_type: status)
foreach_loopuse_in_loop(var loopuse_ptr: lu; loop_ptr: [; var status_type: status)
foreach_edgeuse_in_edge(var edgeusé_ptr: eu; edge_ptr: e; var status_type: status)
foreach_vertexusSe_in_vertex(var vertéxuse_ptr: vuj vertex_ptr: v;

var status_type: status)

19.5. Building on Low Level Non-Manifold Operators

Much like the manifold Euler operators, the non-manifold operators can be used as a

low level base upon which to build more complex higher level modeling operators,

while insulating those new operators from the details and complexities of the actual

253

data structures utilized.

The same considerations apply in designing higher level non-manifold operators

except that the domain is far more flexible than the manifold environment.

An example of how a geometric modeling system can be built using a layered

approach is shown in Figure 19 - 8.

Application
Level Design Analysis Manufacture (N/C etc.)

Assemblies

Modeling CSG
Level

Sweeps Meshing
Parametric
Primitives

Topology Geometry
Operators Operators

Representation

Level Topology Geometry
Representation Representation

Figure 19 - 8. A layered approach to building a geometric modeling system

254

The goal is to have each layer build on. top of lower layers, providing an increasing

level of functionality with each new layer. The interface between each layer should

be well specified and as independent of implementation details as possible. The same

independence should be true for separate modules within each layer, although gen-

erally this is more difficult to achieve. The benefit of this approach is that such

modularization, as applied to any system implementation, makes it cheaper and easier

to build and maintain the system.

Figure 19 — 8 shows such ideas applied to a boundary based geometric modeling sys-

tem. The lowest level, the representation level contains the basic representation func-

tionality to describe the topology and geometry of the geometric shape. It is possible

to interface to both topology and geometry representations through a set of interface

operators, which are best designed to hide the implementation details of the actual

representation as much as possible, The non-manifold topology operators are an

example of such interface operators for a topology representation. The level directly

above the representation level, the modeling level, provides the generic geometric

shape manipulation facilities commonly found in current geometric modeling Systems.

Even within this layer some functions build on top of others. For example, CSG

(Constructive Solid Geometry) operators utilize shapes created through parametric

primitive and. other functions. At the highest level, the application level, specific appli-

cation implementations build on top of the generic modeling functionality provided by

the modeling level.

A few additional issues concerning non-manifold topology representations and typical

geometric modeling operations are also worthy of note.

A particular problem which has caused a great deal of complexity in implementations

of the Boolean set operations for boundary implementations utilizing a manifold

representational base is how to maintain the manifold state of each of the operands

while still keeping track of how and where they intersect. A non-manifold implemen-

tation can directly intersect the objects in the same representational space and then

prune away the undesired portions of the result, greatly simplifying the process.

/

255

Propagation of intersection information to adjacent elements would be automatically

performed by the low level operators.

A closed form version of the Boolean set operations is feasible in the non-manifold

environment. For applications desiring regularized set operations [Requicha &

Voelcker 77], a regularizing function can be applied to the non-regular output. Con-

struction of a regularizing function for the Radial Edge structure in particular is a sim-

ple task.

Similarly, construction of a function to keep only manifold parts of a model, if any, is

a simple task when the Radial Edge structure is the representational base.

SECTION IV

TOPOLOGY AND GEOMETRY INTERFACE

Chapter 20

THE INTERFACE BETWEEN TOPOLOGY AND GEOMETRY

This thesis concentrates on the use of topological information as a framework for

geometric modeling representations, and therefore it treats topological issues in detail.

Nevertheless, boundary representation geometric modeling systems must combine

both topological and geometric information together to form a complete and cohesive

representation of the shape of a three-dimensional model.

In the context of the types of geometric modeling systems of interest in this thesis,

topology refers to the explicit storage of topological boundary adjacency relationship

information, and geometry refers to the geometric surface, curve, and point

definitions.

In general, geometric surface representations which are restricted to planar surfaces,

and therefore restricted to straight line edges, have some extremely convenient pro-

perties; one of the most important is that curves of intersection between planar sur-

faces are also straight lines. In most curved surface representations, in general, inter-

sections between surfaces create higher order intersection curves than those originally

in the model. This causes a great deal of complexity in curved surface geometry sys-

tems. Nonetheless, there is a great need for curved surface representations which has

stimulated much research in this area.

The intention of this chapter is to briefly point out a few of the requirements and

problems in coordinating topology and curved surface geometry that currently appear

to be neither trivial nor well understood. Additionatly, the natural correspondence

between parametric space description of parametric curved surface intersections and

the direct representation of the uses of topological edge and vertex elements in

257

258

adjacency topology representations is briefly discussed.

20.1. Problems in Coordinating Topological and Geometric Information

Combining explicit topology with geometry can help in the geometric modeling pro-

cess, but it does not solve all geometric problems, since the topology is not indepen-

dent information but is a reflection of the geometric information. In fact, ‘‘evaluat-

ing’”’ a boundary representation from a procedural representation (such as CSG) is

often a difficult, complex geometric task.

In general, for a representation involving an object based evaluated boundary model

which explicitly stores topological adjacency information, geometric modeling opera-

tors creating and manipulating models in a complete modeling system must:

s determine the topology (topological boundary descriptions) of the result

e determine the geometry (geometric surface descriptions) of the result

e ensure that the geometry corresponds unambiguously to the topology

There does not currently appear to be a best ordering to these tasks, and sometimes

they are most conveniently accomplished simultaneously.

One set of difficulties encountered in guaranteeing the correspondence between topol-

ogy and geometry stems from surface intersection operations, where curves of inter-

section with singular points can occur at self intersections and cusps {Farouki 86] (see

Figure 20 - 1). The surface intersection problem is a difficult one and current solu-

tions are not necessarily trivial or robust processes. To maintain the topological

domain restriction of non-intersection, the intersection curve, once found, must be

segmented at all self-intersections. Once this has been done, the curve geometry seg-

ments of the original intersection curve geometry must then be appropriately associ-

ated with corresponding topology edges. This means that some geometric technique .

must be provided that uniquely specifies which of the various curve geometry seg-

ments and their orientations should be used at any given point on the topology boun-

259

Figure 20 — 1. Example of a self-intersecting curve of intersection

dary graph.

The next two subsections discuss this last problem with respect to implicit and

parametric surface geometry formulations.

20.1.1. Implicit Formulations

For implicit geometric surface representations in particular, geometrically

differentiating the various geometric curve segments and uniquely identifying them so

they can be associated with corresponding topology can be non-trivial [Hoffman &

Hoperoft 86]. Two solutions to this problem have been proposed:

1. When referring to a specific curve segment, refer to the original curve geometry

and a point on the interior of the curve segment to indicate which segment

260

is intended. Since all seif-intersections have already been identified and

therefore differentiated from the interiors of all new edge segments by the

segmentation process, this uniquely identifies the proper segment

[Requicha 80] (see Figure 20 - 2a).

2. Refer to the original curve geometry, a curve segment endpoint, and a tangent

from that endpoint to indicate which curve segment is intended out of the

several incident to the specified point [Hoffman & Hopcroft 86] (see Fig-

ure 20 - 2b).

The first method will work all of the time, but does not appear to be a convenient

formulation and can be computationally intensive. The second method is computa-

tionally more convenient, but is admittedly not guaranteed to work all of the time, as

Figure 20 - 2. Techniques to uniquely identify implicit geometry curve segments

261

in the case of cusps at the curve segment endpoint, where higher order derivative

information is required to distinguish the segments.

From a practical standpoint, unless the interior points are carefully selected, even the

first method presented can fail to give unique results in some situations due to

numerical precision problems (see Figure 20 — 3).

Determining the theoretical minimal information required to differentiate between the

curve segments in an implicit geometric representation is an important part of under-

standing the problem. In the final analysis, however, it is the computational conveni-

ence of a differentiation technique that will be most important in determining the use-

fulness of a specific geometric surface representation in a topological framework based

ip,

‘\f)_

,Q,

ip,

Figure 20 - 3. Curve segment specification prone to numerical precision prob-
lems

262

geometric modeling representation.

20.1.2. Parametric Formulations

There appear to be more options available to address the differentiation problem for

parametric geometric representations, since the three-dimensional surface boundary

curve segments can be described as separate formulations of two dimensional

geometric curves in parametric space. In this way curve segments can be associated

with unique geometry, which happens to be in parametric space. Naturally, accuracy

problems can also occur in differentiating geometry in parametric space.

20.2. Representation of Intersection Curves with Parametric Geometry

There are often no analytic formulations for intersections of parametric surfaces; the

most accurate representation of the curve of intersection remains a description of the

intersection in the parametric spaces of both geometric surface definitions.

A problem with many current manifold boundary topology representations is that try-

ing to maintain correspondence between the topology and geometry is difficult if one

has only one place (a single topology edge record) to associate all curve geometry

related to each of the originating intersecting parametric surfaces. In this case, a pro-

cedural determination of which curve geometry (including curve orientation) from

which surface parameter space is associated with each use of the topelogical edge

must be made -whenever the geometry is referenced through the topology. The

edge-use structure approach of the F-E data structure (Section 12.6) solves this prob-

lem in that the use of each edge is associated with each surface (in fact, with a specific

orientation of the edge bounding that specific surface), and this is therefore the

appropriate place to store a specific reference to the parametric geometry information

(see Figure 20 - 4).

It is also possible to maintain exact correspondence between non-manifold topologies

263

edge-uses

f 2 f2

edge of intersection

VL
" parametric

space

Figure 20 - 4. Correspondence between parametric geometry and edge uses in a
manifold environment

and parametric geometry in a similar fashion by utilizing the edge-use structures of

the Radial Edge non-manifold topology [Farouki & Weiler 86]. The difference of the

non-manifold environment from a manifold environment is that both sides of each

surface must be considered rather than just the one side necessary for manifold topo-

logies. Therefore each use of the edge by a surface has two orientations. The Radial

Edge structure has an edge-use structure for each of the orientations of the edge for

each surface using the edge. Thus there is a unique place to put references to each

parametric space description of the curve segments because there is a one-to-one

correspondence of the topology with the geometry (see Figure 20 - 5),

264

edge-uses

edge of intersection (cross-section view)
parametric u
space

Figure 20 — 5. Correspondence between parametric geometry and edge uses in a

non-manifold environment

Again, numerical accuracy problems can arise in parametric space as easily as in

geometric space, but these should be detected and resolved in parametric space when

surface and intersection calculations are made,

SECTION V

CONCLUSION

Chapter 21

CONCLUSION

This thesis has provided a detailed look at the topological aspects of geometric model-

ing boundary representations, from both a theoretical and practical viewpoint.

This chapter notes what I believe are the new and original contributions of this work

to the geometric modeling field, as well as some related areas for future exploration.

21.1, Contributions

Probably the three most significant contributions of this thesis are the development of

a theoretical foundation for manifold topology boundary modeling representations,

the development of the non-manifold Radial Edge topology structure, and the

development of the non-manifold topology operators.

Some general contributions include:

s renewed emphasis on the use of topology as a framework for modeling sys-

tem design with stress on the consideration of both theoretical and prac-

tical concerns.

e development of a new geometric modeling representation classification sys-

tem.

e development of a new comprehensive adjacency relationship terminology

applicable in manifold and non-manifold domains which describes essen-

tial characteristics of topological adjacency relationships necessary for

discussions of topological sufficiency.

266

‘«

267

Some contributions specifically related to- manifold solid modeling are:

¢ development of a theoretical basis for object based evaluated manifold topol-

ogy boundary modeling by establishing the theoretical minimal and prac-

tical minimal sufficient topological information.

¢ proof that the winged edge structure can be considered sufficient under the

specified curved surface domain but requires additional complex pro-

cedures and storage space to be properly implemented.

¢ development of three new data structures for manifold solid modeling and

proof of their topological sufficiency.

Contributions specifically related to non-manifold geometric modeling are:

* a new emphasis on non-manifold geometric modeling as a viable boundary

modeling representation, with particular emphasis on its primary benefits

of allowing a unified representation of wireframe, surface, and solid

modeling forms simultaneously in the same environment, while increas-

ing the representable range beyond what is achievable in any of the pre-

vious modeling forms. ‘ -

* development of the first non-manifold geometric boundary modeling adja-

cency topology representation and proof of its completeness.

¢ development of the first non-manifold boundary topology modeling opera-

tors.

Contributions related to coordinating topological and geometric information in a

modeling system are:

s discussion of how the direct representation of uses of topological edge and

vertex elements in adjacency topology representations provide a natural

and complete basis for coordinating multiple parametric descriptions of

the same edge in situations like the intersection of multiple parametric

surfaces,

268

21.2. Areas for Future Development

There is always room for further development and exploration of a topic. There are

still several major issues in the geometric modeling field, including some important

ones relating to adjacency topology boundary representations. Below are several open

problems which are strongly related to the work described in this thesis.

Related to adjacency topology representations:

determination of the theoretical minimal information for non-manifold topo-

logical sufficiency. This is the most cutstanding unsolved problem in

non-manifold geometric modeling representations as they are defined

here. A solution to this problem can lead to a better understanding of

non-manifold representations and could lead to new data structures.

Proof of sufficiency of the Radial Edge structure and the non-manifold

topology operators are linked to this open problem.

proof of sufficiency of the Radial Edge structure. Since completeness has

been shown here, once theoretical sufficiency has been shown it should

be a simple matter to prove sufficiency.

proof of sufficiency of the non-manifold topology operators and determina-

tion of minimal sufficient sets of operators to cover the entire represen-

tational space.

further study of the concept of element uses in adjacencies and of correspon-

dence may yield a deeper understanding of some of the topological issues

in both manifold and non-manifold domains.

Related to general geometric modeling issues:

determination of techniques to obtain topologically consistent answers in sur-

face to surface intersections, including across surface junctures. Tech-

niques to determine the qualitative topological characteristics of

geometric surface intersections without requiring absolute accuracy in

calculations would go a long way toward this goal.

geometric accuracy will be a long standing issue for geometric modeling.

269

Among others, a major problem is the use of approximate number

representation schemes without closed form arithmetic operations while

still having the expectation of consistent results. This and other major

unsolved geometric calculation accuracy problems will continue to haunt

the computing field until ameliorating approaches are codified or true

solutions are developed.

¢ more formal analysis of the modeling problem needs to be done. There are

still gaps between formal mathematical theory and current geometric

modeling and computing technology that need to be bridged. The

geometric modeling area is an interdisciplinary one, where practitioners

from several fields must work together. Bridging the gaps between

these fields is complicated more by the different needs and interests his-

torically developed in these fields than by the different terminologies

developed. More inter-field cross-fertilization and multi-disciplinary

research teams will be required to improve in this area.

LITERATURE CITED

LITERATURE CITED

[Agoston 76] Agoston, M., Algebraic Topology, Marcel Dekker, NY 1976.

[Arnold 62] Arnold, B., [nuitive Concepts in Elementary Topology, Prentice-Hall,

Englewood Cliffs, 1962,

[Baer et al 79] Baer, A., Eastman, C., and Henrion, M., “Geometric Modelling: a

Survey,” CAD, Vol. 11, No. 5, September, 1979, pg. 253-272 .

[Baumgart 72] Baumgart, B., “Winged-edge Polyhedron Representation,”” Stanford

Artificial Intelligence Report No. CS-320, October 1972.

[Baumgart 74] Baumgart, B.,, “GEOMED — a Geometric Editor,”” Stanford

‘ Artificial Intelligence Laboratory, AIM-232, May, 1974.

[Baumgart 75] Baumgart, B, ‘A Polyhedron Representation for Computer

Vision,”” Proceedings of the National Computer Conference,

197s.

[Braid et al 78] Braid, I, Hillyard, R., and Stroud, L, “‘Stepwise Construction of

Polyhedron in Geometric Modelling,” CAD Group Document

No. 100, University of Cambridge Computer Laboratory,

October 1978.

[Braid 791 Braid, 1., ‘“‘Notes on a Geometric Modeller,” CAD Group Document

No. 101, University of Cambridge Computer Laboratory, June

1979,

[Eastman & Henrion 77] Eastman, C., and Henrion, M., “GLIDE: A Language for

Design Information Systems,”” Computer Graphics, Vol. 11,

No. 2, July 1977, pg. 24-33.

271

[Eastman & Thornton 79] Eastman, C., and Thornton, R., ‘‘A Report on the

GLIDE2 Language Definition,”” CAD Group, Institute of Phy-

sical Planning, Carnegie-Mellon University, March 1979.

[Eastman & Weiler 79] Eastman, C., and Weiler, K., ““Geometric Modeling Using

the Euler Operators,”” Conference on Computer Graphics in

CAD/CAM Systems, May 1979, pg. 248-259.

[Edmonds 60] Edmonds, J., ‘A Combinatorial Representation for Polyhedral Sur-

faces,”” American Mathematical Socieiy Notices, Vol. 7,

October 1960, pg. 646.

{Farouki 86} Farouki, R., A Characterization of Parametric Surface Sections,”’

Computer Vision, Graphics, and Image Processing, February,

1986.

[Farouki & Weiler 86} Farouki, R., and Weiler, K., ““Proposal: A Boundary

Modeler Utilizing Non-Manifold Topology and Analytic

Trimmed Surface Geometry,”” CAD Branch, GE Corporate

Research and Development, Internal Document.

[Graver & Watkins 77] Graver, J., and Watkins, M., Combinatorics with Emphasis on

the Theory of Graphs, Springer-Verlag, N.Y., 1977,

[Hanrahan 82] Hanrahan, P., ‘‘Creating Volume Models from Edge-Vertex

Graphs,’” Computer Graphics, Vol. 16, No. 3, July, 1982, pg.

77-84.

[Harary 72] Harary, F., Graph Theory, Addison-Wesley, Reading, MA., 1972.

{Hoffman & Hopcroft 861 Hoffman, C., and Hopcroft, J., ““Geometric Ambiguities

in Boundary Representations,”” TR 86-725, Department of

Computer Science, Cornell University, January 1986.

[Mantyla 81] Mantyla, M., ‘‘Methodological Background of the Geometric Work-

273

bench,” Report-HTKK-TKO-B30, Laboratory of Information

Processing Science, Helsinki University of Technology, 1981.

[Mantyla 84] Mantyla, M., “A Note on the Modeling Space of Euler Operators,”’

Computer Vision, Graphics and Image Processing, 26, 1984, pg.

45-60.

[Mantyla & Sulonen 82] Mantyla, M., and Sulonen, R., “GWB: A Solid Modeler

with the Euler Operators,” IEEE Computer Graphics, Vol. 2,

No. 7, Sept. 1982, pg. 17-31.

{Markowsky & Wesley 80] Markowsky, G., and Wesley, M., “Fleshing Out

Wireframes,”” IBM Journal of Research and Development, Vol.

24, No. 5, Sept. 1980, pg. 582-597.

{Nordhaus 72] Nordhaus, E.,, “On the Girth and Genus of a Graph,” Graph

Theory and Applications, Lecture Notes in Mathematics,

Springer-Verlag, 1972, pg. 207-214.

[Requicha 77] Requicha, A., “Mathematical Models of Rigid Solid Objects,”” Pro-

duction Automation Project Tech. Memo 28, Univ. Rochester,

Nov. 1977.

[Requicha 80a] Requicha, A., ‘“‘Representations of Rigid Solids - Theory, Methods,

and Systems,” ACM Computing Surveys, Vol. 12, No. 4,1980,

[Requicha 80b] Requicha, A, “‘Representations of Rigid Solid Objects,” in Com-

puter Aided Design, Lecture Notes in Computer Science, No. 89,

Encarnacao, J., (Ed.), Springer Verlag, New York, 1980, pg. 2-

78.

[Requicha & Tilove 78] Requicha, A., and Tilove, R., ““Mathematical Foundations

of CSG: General Topology of Regular Closed Sets,” Production

Automation Project Tech. Memo 27, Univ. Rochester, Mar.

1978,

274

{Requicha & Voelcker 77] Requicha, A., and Voelcker, H. *‘Constructive Solid

Geometry,”’ Production Automation Project Tech. Memo 25,

Univ. Rochester, Nov. 1977.

{Requicha & Voelcker 83] Requicha, A., and Voelcker, H. ‘‘Solid Modeling:

Current Status and Research Directions,” IEEE Computer

Graphics and Applications, Vol. 3. No. 7, October, 1983.

[Stoker 74] Stoker, D. ‘‘CRIPL-Edge Data Structure,”’ unpublished, Carnegie-

Mellon Univ., May 1974,

{Weiler 83] Weiler, K. ‘‘Adjacency Relationships in Boundary Graph Based Solid

Models,”” June 1983, General Electric internal report (to be

submitted for publication).

[Weiler 84] Weiler, K. ““Topology as a Framework for Solid Modeling,”’ Proceed-

ings, Graphics Interface ’'84, Ottawa, Ontario, May 1984

(extended abstract).

{Weiler 85a] Weiler, K. ‘‘Edge Based Data Structures for Solid Modeling in

Curved-Surface Environments,’”’ IEEE Computer Graphics and

Applications, Vol. 5. No. 1, January, 1985.

[Weiler 85b] Weiler, K. ‘‘The Radial Edge Structure: a Topological Representation

for Non-Manifold Geometric Modeling,”’ January, 1985, Gen-

eral Electric internal report (to be submitted for publication).

[Weiler 85c] Weiler, K. ‘‘Boundary Graph Operators for Non-Manifold Geometric

Modeling Representations,”” October, 1985, General Electric

internal report (to be submitted for publication).

[White 73] White, A., Graphs, Groups, and Surfaces, Mathematical Studies 8, North

Holland, Amsterdam, 1973.

[Whitney 32] Whitney, H., ‘“‘Congruent Graphs and the Connectivity of Graphs,”’

275

American Journal of Mathematics, No. 54, 1932, pg. 150-168.

[Woo 84] Woo, T., “A Combinatorial Analysis of Boundary Data Structure

- Schema,” Dept. of Industrial & Operations Engineering, Tech.

Report 84-12, Univ. of Michigan, Apr. 1984.

[Young 63] Young, J., “Minimal Imbeddings and the Genus of a Graph,’” Journal

of Mathematics and Mechanics, Vol 12, No. 2, 1963, pg. 303-

31s.

APPENDICES

APPENDIX A

Appendix A

TOPOLOGICAL SUFFICIENCY UNDER CONSTRAINTS

This appendix considers topological sufficiency for manifold topologies with more res-

tricted domains than the one described in Section IL

1. Sufficiency Under Constraints

It is interesting to consider a domain slightly different than that initially specified in

Chapter 9 in Section II to discover if more convenient or simpler representations or

input forms exist for special situations. Under certain constraints even unordered

adjacency relationships can be used to form complete topology models for connected

topologies. This is equivalent to finding transforms which convert data from the form

of unordered element adjacency relationships into data in the form of ordered ele-

ment adjacency relationships (which are sufficient to describe polyhedron topologies)

but which can operate only if certain constraints are met. Finding such constraints is

useful for situations which benefit from minimal input or partial information, such as

in interactive CAD input of solid models of mechanical parts using topological tech-

niques. Determining all of the constraints which apply to a given situation is vital,

however, to ensure the correctness and unambiguity of the resulting model.

The discussion here only deals with purely topological techniques, leaving out hybrid

approaches such as [Markowsky & Wesley 80] which utilize geometric as well as topo-

logical information. In the absence of topological information other than simple con-

nectivity, it is obvious that additional information is necessary for handling discon-

nected graphs. However, the purely topological discussion provided here may also

provide a basis for other hybrid techniques which utilize other information sources

278

279

only as absolutely necessary.

2. Disallowing Multigraphs and Self Loops

As mentioned in Chapter 11, The V< V> and V< F> element adjacency relation-

ships, while in general individually insufficient for unambiguously representing the

topologies of polyhedra, are sufficient if multigraphs and self loops are disallowed

from the boundary graph representations (see Figure 11 - 13), This constraint is

equivalent to requiring that the adjacent groups of the E{V} element adjacency rela-

tionship uniquely specify their reference edge element. These restrictions are by

definition satisfied for systems which model only planar faced polyhedra and disallow

curved surfaces; this constraint is therefore an interesting one for planar faced

polyhedra representation systems,

Note that the ability of the adjacent groups of E{V'} to uniquely identify its edge refer-

ence element does not imply the sufficiency of E{V} to represent polyhedral topolo-

gies. Ordering information necessary for sufficiency is still absent,

Requiring the identity of an edge to be uniquely identifiable from its endpoints is

equivalent to disallowing multigraphs and self loops. Under these constraints V< V>

information is equivalent to V< E> information, and F< V> information is

equivalent to F< E> information. V< E> and F< E> were already proven to be

sufficient under all of the conditions identified in Chapter 9. The proofs follow.

Theorem A-1: When an edge is constrained to be uniquely identifiable from its E{V}

adjacent group information, then the V< V> adjacency relationship is

sufficient to unambiguously represent the adjacency topologies of curved

surface polyhedra,

proof: Using the endpoints of an edge to uniquely identify an edge, a simple algorithm

can be constructed to label the edges of the embedded graph from the

V< V> information by first constructing the E{V} relationship from

V< V>. Once this has been done, it is a simple matter to construct the

280

V< E> information for each vertex v; by placing in order in a new v;< £>

adjacent group the edges identified by the unordered pair {»; v;< V> ;} for

jel.lvi< V> |. The identity of the edge can be found by searching the

E {V} relationship for an adjacent group matching the {v; v;< V> ;} infor-

mation since only one edge will have the matching group. When ait

members of the adjacent groups of the V< V> information for all of the

vertices have been used in this way, then the V< E> information for the

embedded graph has been produced. By the Edmonds theorem, this is

sufficient to unambiguously represent the topologies of polyhedra.

Theorem A-2: When an edge is constrained to be uniquely identifiable from its E{V}

adjacent group information, then the F< V> adjacency relationship is

sufficient to unambiguously represent the adjacency topologies of curved

surface polyhedra,

proof: Similar to the proof directly above, an algorithm can be constructed to first

label the edges of the embedded graph from the F< V> information alone

by labeling an edge for every two consecutive vertices {fi<V>;

fi< V> ;) in the cyclic lists of vertices of the adjacent groups of the

F< V> relationship. Using this technique one would first create the E{V}

relationship. Once the edges have been labeled in this way, using the

E{V} information, F< V> can be easily converted into the F< E> rela-

tionship which by Theorem 11-2 is sufficient.

3. Unique E{F} Adjacent Groups

The V< F> and F< F> element adjacency relationships, normally individually

insufficient for the representation of polyhedral topologies under the constraints

identified in Chapter 9, become sufficient if they are additionally constrained so that

the E {F} adjacency relationship of the boundary graph can be guaranteed to uniquely

identify the reference edge.

281

Theorem A-3: When an edge is uniquely identifiable from its E{F} adjacent group,

then the V< F> adjacency relationship is sufficient to unambiguously

represent the adjacency topologies of curved surface polyhedra,

proof: Since the identity of an edge is constrained to be uniquely identifiable from its

two adjacent faces, a simple algorithm can be constructed to label the

edges of the embedded graph from the V< F> information by construct-

ing the E{F} relationship from V< F>. Once this has been done, it is a

simple matter to construct the V< E> information for each vertex v; by

placing in order in a new v;< E> adjacent group the edges identified by the

unordered face pair {v< F> ; v;< F> j+1} found in the cyclic ordered adja-

cent group of the V< F> information for v;. The identity of the edge can

be found by searching the E {F} relationship for an adjacent group match-

ing the {< F>; v< F> ;,} information since only one edge will have the

matching group. When all members of the adjacent groups of the V< F>

information for all of the vertices have been used in this way, then the

V< E> information for the embedded graph has been produced. By the

Edmonds theorem, this is sufficient to unambiguously represent the topo-

logies of polyhedra.

Theorem A-4: When an edge is uniquely identifiable from its E{F} adjacent group,

then the F< F> adjacency relatibnship (FF definition A) is sufficient to

unambiguously represent the adjacency topologies of curved surface

polyhedra.

proof: Similar to the proof directly above, since the unordered set of two faces adja-

cent to an edge are constrained to uniquely determine the identity of that

edge, an algorithm can be constructed to label the edges of the embedded

graph from the F< F> information alone by labeling an edge for every set

{fi fi< F>;}, iel.a,j<l.n, consisting of the reference face fi and each

adjacent face f; in the cyclic list of faces in the adjacent group of the

fi< F> j relationship. Using this technique one would create the E{F}rela-

tionship. Once the edges have been labeled in this way, using the E{F}

282

information, F< F> can be easily converted into the F< E> relationship

which by Theorem 11-2 is sufficient.

The uniqueness of the E{F} information of an edge might be enforceable by addi-

tional connectivity constraints, but this would limit the representational range of the

modeling technique considerably, as 2-connected objects are not unusual in modeling

applications (see Figure A — 1), Thus constraints to guarantee the uniqueness of the

E{F} information of an edge are less likely to be as workable in actual modeling sys-

tems as constraints to guarantee the uniqueness of the E{V } information of an edge,

since unique E {V } information can be at least artificially maintained more easily than

unique E {F} information without reducing representational range.

4, Sufficiency with Connectivity Information

Simple connectivity information, which is equivalent to the information in an

unmapped graph (and some of the unordered element adjacency relationships), is

normally not sufficient to derive unique mappings. Under certain conditions, how-

ever, sufficiency can be achieved.

4.1. The Three-connected and Planar Constraint for Graphs

The V{V} unordered element adjacency relationship and other members of its

equivalence class (such as E{V}) are essentially just the connectivity information that

is normally associated with unmapped graphs. A unique mapping of a graph to the

surface of a sphere (note that the mapping information corresponds to the ordering

information not present in ¥V {V'}) can be derived from V {V } under the following con-

straints:

e the graph is not a pseudograph (no multiple edges or seif loops)

e the graph is three-connected

e the graph is planar

283

Discovery of this relationship is attributed to Whitney {Whitney 32]. Under the con-

straints of being three-connected and not a pseudograph, there is only one embedding

which can be constructed from the connectivity information without violating the

planar constraint, thus providing a method of constructing the embedding. Note that

three-connected here refers to vertex connectivity and not edge connectivity or vertex

degree. This has been confused by some practitioners developing solid input algo-

rithms. An algorithm which can find the unique mapping of a constrained graph from

its connectivity information alone, or report that the graph is nonplanar or less than

three connected has been described in {Hanrahan 82].

A few remarks are in order on the applicability towards solid modeling input of map-

ping techniques based solely on these constraints, The planarity constraint, while not

desirable, is a concept that is readily understood by users developing solid models

since it is a characteristic basic to the user concept of the shape of a solid. The con-

nectivity constraint, however, restricts the class of solids that can be input ‘by this

technique in ways that are not always intuitively obvious to the user. Figure A - 1

shows an example of one such solid which would not be immediately perceived by

many as violating the connectivity restriction.

Every two-connected subgraph in a graph has two possible mappings to a surface.

The ambiguity caused by the two-connected subgraph in Figure A ~ 1 can usually be

resolved by using geometric information normally available from the input, but dis-

cussion of such techniques is outside the scope of this appendix.

4.2, Removing Constraints

There are undoubtedly other restricted classes of graphs for which unique mappings

can be derived from connectivity information alone. More interesting, however,

would be the relaxation of the constraints, and the development of a practical general

algorithm to derive valid mappings for any class of polyhedra boundary graphs,

Relaxing the connectivity constraint alone allows ambiguity to occur on exactly how a

B 284

a/: ;\

oV

Figure A-1. An object and its 2-connected boundary graph

graph can be mapped to a surface. As seen previously, a two-connected subgraph of

a graph can be mapped two different ways. A one-connected sfibgraph can be mapped

in at most n—1 ways if n is the degree of the vertex at which the subgraph makes its

connection. While these ambiguities cannot be resolved by purely topological tech-

niques, the different mappings can be enumerated easily once the vertices which

attach such subgraphs are known. Other techniques may then be used to select from

the alternatives.

Relaxing the planarity (genus) constraint is a little less straightforward. As soon as

the genus of the object being represented is unconstrained or unknown, two new

285

complications come into play.

First, the same graph may be mappable onto surfaces of different genus. Second,

even within each genus there may be several alternative mappings. The exhaustive

way of determining the desired genus and embedding of a graph is to start enumerat-

ing the alternate mappings until a valid mapping has been selected (by non-topological

techniques) or all embeddings have been enumerated. The Edmonds embedding

technique can be used to enumerate all embeddings for a given graph by performing

permutations on the order in the adjacent groups of constructed V< E> information.

The embeddings with the maximum number of faces will have the minimum genus,

and those with the minimum number of faces will have the maximum genus [Young

63]. Direct calculation of the lower and upper bound of the genus of graphs can be

performed for some types of graphs from the graph characteristics (see [Nordhaus

721), but in general these quantities are not easy to determine.. It also does not

appear to be well understood how to enumerate all of the possible embeddings within

a given genus. The only cases in which the genus of a graph are known to be unique

(the maximum genus equals the minimum genus) represent a small subset of the

possible planar graphs [Nordhaus 72].

Possible relationships between the connectivity and unique mappings of non-planar

graphs are also not well understood. Simply increasing the connectivity constraint in

direct proportion to the increase in genus does not necessarily ensure a unique map-

ping. An example is the well known hypercube (Figure A - 2), in this case an object

of genus one and connectivity of four which has three equally valid yet distinct map- .

pings.

Relaxing the non-pseudograph constraint also causes problems when trying to deter-

mine graph embeddings. For example, there is no topological way to determine

which of the several faces adjacent to a vertex should contain a self loop attached to

that vertex given connectivity information alone (Figure A — 3). Determining the

order of multiple edges between two vertices gives rise to similar problems. In this

case it is reasonably easy to enumerate the possibilities however,

286

Figure A-2. The hypercube

287

Figure 3, Self loop located at a vertex shared by several faces

Any system capable of defining unrestricted polyhedron definitions from connectivity

information would need the capability of enumerating the topologically possible map-

pings, and allow choices between mappings based on non-topological information.

Efficient systems would try to eliminate having to examine all of the alternatives by

using heuristics based on knowledge of their probabilistic distribution functions of
likely alternatives and the operating context of the application.

APPENDIX B

Appendix B

STORAGE AND ACCESSING EFFICIENCY COMPARISONS

This appendix compares the four manifold edge based data structures of Chapter 12

in terms of storage requirements, accessing efficiency, and algorithmic complexity.

A comprehensive and complete comparison of alternative data structures ultimately

involves extensive data gathering and statistical analysis over a wide variety of user

applications. Even then issues will remain regarding the comparative optimality of

each implementation and each application of the various alternatives.

Even if the circumstances of comparison are as equivalent as possible for all represen-

tations, questions arise as to defining the *‘typical’’ applications, since optimal choices

invelve careful statistical analysis of actual usage patterns. This approach can yield

overall better space and time performance, but is not foolproof, since usage patterns

can change drastically based even on minor changes in heavily used application code.

At best, it’s a tricky business.

The analysis here does not intend to be complete or rigorous in the sense described

above, but does attempt to reflect some approximate measure of the time and space

requirements and the complexity of access algorithms necessary to exercise the func-

tionality of the data structures presented in a large model environment over the

domain for which they are intended to provide information.

With these caveats, we proceed.

289

290

1. Space Requirements for the Manifold Data Structures

The number of pointers required for complete edge adjacency information in each of

the four data structures is shown in Table B — 1. In general, the V-E and F-E struc-

tures are slightly larger than the W-E and modified W-E structures due to the need

for additional pointers to coordinate their split edge structures.

A comparison of the space requirements for the full topological data structure of

prismatic and approximated spherical polyhedral objects is shown in Table B - 2,

Assumptions made to allow comparison include that pointers are 32 bits in length and

that an eight-bit byte is the minimum size storage unit. Sizes of face (17 bytes) and

vertex (4 bytes) records were derived from the support record structures defined ear-

lier in Chapter 12, No geometry or other attributes were assumed except that

pointers to such attributes are included. These choices have a tendency to maximize

the apparent difference between the alternative structures because geometry and other

attributes are not included; the numbers presented are therefore worst case

differences. In a more realistic situation additional information storaée (such as face,

edge, and vertex geometry) would reduce the percentage of space attributable to

differences in the edge structures presented.

Table B-1. Representation Storage Requirements per Edge

Representation | Number of Pointer Fields

W-E 9

modified W-E 9

V-E 12

V-E 12

291

Table B-2. Typical Storage Requirements for Some Solid Objects

Object Type faces edges verts total size total size %
in bytes in bytes increase
W-E and V-E or F-E

modified W-E

prism

4 sided 6 12 8 622 754 21.22
4000 sided 4002 12000 8000 592030 724030 22.30
approximated
sphere

64 quad facets 32 56 26 5972 7292 22.10
64k quad facets | 32768 . 65280 32514 6475548 7914524 2222

The additional single bit side fields of the modified W-E structure are not considered

here since it is a small amount of space compared to full pointer values. The extra

marker bit fields for the regular W-E structure in curved surface environments are

also not included, biasing the comparison slightly in its favor. Space for these fields

are necessary in the W-E structure either explicitly in the edge structure or implicitly

in the state of the accessing procedures used (such as state information present in

recursion stacks). When present explicitly, these marker fields make the storage costs

of the W-E and modified W-E structure exactly equivalent.

In general, for the types of objects considered, the V-E and F-E structures required

about 20% more storage than the W-E and modified W-E structures.

As can be seen from the size requirements, none of the structures provides a

minimal size representation for the objects considered compared to many procedural

or other conceptualizations of the objects. In general, the four representation struc-

tures are not intended as minimal size storage formats but are intended to provide

quick access to adjacent elements during the manipulation and creation of the solid

model of an object. An equally important feature of all the representations presented

is their ability to maintain their validity without requiring a change of representational

form regardless of the number of manipulations made to the model.

292

2. Time Requirements

An issue that arises when comparing timing performance of alternative data structures

over a minimal set of functions is the selection of which functions are representative

of actual use and have value as predictors for performance in actual applications. Two

criteria were used in selecting the functions for this performance evaluation:

o The operations should be as primitive as possible in the sense that all the

information from the data structure can be reasonably extracted by one

or more applications of these functions.

e The operations must not be at too low a level (involved in extended

sequence of field manipulations, for example, as would be required in an

actual implementation of the Euler operators) or their value in com-

parison will be lost since they would be dealing with situations unique to

each data structure.

The functions chosen as meeting these criteria and still providing some insight into

the alternative data structures are the functions to obtain the element adjacency rela-

tionships of the embedded graph from the data structures. This choice ensures usage

of all information available over the domain of the structures while still remaining at

a level reasonably close to, but independent of, the data structures themselves. A

similar approach is utilized in {Woo 84}.

At least three criteria are relevant in determining overall time requirements. First,

the number of accesses to fields of the data structure records can be considered.

Second, the number of record accesses necessary can be considered for database

implementations which access data a record at a time. Third, processing time, or

overall instruction counts can be considered.

The number of field accesses necessary to obtain an adjacency relationship from each

data structure is one of the most important criteria in virtual memory environments

because any I/O overhead due to page faults is related to field rather than record

accesses as records are never accessed directly as single units. A field access is the

reading of a particular field of a particular topological element data structure, such as

293

obtaining the pointer value of the ee_cw_ptr field of an edge structure record. The

number of field accesses can be an important predictor of the time to obtain the

information from the data structure because the access of field information from a

record in a computer implementation requires access to main memory at best (usually

considerably slower than access to internal registers on today’s sequential machines),

and can cause a page fault in virtual memory systems at worst, producing considerable

I/0 overhead. While an exact prediction would also be based on field sizes, page

sizes, memory available, and the amount of the representation already in memory,

the number of field accesses can still be considered a reasonable approximate measure

of speed in this respect.

Record access costs are particularly relevant in database implementations where each

topological element data structure is stored as a separate database record, and the

entire record must be retrieved individually before any field access is permitted. In

this case the cost of retrieving a record is high, involving disk accesses, while the cost

of accesses to fields of a retrieved record are by comparison low and therefore less

significant.

Processing time can probably be considered the least important though not

insignificant factor in evaluating overall timing costs since the time penalty for a few

additional instructions is relatively small compared to the possible delays from record

or field accesses due to I/O overhead.

3. Accessing Efficiency Comparison of the Manifold Data Structures

The accessing costs in terms of the number of field accesses required to generate the

elements of the adjacent group of the nine adjacency relationships with respect to a

given reference element are summarized in Table B — 3.

The record accessing costs for each of the four data structures are shown in Table

B-4.

The W-E and modified W-E structures are superior with respect to record access

294

Table B-3. Summary of Field Accessing Costs for Deriving Adjacency Relation-
ships

Adjacency Representation

Relationship

modified
W-E W-E V-E F-E

21 V< V>

V< E>

V< B>

E(V]

E[[E]{E]]
E{F]

F< V>

F< E>

F< F> B
L
I
W
L

W
L

W

W
W

A
N

W
N

W

W
D

W

W

L
W

N

e

N

D
L
W

W
P
W

! would be 3 if chose to use other vertex in edge end representation.
2 would be 3 if chose to use other face in edge side representation.

-

requirements, As seen in Table B — 4, the W-E structure and modified W-E struc-

ture accessing procedures require only one record access per adjacency relationship

access. For six out of the nine adjacency relationship accesses, the split edge struc-

tures of the V-E and F-E structure accessing procedures cause two record accesses to

be made. Superiority in terms of database record accesses, however, may not be as

important in virtual memory implementations.

In terms of overall field accessing costs, the modified W-E structure is superior to the

W-E structure, even in planar surface environments. The V-E and F-E structures,

however, offer equal or better performance than the modified W-E structure for adja-

cency relationship accesses where the edge is not the reference element. Efficiency in

adjacency relationship accesses where the edge is not the reference element is often

more important in practice since the field accessing costs given in Table B - 3 must

295

Table B-4. Summary of Record Accessing Costs for Deriving Adjacency Rela-
tionships

Adjacency Representation
Relationship

modified

W-E W-E V-E F-E
V< V>

V< E>

V< F>

E{V]

E[{EJ[E]]
E[F]

F< V>

F< E>

F< F> e

T

S
e
S
N

—

P

e
N
N

N
N

N
N

e

S

L
RS

S
S

S
S

be multiplied by the number of elements found during traversal of the adjacent group

to obtain the total adjacency relationship field access costs.

Also of note is the symmetry of the field and record accessing costs of the V-E and

F-E structures. Overall, the two structures have essentially identical accessing costs

with the V-E structure biased for more efficient access of adjacency relationships

using the vertex as the reference element, and the F-E structure biased for more

efficient access of adjacency relationships using the face as the reference element.

Both perform equally in obtaining adjacency relationships using the edge as the refer-

ence element,

4. Accessing Algorithm Complexity of the Manifold Data Structures

The complexity of the algorithms necessary to manipulate the data structures is some-

times a more important evaluation criteria for implementations than speed. Reduc-

tion of the resources for code creation and maintenance, as well as greater reliability,

296

hinges on the simplicity of the manipulation algorithms.

The accessing procedures used for determining the number of field and record

accesses necessary as well as for comparing complexity are given in detail in Figure

B - 1. The figure has six sections. The first section describes the actual query to be

answered by each adjacency relationship access procedure through operations on the

data structures presented. The second section describes initial conditions assumed to

be in effect by the accessing procedures, including initialization of local variables, and

loop termination conditions. The third through sixth sections describe the actual

accessing procedures for the W-E, modified W-E, V-E, and F-E structures respec-

tively.

The procedures utilize the edge data structures as described in Chapter 9, “‘Manifold

Data Structures’’. Where necessary, the accessing procedures presented perform

extra assignments to reduce the number of field accesses necessary, utilizing tem-

porary variables. The procedures listed in Figure B — 1 can be used to examine the

number of temporary variable assignments performed to obtain these numbers.

Since adjacent groups of elements in ordered adjacency relationships are usually circu-

lar lists of elements, the accessing procedures to find an adjacent element as shown in

Figure B - 1 are required to perform all setup necessary to continue the operation of

finding the following element in the circular list. Thus each accessing procedure given

is essentially the body of a loop to enumerate all elements in the adjacent group of

the adjacency relationship. This ensures that the total accessing cost is uniformly dis-

tributed over all accesses and is included in the comparisons. The field and record

access counts given are for each iteration of the loop, that is for each individual

member of the adjacent group found during the adjacency relationship access. For

record access counts, it is assumed that the last record accessed by the immediately

preceding iteration is available. The initial and terminating loop conditions are

described in Figure B — 1b.

As seen in the accessing procedures of Figure B ~ lc, the W-E structure involves the

most complex accessing strategy necessitated by its representation of the edge

297

adjacencies in a single unified structure. The W-E structure needs to continually

determine which edge side or end was intended every time an edge pointer appears in

a fleld used to find an adjacent element, In the planar polyhedral environment imple-

mentation described in Figure B ~ lc, this is done by carrying along a vertex as well

as edge pointer during traversals of adjacent groups, using the vertex pointer informa-

tion to determine which side is indicated. Note the effect of this particular scheme on

the field accessing costs of the F< F> relationship (see Table B — 3). In most imple-

mentations of the W-E structure this determination involves either carrying along

additional information as done in the procedures presented, or by using marker bit

fields; both techniques require additional processing during traversals. Note that the

accessing procedures described for the W-E structure are only valid for planar

polyhedral environments; curved surface environments require more complex access-

ing procedures and/or additional marker field space, and usually a larger number of

field accesses as demonstrated in the proof of sufficiency of the W-E structure.

The modified W-E structure avoids the accessing algorithm complexity of the W-E

structure by the use of explicit side fields. The extra fields do require extra field

accesses to process, however, and the resulting algorithms, while much simpler than

for the W-E structure, especially in curved surface environments, are still more com-

plex than those of the V-E and F-E structures.

The algorithms of the V-E and F-E structures are nearly identical in a symmetrical

fashion, though the actual semantics of each vary.

298

v< V> - find the clockwise ordered circular list of vertices surrounding v

v< E> - find the clockwise ordered circular list of edges surrounding v

v< F> - find the clockwise ordered circular list of faces surrounding v

¢{V] - find the two vertices of ¢ (ordered access)

e{[E][E]] - find the edges adjacent to e which precede and follow ¢ in the F< E> adjacent
groups of the two faces adjacent to e (ordered access)

e[F] - find the two faces adjacent to ¢ (ordered access)

f< V> - find the ordered circular list of vertices surrounding f, where the area of f is
found to the right when traversing the sequence of vertices

f< E> - find the ordered circular list of edges surrounding f, where the area of f is found
to the right when traversing the sequence of edges

f< F> - find the ordered circular list of faces surrounding f, where the area of f is found to
the right when traversing the sequence of faces

Note: Adjacent group circular lists with the vertex as the reference element type are clockwise
ordered as viewed from just above the surface and just outside the volume of the solid body looking
towards the surface.

Figure B-1a: Adjacency Relationship Queries

299

v V> ,v< E> ,v< F>

W-E: given vertex structure v=vfirst and edge structure e= efirst for which
e .ev_pir[i}=vor e .ev_pir(2)= v (vfirst, efirst is used to detect end of
loop)

modified W-E: given vertex structure v= vfirst, edge structure e= efirst, and side
indicator k= Afirst for which e .ev_pir(hl=v (efirst, hfirst is used to
detect end of loop)

V-E,F-E: given vertex structure v and edge half structure e= efirst such that
e .ee_mate ptr .ev_pir=v (efirst is used to detect end of loop)

e{V5elE][E]),e(F]
W-E: given edge structure e¢ and vertex structure v to determine ordering such

that e .ev_ptr{l]l=vore.ev pir2l=v
modified W-E: given edge structure ¢ and side indicator 4 to determine ordering

such that e .ev ptr(hl=v
V-E,F-E: given edge half structure ¢ selected to determine ordering

f<V> f<E> f<F>
W-E: given face structure f and an edge structure e= efirst such that

e.ef pr(ll=f or e.ef pr[2]=f, select v=vfirst such that
v=vert[n] (vfirst, efirst is used to detect end of loop)

modified W-E: given face structure f, edge structure e= efirst, and side indicator
h= hfirst such that e .ef prr(flip(h)]=f, where flip(h) gives opposite
side ag h (efirst, hfirst is used to detect end of loop)

V-E,F-E: given face structure f and edge half structure e= efirst such that
e .ee_mate_ptr .ef pir=f (efirst is used to detect end of loop)

Figure B-1b: Initial Conditions for Queries

300

V< V> - three field accesses / one record access
if (v= e ev_ptr{l])

then half < 1; otherhalf ¢ 2
else half ¢ 2; otherhalf ¢« 1

adjacentv ¢ e".ev_ptrotherhalf]

¢ ¢ ¢".ee_cocw_ptr[half]

V< E> - two field accesses / one record access

if (v= e ev_ptr[1])
then half ¢ 1
else half ¢ 2

¢ ¢ e".ee_ccw_pirfhalf]

V< F> - three field accesses / one record access
if (v=e¢*ev_ptr[1])

then half ¢« 1
else half « 2

f ¢ e".ef ptr[half]

e ¢ ¢".ee_ccw_ptr(half]

E[V] - three field accesses / one record access
if (v= e .ev_ptr{l])

then half < 1; otherhalf < 2
else half < 2; otherhalf ¢ 1

vl ¢~ e"ev_ptr{half]

v2 < e".ev_ptr{otherhalf]

E{[E](E]] - five field accesses / one record access
if (v= e¢".ev_ptr{i])

then half ¢« 1; otherhalf ¢« 2

else half & 2; otherhalf « 1

el ¢ e".ce_ccw_ptr[otherhalf]
€2 ¢ ¢ .ee_cw_ptr(half]

e3 ¢ ¢".ee_ccw_ptr(half]
¢4 ¢ ¢ .ee_cw_ptrotherhalf]

E{F] - three field accesses / one record access

if {(v= e ev_ptr{l])
then half ¢ 1; otherhalf ¢ 2
else half ¢~ 2; otherhalf < 1

fl ¢ e".ef_ptr{half]

f2 - ¢".ef_ptr{otherhalf}

F< V> - three field accesses / one record access
if (v = e .ev_ptr[1])

then half ¢ 1; otherhalf « 2

else half « 2; otherhalf « 1

v ¢ ¢".ev_ptr{otherhalf]

¢ ¢ ¢".ee_cw_ptr(half]

F< E> - three field accesses / one record access
if (v= e ev_ptr{l])

then half < 1; otherhalf « 2

else half - 2; otherhalf ¢« 1
v ¢ ¢"ev_ptr{otherhalf]
e ¢ ¢".ee_cw_pir(half]

F< F> - four field accesses / one record access
if (v = e ev_ptr[1])

then half ¢~ 1; otherhalf < 2

else half « 2; otherhalf « 1

f < ¢".ef_ptrihalf]
v ¢ ¢".ev_ptr[otherhalf]

¢ ¢ ¢ .ee_cw_ptr(half]

Figure B-1c: W-E Structure Adjacency Relationship Accessing Procedures (for
connected graph planar polyhedral environments only)

301

V< V> - three field accesses / one record access
adjacentv ¢~ e".ev_ptr{flip(h)} {where flip(n) gives opposite of n}
olde ¢
¢ ¢ ¢".ee_cow_ptrfh]
h ¢ olde™.ee_cow_halffh]

V< E> - two field accesses / one record access
olde ¢~ ¢
e ¢ e"ee_cew_ptr{h])
h ¢ olde™.ee_ccw_half(h]

V< F> - three field accesses / one record access
f « e".ef_ptr[h]

olde ¢« ¢
e ¢« ¢"ee_ccw_ptrfh]

h ¢« olde”.ee_ccw_halffh]

E[V] - two field accesses / one record access
vl & e"ev_ptr[h]
v2 < ¢".ev_ptr{flip(h)]

E{[E]{E]] - four field accesses / one record access
el < e".ee_cow_ptr{flip(h)]

€2 < e".ee_cw_ptrfh]
€3 ¢ e".ee_cow_ptr[h]
ed ¢ e .ee_cw_ptr(flip(h)]

E[F] - two field accesses / one record access

fl ¢ e".ef_ptr{h)
2 ¢« e”ef_ptr{flip(h)]

F< V> - three field accesses / one record access
v ¢~ e"ev_ptr{h}

olde ¢<— ¢

¢ ¢ e".ee_cw_ptr[h]
h ¢ olde”.ee_cw_half[h}

F< E> - two field accesses / one record access

olde ¢— ¢

e < e".ee_cw_ptr(h)
h ¢ olde”.ee_cw_half{h]

F< F> - three field accesses / one record access

f € e".ef_ptrfh]
olde ¢« ¢
e ¢ ¢ .ee_cw _ptr(h]

h ¢ olde®.ee_cw_half(h}

Figure B-1d: Modified W-E Structure Adjacency Relationship Accessing Pro-
cedures (for all connected graph environments)

302

V< V> - two field accesses / one record access
e ¢ ¢ .ee_cw_ptr
v e ev pir

V< E> - one field access / one record access
e < e’ee_cw_pir

V< F> - two field accesses / one record access
e ¢ etee_cw_pir
f ¢ e*ef_ptr

E{V] - three field accesses / two record accesses
vi - e"ev_ptr
v2 ¢~ ¢".ee_mate_ptr'.ev_ptr

E{{EI{E]] - five field accesses / two record accesses
el ¢« e".ee_cw_ptr
€2 ¢ e".ee_cow_pir
etemp ¢ ¢".ee_mate_ptr
€3 ¢ etemp”.ce_cw_ptr
¢4 ¢« etemp”.ee_ccw_pir

E{F] - three field accesses / two record accesses

fl ¢~ e"ef ptr
2 ¢ ¢".ec_mate_ptr*.ef_ptr

F< V> - three field accesses / two record accesses
€ ¢ e".ee_cow_pir'.ce_mate pir
v ¢ ¢"ev_ptr

F< E> - two field accesses / two record accesses
e ¢« ¢".ee_ccw_ptri.ee_mate_ptr

- three field accesses / two record accesscs
€ ¢ ¢".ee_ccw_ptrt.ee_mate_ptr
f ¢ e ef ptr

F< F>

Figure B-1e: V-E Structure Adjacency Relationship Accessing Procedures
(all connected graph environments)

303

V< V> - three field accesses / two record accesses
¢ ¢ e".ee_mate_pir'.ee_ccw_pir
vV ¢ e"ev_ptr

- two field accesses / two record accesses
e ¢ e".ee_mate_ptr'.ee_cow_ptr

V< E>

V< F> - three field accesses / two record accesses
€ ¢ ¢".ce_male_ptr'.ee_cow_ptr
f e e ef ptr

E[V] - three field accesses / two record accesses
vl ¢ e ev_ptr
v2 ¢~ e".ee_mate_ptr.ev_pir

Ef[E}{E]] - five field accesses / two record accesses

etemp < e".¢e_mate_ptr
el ¢ etemp”.ee_ccw_ptr
€2 ¢ e".ee_cw_ptr
€3 ¢ ¢ .ce_cow_pir
€4 ¢ etemp”.ce_cw_ptr

E[F] - three ficld accesses / two record accesses
fl e e"ef ptr
f2 ¢~ e".ec_mate_ptr.ef _ptr

F< V> - two field accesses / one record access
e ¢ e"ee_cw_pir
vV e e ev pir

F< E> - one field access / one record access

e ¢ e’ee_cw_ptr

F< F> - two field accesses / one record access
¢ ¢ e .ee_cw_pir
f ¢ e"ef ptr

Figure B-1f: F-E Structure Adjacency Relationship Accessing Procedures (all
connected graph environments)

Appendix C

TRAVERSALS OF THE RADIAL EDGE STRUCTURE

Detailed definitions of several traversal functions for the Radial Edge structure are

now described to provide a better understanding of the semantics of the Radial Edge

structure and to provide support for the the adjacency relationship derivation algo-

rithms presented in Appendix D.

The traversal algorithms are interdependent and freely make use of other traversal

algorithms. For simplicity of description, they are assumed to be non-destructive

traversals where the actions performed against each element do not change the topol-

ogy of the model. Destructive traversals are also possible.

Four types of traversals are described: general traversals which visit each element in

the model, global traversals which visit every element of a given type in a model,

downward hierarchical traversals which visit all lower dimensional elements adjacent to

a specific higher dimensional element type, and use-component traversals which visit all

use elements related to a specific basic topological element,.

The traversal algorithms are described in three forms. The first form is basically a

description of loop control mechanisms which identify actions required for loop ini-

tialization, the increment after the loop body is performed, and the continuance test

to be performed after the increment is done. The second form defines the traversal

in terms of other traversals. The third form is that used by the general traversal,

which assigns the body of the loop to a procedure which is called during traversal as a

visit operation on each applicable element.

It is simple to transform traversals involving element uses, such as those of the

305

306

downward hierarchical traversal, into basic element traversals by accessing the

relevant upward hierarchical pointers available in each of the use element structures

in the Radial Edge structure.

The general traversal mechanism presented, while simplified and unoptimized, does

allow traversal of all components of the entire model. The Radial Edge structure has

hierarchical groups of circular linked lists of the elements for just about everything

except wireframes, For traversal of wireframes a marking scheme is used to assist

heuristic search of all connected edge and vertex components of each wireframe sub-

graph in the model. In the traversal description, a marking scheme is also used with

face and loop element types to indicate when a topological element has been visited.

Minor modifications to the general traversal algorithms presented allow the correct

traversal of elements such as shells and faces rather than the entire model as well as

traversal of element uses.

1. Generalized Traversal

traverse_model(m)
pre_visit_model(m) .

foreach_region_in_model(r,m,status)
traverse_region(r)

post_visit_model(m)

traverse_region(r)
pre_visit_region{r)
foreach_shell_in_region(s,r,status)
traverse_shell(s)

post_visit_region(r)

traverse_shell(s)

pre_visit_shell(s)
case s".downptr of
FACEUSEptr:
foreach_faceuse_in_shell(fu,s,status)
traverse_faceuse(fu)

EDGEUSEptr:
traverse_wire(s".seu_ptr*.euvu_ptr)

VERTEXUSEptr:
visit_vertex(s".svu_ptr" .vuv_ptr}

end {case}
post_visit_shell(s)

traverse_faceuse(fu)

if (face_is_not_marked(fu".fuf_ptr)) then begin
mark_face(fu”.fuf_ptr)
pre_visit_face(fu".fuf ptr)
foreach_loopuse_in_faceuse(lu,fu,statusl)

traverse_loopuse(lu)
post_visit_face(fu” fuf ptr)
end {then}

307

traverse_loopuse(lu)

if (loop_is_not_marked(iu".lul_ptr)) then begin
mark_loop(lu*.lul_ptr)
pre_visit_loop(lw* .lul_ptr)
case lu*.downptr of
EDGEUSEptr:
foreach_edgeuse_in_loopuse(eu,lu,status)

if (edge_is_not_marked(eu".eue_ptr))
then begin

mark_edge(eu”.eue_ptr)
visit_edge(eu”.eue_ptr)
traverse_wire(eu".euvu_ptr)
end {then}

VERTEXUSEptr:
traverse_wire(lu”Juvu_ptr)

end {case}
post_visit_loop(1w .lul_ptr)
end {then}

traverse_wire(vu)
if (vertex_is_not_marked(vu".vuv_ptr))

then begin
mark_vertex(vu®.vuv_ptr)
visit_vertex(vu".vuv_ptr}

foreach_vertexuse_in_vertex(vu,vu".vuv_ptr,

status)

if vu*.upptr = EDGEUSEptr then
if vu*.vueu_ptr.upptr = SHELLptr then
if (edge_is_not_marked(vu“.vueu_ptr".

«cue_ptr)) then begin

mark_edge(vu.vueu_ptr-.eue_ptr)
visit_edge{vu".vueu_ptr" .eue_ptr}
traverse_wire(vu_vueu_ptr~,

eueu_mate_ptr.euvu_ptr)
end {then}

end {then}

2. Global Model Traversals

foreach_region_in_model(r, m,status)
loop inifialization: t ¢« m".mr_ptr
bottom of loop increment: r ¢ r*.mrnext
bottom of loop test: untilr = m".mr_ptr

foreach_shell_in_meodel(s,m,status)
foreach_region_in_model(r, m,status)

foreach_shell in_region(s,r,status)
execute loop body

foreach_face_in_model(f, m,status)
pre_visit_face < loop body
traverse_model(m)

308

foreach_loop_in_model(},m,status)
foreach face_in_model(f,m,status)

foreach_loopuse_in_faceuse(lu,f*.ffu_ptr,status)
1 ¢ lu.lui_ptr
execute loop body

foreach_edge_In_model(e, m,status)
visit_edge(e) < loop body
traverse_model(m)

foreach_vertex_in_model(v,m,status)
visit_vertex(v) < loop body
traverse_model(m)

3. Downward Hierarchical Traversals

foreach_shell_in_region(s,r,status)
loop initialization: s ¢— t*.rs_ptr
bottom of loop increment: s « s".rs_next
bottom of loop test: until s = r*xs_ptr

foreach_faceuse_in_shell(fu,s,status)

loop initialization: fu < s".sfu_ptr
bottom of loop increment: fu < fu*sfu_next
bottom of loop test: unlil fu = s*.sfu_ptr

foreach_loopuse_in_faceuse(lu,fu,status)

loop initialization: u < fu*.fulu_ptr
bottom of loop increment: u < " fulu_next
bottom of loop test: until lu = fu".fulu_ptr

foreach_edgeuse_in_toopuse(eu,lu,status)

loop initialization:
if not (lu*.downptr = EDGEUSEptr)
then skip loop
else eu ¢ lu".lueu_ptr

bottom of loop increment: eu ¢ eu”.eueu_cw _ptr
bottom of loop test: until eu = lu* lueu_ptr

foreach_vertexuse_fn_edgeuse(vu,eu,status)
loop initialization: vu « eu".euvu_ptr
bottom of loop increment:

VU ¢~ eu”.eucu_mate_pir-.euvu_ptr

bottom of loop test:
untif va = vu ¢~ eu”.euvu_pir

4. Radial Edge Use-Component Traversals

foreach_faceuse_in_face(fu,f,status)

*“will always produce two iterations’
loop initialization: fu < f*.ffu_ptr
bottom of loop incremen:

fu ¢~ fu*.fufu_mate_ptr
bottom of loop test: until fu = f*.ffu_ptr

foreach_loopuse_in_loop(lu,l,status)
“will always produce two iterations”

loop initialization: lu « 1" \lu_ptr
bottom of loop increment:

lu ¢ lu".lulu_mate_ptr
bottom of loop test: until lu = 1" Ju_ptr

foreach_edgeuse_in_edge(eu,e,status)
loop initialization:

eu ¢~ ¢e"eeu pir
i1

bottom of loop increment:
if odd(i)

then eu ¢ eu”.cueu_mate_ptr
else eu ¢ eu”.eueu_radial_ptr

i—i+ 1
boitom of loop test: until eu = e".eeu_ptr

foreach_vertexuse_!n__ver!ex(vu,v,status)
loop initialization: vu ¢ v*.vvu_ptr
bottom of loop increment: vu vu.vuvu_next
bottom of loop test: until vu = vi.vvu_ptr

APPENDIX D

Appendix D

COMPLETENESS OF THE RADIAL EDGE STRUCTURE

This appendix describes the algorithms for defivation of the thirty-six non-manifold

adjacency relationships from the Radial Edge structure in a Pascal-like programming

notation consistent with the Radial Edge data structure descriptions in Chapter 17.

The sequence of derivation algorithms show how all adjacency information can be

obtained from the Radial Edge data structure non-manifold geometric modeling

representation.

First several additional functions utilized in the derivation algorithms are described.

The derivation algorithms themselves are then described. The derivation algorithms

also utilize the traversal algorithms of Appendix C.

Further discussion of the derivation process can be found in Chapter 18.

It should be noted that the oppositely oriented adjacent groups of E{< [E]> b

E{<L>} E{xF>}, E{<§>}, and E{< R>} adjacency relationships are not shown

here for brevity.

310

311

1. Additional Functions

A few additional functions are used to simplify the descriptions of the derivation of

the non-manifold adjacency relationships from the Radial Edge structure information:

add element to adjacency relationship unordered adjacent groulp .
adds element to the adjacent group if it does not already exist in the set.

append element to adjacency relationship ordered adjacent group
places element at the end of the ordered adjacent group list so that the
order of entry is preserved. Duplicates are allowed.

odd(integer)
returns TRUE if the input integer is an odd number, and FALSE if it is an
even number.

312

2. Algorithms to Derive the Adjacency Relationships

2.1. Upward Hierarchical Diagonal Adjacency Relationships

VIE]
foreach_verlex_in_model(v,m,slatusl) begin

create adjacency relationship v{E]
with empty adjacent group

foreach_vertexuse_in_vertex(vu,v,status2)
if vu".upptr = EDGEUSEptr
then append vu".vueuptr*.eue_ptr to v[E]}

output v{E}

end {foreach}

E<L>
foreach_edge_in_model(e,m,statusl) begin
create adjacency relationship e< L>

with empty adjacent group
ie1
foreach_edgeuse_in_edge(eu,e,status2)

if eu”.upptr = LOOPUSEptr then begin
"'this skips over the donble facesides"'

if (0dd(i)) append eu”.eulu_ptr*.
Iul_ptr to e< L>

fe—i+ 1
end {then} .

output e< L>
end {foreach}

L{F}
foreach_loop_in_model(l,m,status!) begin
create adjacency relationship I[F]

with empty adjacent group
append I".Itu_ptr*.lufu_pte.fuf_ptr to I[F]
output I[F]
end {foreach}

FiST1?
foreach_face_in_model(f,m,status1) begin
create adjacency relationship f[S}

with empty adjacent group
foreach_faceuse_in_face(fu,f,status2)
append fu”.fus_ptr to f[S]

output f{S}

end {foreach}

SIRT
foreach_shell_in_model(s,m,status!) begin
create adjacency relationship s{R]

with empty adjacent group
append s*.sr_ptr to s[R]

output s[R}
end {foreach}

2.2, Downward Hierarchical Diagonal Adjacency Relationships

E(V?
foreach_edge in_model(e,m,statusl) begin
create adjacency relationship e{V]

with empty adjacent group
foreach_vertexuse_in_edgeuse(vu,e*.ceu_ptr,status)
append e*.eeu_ptr*.euvu_ptr.vuv_pir to e[V]

output ¢{V]

end {foreach}

L{<E>]!F[SH

foreach_loop_in_model(},m,statusl) begin
create adjacency relationship [}

with empty adjacent group
foreach_loopuse_in_loop(lu,l,status2) begin
create an empty adjacent group < E>
if lu".downptr = EDGEUSEp!r then
foreach_edgeuse_in_loopuse(eu,lu,status3)

append eu”.eue_pir to < E>
append current < E> to {[}

end {foreach}

output If< E>)

end {foreach}

FIL]
foreach_face_in_model(f,m,statusl) begin
create adjacency relationship f[L]

with empty adjacent group
foreach_loopuse_in_faceuse(lu,f*.ffu_ptr,status2)

appead Iu*.lui ptr to f[L}
output f{L]
end {foreach}

S{F}
foreach_shell_in_model(s,m,statusi) begin
create adjacency relationship s{F}

with empty adjacent group
foreach_faceuse_in_shell(fu,s,status2)
add fu”.fuf ptr to s{F}

output s{F}
end {foreach}

R{S}
foreach_region_in_model(r,m,status1) begin
create adjacency relationship r{S}

with empty adjacent group
foreach_shell_in_region(s,r,status2)
add s to r{S}

output r{S}
end {foreach}

313

2.3. Upward Hierarchical Adjacency Relationships

VIL}
foreach_vertex_in_model(v,m,status!) begin
create adjacency relationship v{L}

with empty adjacent group
foreach_vertexuse_in_vertex(vu,v,status2)
case vu .upptr of
EDGEUSEptr:

if vu*.vueu_ptr*.upptr = LOOPUSEptr
then add vu’.vueu_pir*.eulu_ptr",

tui_ptrto v{L}
LOOPUSEptr:
add vu”.vul_pirto v{L}

end {case}
output v{L}
end {foreach}

V{F}
foreach_vertex_in_model(v,m,statusl) begin
create adjacency relationship v{F}

with empty adjacent group
foreach_vertexuse_in_vertex(vu,v,status2)

case vu’.upptr of
EDGEUSEptr:

if vu*.vueu_ptr*.upptr = LOOPUSEptr
then add vu®.vueu_ptr*.eulu_ptr,

tufu_ptr*.fuf ptr to v{F}
LOOPUSEptr:
add vu®.vul_ptr*.lufu_ptr*.fuf ptr to v{F}

end_case
output v{F}
end {foreach}

Vi{s}
foreach_vertex_in_model(v,m,statusl) begin
create adjacency relationship v{S}

with empty adjacent group
foreach_vertexuse_in_vertex(vu,v,status2)
cas

E

L

e vu".upptr of
DGEUSEptr:
if vu*.vueu_ptr*.upptr = SHELLptr
then add vu*.vueu_ptri.eus ptr to v{S}
else add vu”.vueu_ptr.eulu_ptr",

lufu_ptr®.fus_ptr to v{S}
OOPUSEptr:
add vu".vul_ptr*.lufu_ptr~.fus_ptr to v{S}

SHELLptr:
add vu“.vus_ptr to v{S}

end_case
outp
end

ut v{S}
{foreach}

ViR}
foreach_vertex_in_model(v,m,statusl) begin
create adjacency relationship v{R}

with empty adjacent group
foreach_vertexuse_in_vertex(vu,v,status2)

cas:
E

e vu".uppir of
DGEUSEptr:
if vu*.vueu_ptr.upptr = SHELLptr
then add vu“.vueu_ptrt.eus_ptr".sr_ptr to v{R}
else add vu®.vueu_ptr.eulu_ptr .Jufu_ptr".

fus_ptr*.sr_ptr to v{R}
LOOPUSEDptr:

S
add vu”.vul_ptr*.Jufu_ptr*.fus_ptr*.sr_ptr to v{R}
HELLptr:
add vu”.vus_ptr".sr_ptr to v{R}

end_case
output v{R}
end {foreach}

E< F> B<L>]
foreach_edge_in_model(e,m,status1) begin
create adjaceacy relationship e< F>

with empty adjacent group
i1
foreach_edgeuse_in_edge(eu,e,status2)

if eu”.upptr = SHELLptr then begin
"‘this skips over the double facesides”

if (0odd(i)) append eu”.eulu_ptr.
lufu_ptr".fuf_ptrto e< F> -

ie-i+ 1
end {then}

output e< F>
end {foreach}

E< §> B<L>]
foreach_edge_in_model(e,m,status!) begin
create adjacency relationship e< S>

with empty adjacent group

ie1

foreach_edgeuse _in_edge(eu,e,status2)
if eu”.upptr = SHELLptr
then append eu”.cus_ptr to e< S>
eise begin

“‘this skips over the double facesides’
if (0dd(i)) append eu”.eulu_ptr*,

lufu_ptr*.fus_ptr to e< S>
ie-i+ 1
end {eise}

output e< S>

end {foreach}

E<R> E<t>1
foreach_edge_in_model(e,m,statusl) begin
create adjacency relationship e< R>

with empty adjacent group
ie-1
foreach_edgeuse_in_edge(eu,e,status2)

if eu".upptr = SHELLptr
then append eu”.cus_ptr".sr_ptr to e< R>
else begin

*‘this skips over the double facesides'
if (0dd(i)) append eu*.culu_ptr~.

lufu_ptr®.fus_ptr*.sr_ptr 10 e< R>
Pe—i+ !
end {else}

output e< R>

end {foreach}

314

L{S1FisN

foreach_loop_in_model(i,m,statusl) begin
create adjacency relationship 1[S]

with empty adjacent group
foreach_loopuse_in_loop(lu,l,status2)
append lu*lufu_pir*.fus_ptr to I[S]

output i(S]
end {foreach}

LR]!F[S]I

foreach_loop_in_modei(],m,status1) begin
create adjacency relationship 1[R]

with empty adjacent group
foreach_loopuse_in_loop(lu,l,status2)
append lu*.Iufu_ptr*.fus_ptr".sr_ptr to [[R]

output {R}
end {foreach}

FiR]tF[SH

foreach_face_in_model(f,m,statusl) begin
create adjacency relationship f{R]

with empty adjacent group
foreach_faceuse_in_face(fu,f,status2)
append fu”.fus_ptr'.sr_ptr to f[R]

output f[R]
end {foreach}

2.4. Downward Hierarchical Adjacency Relationships

Li<V> < E> l]W{Sll

foreach_loop_in_model(], m,statusl) begin
create adjacency relationship If}

with empty adjacent group
foreach_loopuse_in_loop(lu,},status2) begin
create an empty adjacent group < V>
case lu".downptr of
EDGEUSEptr:
foreach_edgeuse_in_loopuse(eu,lu,status3)
append eu”.euvu_ptr'.vuv_pir to < V>

VERTEXUSEptr:
append lu".luvu_ptr'.vuv_ptrto < V>

end {case}
append current < V> to if]
end {foreach}

output I[< V> |}

end {foreach}

Fll< V>]]IF[SII

foreach_face_in_model(f,m,statusl)
create adjacency relationship f{]

with empty adjacent group
foreach_faceuse_in_face(fu,f,status2) begin
create empty adjacent group (]
foreach_loopuse_in_faceuse(lu,fu,status3) begin
create an empty adjacent group < V>
case lu”.downptr of
EDGEUSEptr:
foreach_edgeuse_in_loopuse(eu,lu,statusd)
append eu”.euvu_ptr'.vuv_ptrto < V>

VERTEXUSEptr:
append lu".luvu_ptr*.vuv_ptr to < V>

end {case}-
appead current < V> to [}
end {foreach}

append current [< V>] to f{]

eund {foreach}
output f[{< V> 1]
ead {foreach}

Fll< E> DIF[S]I

foreach_face_in_model(f, m,status!)
create adjacency relationship £{]

with empty adjacent group
foreach_faceuse_in_face(fu,f,status2) begin’
create empty adjacent group [}
foreach_loopuse_in_faceuse(lu,fu,status3) begin
create an empty adjacent group < E>
case lu*.downptr of
EDGEUSEptr:
foreach_edgeuse_in_loopuse(eu, lu,statusd)
append eu”.eue_ptrto < E>

VERTEXUSEptr:
do nothing

end {case}
append current < E> to [}

end {foreach}
append current [< E> | to f[)
end {foreach}

output fi[< E> }]
end {foreach}

SV}
foreach_shell in_model{s,m,status1) begin
create adjacency relationship s{V}

with empty adjacent group
foreach_vertex_in_model(v,m,status2)
foreach_vertexuse_in_vertex(vu,v,status3)
case vu”,upptr of
EDGEUSEptr:

if vu®.vueu_ptri.upptr = SHELLptr
then begin

if vu®,vueu_ptr*.eus_ptr = s then
add vu®.vuv_ptr to s{V}

end {then}

else
if vu.vueu_ptr*.eulu_ptr".

lufu_ptr".fus_ptr = s then
add vu".vuv_ptr to s{V}

LOOPUSEptr:
if vu*.vulu_ptri.lufu_ptr*.fus_ptr = s then
add vu*.vuv_ptr to s{V}

SHELLptr:
if vu®.vus_ptr = s then
add vu®.vuv_ptr to s{V}

end {case}
output s{V}

end {foreach}

S{E}
foreach_shell_in_model(s,m,statusl) begin
create adjacency relationship s{E}

with empty adjacent group
foreach_edge_in_model(e,m,status2)
foreach_edgeuse_in_edge(eu,e,status3)

if eu”.upptr = SHELLptr
then begin

if eu”.eus_ptr = s then
add eu.eue_ptr to s{E}

end {then}
else

if eu”.eulu_ptr",
lufu_ptr*.fus_ptr = s then

add eu”.eue_pir to s{E}
output s{E}
end {foreach}

S{L}
foreach_shell_in_model(s,m,statusl) begin
create adjacency relationship s{L}

with empty adjacent group
foreach_faceuse_in_shell{fu,s,status2)
foreach_loopuse_in_faceuse(lu, fu,status3)
add lu*.lul ptr to s{L}

output s{L}
end {foreach}

RV}
foreach_region_in_model(s,m,status1) begin
create adjacency relationship r{V}

with empty adjacent group
foreach_vertex_in_model(v,m,status2)
foreach_vertexuse_in_vertex(vu,v,status3)
case vu*.upptr of
EDGEUSEptr:

if vu*.vueu_ptr*.upptr = SHELLptr
then begin

if vu.vueu_ptrt.eus_pur.
sr_ptr = 1 then

add vu”.vuv_pir to r{V}
end {then}

else

if vu".vueu ptri.eulu_ptr.lufu_ptr*.
fus_ptr.sr_ptr = rthen

add vu".vuv_ptr to r{V}
LOOPUSEptr:

if vut.vulu_ptr.lufu_ptr*.fus_ptr",
sr_pir = r then

add vu".vuv_ptr to r{V}
SHELLptr:

if vu".vus_ptr'.sr_ptr = r then
add vu*.vuv_ptr to r{V}

end {case}

output r{V}
end {foreach}

316

RIE}
foreach_region_in_model(s,m,statusl) begin
create adjacency relationship r{E}

with empty adjacent group
foreach_edge_in_model(e,m,status2)
foreach_edgeuse_in_edge(eu,e,status3)

if eu".uppir = SHELLptr
then begin

if eu".eus_ptr".sr_ptr = r then
add eu".cue_ptr to r{E}

end {then}

else
if eu”eulu_ptr.lufu_ptr",

fus_ptr*.sr_ptr = r then
add eu”.eue_ptr to r{E}

output r{E}
end {foreach}

RI{L}
foreach_region_in_model(r,m,status1) begin
create adjacency relationship r{L}

with empty adjacent group
foreach_shell_in_region(s,r,status2)
foreach_faceuse_in_shell(fu,s,status3)
foreach_loopuse_in_faceuse(lu,fu,statusd)
add Iu”.lul_ptr to r{L}

output r{L} .
end {foreach}

R {F}

foreach_region_in_model(r,m,statusl) begin
create adjacency relationship r{F}

with empty adjacent group
foreach_shell_in_region(s,r,status2)
foreach_faceuse_in_shell(fu,s,status3)
add fu*.fuf ptr to r{F}

output r{F}
end {foreach}

17

2.5. Main Diagonal Adjacency Relationships

VIvV] WHEN

foreach_vertex_in_model(v,m,statusl) begin
create adjacency relationship v[V]

with empty adjacent group
foreach_vertexuse_in_vertex(vu,v,status2)

if vu*upptr = EDGEUSEptr then
add vu".vueuptr®.eueu_mate_ptr".

euvu_ptr.vuv_ptr to v{V]
output v[V}

end {foreach}

E< [E]IE[V]|>

foreach_edge_in_model(e,m,statusl) begin
create adjacency relationship e< >

with empty adjacent group
foreach_edgeuse_in_edge(eu,e,status2) begin
create adjacency relationship [E]

with empty adjacent group
if eu”.upptr = LOOPUSEptr then begin
append eu”.eueu_cw_ptr'.eue_ptr to (E]
append eu”.eueu_ccw_ptr-.eue_ptr to {E]
end {then}

append current [E] to e< >
end {foreach}

output e< [E]>
end {foreach}

LI< [LP>1]
foreach_loop_in_model(f,m,status1)
create adjacency relationship I[}

with empty adjacent group
foreach_loopuse_in_loop(lu,l,status2) begin
create an empty adjacent group < >
if lu"downptr = EDGEUSEptr then

F{{< [F]V&I 32
foreach_face_in_model(f, m,status1)

create adjacency relationship f[]

with empty adjacent group
foreach_faceuse_in_face(fu,f,status2) begin
create empty adjacent group]
foreach_loopuse_in_faceuse(lu,fu,status3) begin

create an empty adjacent group < >
if lu*.downptr = EDGEUSEptr then
foreach_edgeuse_in_loopuse(eu,lu,statusd) begin
create an empty adjacent group [F}
append eu”.eueu_radial_ptr*.eulu_ptr*.

lufu_ptr*.fuf_ptr to {F]
append eu”.cueu_mate_ptr".cueu_radial_ptr".

eulu_ptr*.lufu_ptr*.fuf ptr to [F]
append current {F} to < >
end {foreach}

append current < {F}> to [}
end {foreach}

append current {< (F]>] to f[]
end {foreach}

output f[{< [Fi>]}

end {foreach}

S{St
foreach_shell _in_model(s,m,statusl) begin
create adjacency relationship s{S}

with empty adjacent group
foreach_faceuse_in_shell(fu,s,status2)

if not (fu”.fufu_mate_ptr*.fus_ptr = s)
then add fu".fufu_mate_ptr*.fus_ptr to s{S}

output s{S}
end {foreach}

foreach_edgeuse_in_loopuse(eu,lu,status3) begin R {R }
create an empty adjacent group [L]
append eu”.eueu_radial ptr*.eulu_ptr".

fufu_pte*.fuf_ptr to [L]

append eu”.eueu_mate_ptr.eueu_radial_ptr*.
eulu_ptr*.lufu_ptr".fuf_ptrto (L}

append current [L] to < >

end {foreach}
append current < [L]> to i[]
end {foreach}

output [[< {L}>]

end {foreach}

foreach_region_in_model(r, m,status) begin

create adjacency relationship r{R}
with empty adjacent group

foreach_shell_in_region(s,r,status2)
foreach_faceuse_in_shell(fu,s,status3)

if not (fu”.fufu_mate_ptr".fus_ptr*.sr_ptr = 1)
then add fu®.fufu_mate_ptr*.fus_ptr",

sr_ptr to r{R}
output r{R}

end {foreach}

APPENDIX E

Appendix E -

SELECTIVE QUERY AND TRAVERSAL

This appendix describes the rationale and implementation of a selective query

mechanism for geometric modeling data structures. The selection is performed based

on arbitrary specifications of binary attribute data usuaily assigned to components of

the model at model creation time.

1. Rationale

The flexibility offered by the non-manifold modeling form increases the likelihood

(and desirability) of maintaining geometric shape information for many different but

related objectives, co-existing in the same model. It is important in these cases to

keep the different classes of data differentiated from each other while still allowing

them to be considered together or in any combination when desired. A general

mechanism to provide this facility would be highly desirable. A modeler system

implementation, rather than multiple application dependent implementations, would

require less resources and be more efficient.

The class or attribute data which is used as a selection key is normally determined by

the application, not the modeler. For example, in applications involved with

manufacturing mechanical parts, it may be desirable to compare center line or other

manufacturing or tolerance datum point geometric information with the the designed

geometric shape of a mechanical part, and to keep the merged data in the same model

yet still differentiated (see Figure 3 — 2). Meshes for FEM (finite element method)

analysis may also exist in the same model, as well as possible approximate geometric

shape information created to simplify FEM meshing., It may also be desirable to

319

320

associate additional application dependent characteristics such as identification of pur-

pose or functionality, sequence of manufacturing, and other characteristics with por-

tions of the original model.

Selectively utilizing model information of this type requires the ability to perform

selective query and traversal based on an arbitrary set of characteristics for the por-

tions of the model currently under consideration. Proper design of this facility

prevents specific applications from being inundated with data intended for other appli-

cations, while still allowing coordination of all data. For example, a single mechanical

part model may contain primary shape information, FEM meshing or tolerance infor-

mation, and other relevant geometric data. When the model is to be displayed it is

desirable to have the ability to select what portions of the model should be displayed

by specifying the characteristics desired (shape only, mesh only, shape and mesh

together, etc.). Similarly, queries involving adjacency should only be concerned with

elements matching the characteristics currently under consideration, giving the

appearance that the model consists only of the elements which match the selection

criteria.

2, Implementation

One implementation approach to allow selective query and traversal involves associat-

ing application controlled attribute values or identity values with topological elements

and requiring all application code to individually perform checking and selection for

every query and traversal, regardless of whether it really uses such capabilities. A

more general approach, however, is to have the modeling system itself perform this

kind of checking and selection, reducing application implementation complexity and

replication of the same checking code. Applications that do not use these facilities

would then not need to consider these facilities at all, even in models containing ele-

ments with selection attributes.

The approach taken here is to associate an attribute mask with each topological ele-

321

ment, in which a single bit is used to determine the presence or absence of an appli-

cation -designated characteristic. An attribute mask allows representation and selection

based on muliiple simultaneous characteristics. Other alternatives are equally possi-

ble; this particular one was felt to be useful because of its support of multiple

independent attributes.

The interface to this capability is described below in a Pascal-like syntax. All indivi-

dual applications actually using the capability must restore creation and selection

masks to their previous values when finished or invoking other applications. Applica-

tion programmers not utilizing attribute selection capabilities do not need to be con-

cerned about them in their implementations, The size of the attribute mask is imple-

mentation dependent.

set_create_mask(masktype: mask)
All topological elements created after invocation of set create_mask will
have an attribute mask equivalent to mask until the next call to
set_create_mask. A 1 in a bit position indicates presence of an attribute; a
0 in a bit position indicates absence of an attribute. The default value of
the creation mask is all zeroes with a one in the least significant bit posi-
tion. This corresponds with the default selection masks to allow*use of the
system without setting masks.

get_create_mask(): masktype
Returns the current creation mask value,

set_query_mask(masktype: must_have, must_not_have)
All'queries and traversals will perform’ attribute checking to provide only
the required elements which also meet the specified characteristics of hav-
ing all attributes specified in must_have, and lacking a/l attributes specified
by must_not_have. Specifically, in a Pascal like sKmax, with AND symboliz-
ing da bitwise ‘‘and’, and and symbolizing the binary valued Boolean and”,

((((eleme(x;t’s attribute mask) AND must_have) = must_have)
an

(((element’s attribute mask) AND must_not_have) = 0))

must be true in order for a match to exist. These query masks will remain
in effect until the next call to set_query mask. A 1 in a bit position indi-
cates presence of an attribute; a 0 in a bit position indicates absence of an
attribute. The default value of the must_have mask is all zeroes with a one
in the least significant bit position,” and the default value of the
must_not_have mask is all ones with a zero in the least significant bit posi-
tion.” This corresponds with the default creation mask to allow use of the
system without setting masks. As an example, mask settings to include all
elements in any queries regardless of their attribute values would be must
have and rhust_not_have consisting of all zeroes.

322

get_query_mask(var masktype: must_have, must_not_have)
Refurns the query mask values currently in effect.

The least significant bit position is used by the system to keep track of all data which

has not had attributes set so that they may be retrieved by applications not using the

facility via the default mask settings.

Note that this capability is used for query and traversal only, and does not affect the

behavior of the construction operators as far as specification of adjacency and posi-

tioning are concerned, since all elements must be inserted into the model in relation

to all existing model data.

i

