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ABSTRACT 

Geometric modeling technology for representing three-dimensional objects has pro- 

gressed from early wireframe representations, through surface representations, to the 

most recent representation, solid modeling. Each of these forms has many possible 

representations. 

The boundary representation technique, where the surfaces, edges, and vertices of 

objects are represented explicitly, has found particularly wide application. Many of 

the more sophisticated versions of boundary representations explicitly store topologi- 

cal information about the positional relationships among surfaces, edges, and vertices. 

This thesis places emphasis on the use of topological information about the shape 

being modeled to provide a framework for geometric modeling boundary representa- 

tions and their implementations, while placing little constraint on the actual geometric 

surface representations used. 

The major thrusts of the thesis fall into two areas of geometric modeling, 

First, a theoretical basis for two-manifold solid modeling boundary topology represen- 

tations is developed. The minimum theoretical and minimum practical topological 

adjacency information required for the unambiguous topological representation of 

manifold solid objects is determined. This provides a basis for checking the correct- 

ness of existing and proposed representations. The correctness of the winged edge 

structure is also explored, and several new representations which have advantages 

over existing techniques are described and their sufficiency verified. 

Second, a non-two-manifold boundary geometric modeling topology representation is 

developed which allows the unified and simultaneous representation of wireframe, 

surface, and solid modeling forms, while featuring a representable range beyond what 

xvii



is achievable in any of the previous modeling forms. In addition to exterior surface 

features, interior features can be modeled, and non-manifold features can be 

represented directly. A new data structure, the Radial Edge structure, which provides 

access to all topological adjacencies in a non-manifold boundary representation, is 

described and its completeness is verified. A general set of non-manifold topology 

manipulation operators is also described which is independent of a specific data struc- 

ture and is useful for insulating higher levels of geometric modeling functionality 

from the specifics and complexities of underlying data structures. 

The coordination of geometric and topological information in a geometric modeling 

system is also discussed.



Chapter 1 

INTRODUCTION 

Geometric modeling technology for representing three-dimensional objects has pro- 

gressed from early wireframe representations, through surface representations, to thé 

most recent representation, solid modeling. Each involves increasing amounts of 

information about the shape being modeled, and provides correspondingly more 

sophisticated functionality. Yet each modeling form still retains unique characteristics 

which make it most appropriate under certain application requirements. 

Each of these forms has many possible representations. One kind of representation 

technique that has found wide application is the boundary representation technique, 

where the surfaces, edges, and corner vertices of objects are represented explicitly. 

Many of the more sophisticated versions of boundary representations explicitly store 

topological information about the positional relationships among surfaces, edges, and 

vertices, 

This thesis explores boundary based, object based, evaluated representational forms 

which explicitly store topological information, because these have shown wide applica- 

tion in industrial modeling as well as in other environments. 

The thesis places emphasis on the use of topological information about the shape 

being modeled to provide a framework for the modeling representation and imple- 

mentation, while placing little constraint on the geometric surface representations 

used. While there are many advantages to this approach, perhaps the most important 

is that it can provide a stable basis for an implementation to evolve using several 

geometric surface representation forms, as appropriate to the application require- 

ments. The thesis therefore concentrates on the representation of the topological



framework itself. 

The major thrusts of the thesis fall into two areas of geometric modeling. 

The first is in the area of manifold boundary representations. Manifold boundary 

based, object based solid modeling topology representations are the basis of some of 

the most popular forms of manifold solid modeling representations being used today. 

In spite of this, most of the topological theoretical exploration of solid modeling has 

been limited to point set topology, which is of more value in volume based modeling 

representations. There has previously been little theoretical exploration of algebraic 

topology to provide a firm theoretical basis for boundary based solid modeling sys- 

tems. The value of providing a theoretical basis for solid modeling representations is 

that it provides a basis for checking the correctness of existing and proposed 

representations and their implementations, and can provide insight which may lead to 

new representations previously not considered. It also provides a basis for determin- 

ing the minimal amount of information needed to unambiguously represent a model. 

The thesis addresses this need, developing a theoretical basis for manifold solid 

modeling boundary topology representations. The minimum ‘theoretical and 

minimum practical topological adjacency information required for the unambiguous 

topological representation of manifold solid objects is determined. The correctness of 

an existing manifold solid modeling representation is explored, and several new 

representations which have advantages over existing techniques are identified and 

proof of their sufficiency is given. 

The second is in the area of non-two-manifold topology representations. Little work 

has been been done in the area of non-manifold boundary based object based 

geometric modeling representations, and non-manifold representations which expli- 

citly store topological adjacency information are in an entirely new area of research. 

Yet there are several reasons why such a representation form is useful. A unified 

representation for combined wireframe, surface, and solid modeling by necessity 

requires a non-manifold representation, and is desirable since it makes it easy to use 

the most appropriate modeling form (or combination of forms) in a given application



without requiring representation conversion as more information is added to the 

model. A unified representation can also have many implementation advantages in 

terms of lower initial resource investments as well as lower maintenance requirements 

compared to multiple representation systems. The user interface in a unified represen- 

tation system also tends to offer a more integrated approach to the end user since the 

same framework is being manipulated in all cases. Arbitrary geometric information, 

such as center lines, can be stored in the model with shape descriptions. Composite 

objects can be modeled directly. With a non-manifold representation, applications 

such as finite element analysis can for the first time be directly supported in the 

modeling representation environment, allowing communication between the modeler 

and analysis application in both directions using the model representation as the com- 

munication medium. Closed form Boolean operations are possible in a non-manifold 

representation. In addition to a non-manifold geometric modeling representation, 

operators to manipulate the representation greatly simplify implementations. The 

thesis describes a new data structure, the Radial Edge structure, which provides 

access to all topological adjacencies in a non-manifold boundary representation, and 

verifies its completeness. A general set of non-manifold topology manipulation 

operators is also described which is independent of a specific data structure and is use- 

ful for insulating higher levels of geometric modeling functionality from the specifics 

and complexities of underlying data structures. 

The thesis thus contributes to the state of the art in two areas of geometric modeling; 

first, by establishing and utilizing a theoretical basis for manifold boundary based 

solid modeling topology representation systems, and second, by investigating a power- 

ful but largely unexplored geometric modeling form through the development of the 

first non-manifold boundary based geometric modeling representation which explicitly 

represents topological adjacencies. 



1.1. Organization of the Thesis 

The thesis is organized into five major sections. 

The first major section, ‘‘Geometric Modeling’’, presents an organized view of the 

geometric modeling field and identifies the position of this new work in the wider 

geometric modeling context. It provides a philosophical and technical foundation for 

the work described in the thesis, and also develops the terminology used throughout 

the thesis. It is primarily intended to provide a minimal mathematical background for 

the non-mathematician, and a minimal geometric modeling background for those new 

to modeling. 

The second major section, ‘‘“Manifold Solid Representations”, develops a theoretical 

foundation for boundary based manifold solid modeling topologies, describes and 

proves the sufficiency of several new data structures, and, for completeness, reviews 

existing operators to manipulate manifold boundary graph topology representations. 

The third major section, ‘““Non-Manifold Representations’, describes a new non- 

manifold boundary graph topology representation which provides a unified representa- 

tion of wireframe, surface, solid, and non-manifold modeling forms. Completeness 

of the new data structure is proven. It also presents new general operators to mani- 

pulate non-manifold boundary graph topology representations. 

The fourth major section, “Topology and Geometry Interface’, describes some of 

the problems in coordinating the topological and geometric representations in 

geometric modeling systems, and identifies some of the potential techniques to 

approach these problems. It also points out the correspondence between direct 

representation of uses of topological elements and representation of parametric 

geometry surface intersections. 

The fifth major section, ‘‘Conclusion”, concludes the thesis, reviews the major 

results, and identifies areas for further research. 

Five appendices follow. The first, ‘‘Topological Sufficiency Under Constraints’,



examines topological sufficiency for manifold solid modeling topologies under more 

restrictions than the domain identified in Chapter 9. The second, ““Storage and 

Accessing Efficiency Comparisons’’, provides detailed comparisons of the four mani- 

fold solid modeling data structures described in Chapter 12, in terms of storage 

requirements, accessing efficiency, and accessing algorithm complexity. The third, 

““Traversals of the Radial Edge Structure”, describes detailed traversal algorithms for 

the non-manifold Radial Edge structure. The fourth, “Sufficiency of the Radial Edge 

Structure’’, describes detailed algorithms for the derivation of all of the non-manifold 

adjacency relationships from the Radial Edge structure. The fifth, “‘Selective Query 

and Traversal”, details a technique for associating multiple independent attributes 

with topological elements which can later be used for accessing model topological 

adjacency information selected by combinations of attributes. 

1.2, Audience 

Much of the appeal of the geometric modeling field is that humans are naturally 

endowed with an understanding of and interest in the three-dimensional physical 

world and the spatial relationships of objects in it. This intuition about geometry and 

topology is already contained in each of us. It takes only a little more effort to study 

and appreciate these same relationships in the more abstract context of geometric 

modeling. 

The major audience targeted by this thesis is the geometric modeling community. 

One of my goals in writing it is to demonstrate that a proper theoretical foundation is 

extremely beneficial in the design and implementation of geometric modeling sys- 

tems, and that such a foundation is understandable and usable by modeling system 

implementors. In the case of this study alone, theoretical investigations led to more 

powerful and general representation systems than the original study was concerned 

with. To the end of reaching this audience, most of the theoretical parts of the thesis 

are stated in terms probably most familiar to the geometric modeling and computing 

communities, perhaps at the expense of disenchanting some who may have preferred 



a more traditional notation. With the major exception of the adjacency relationship 

terminology central to the topic of adjacency topology, use of notation is avoided, and 

where possible, an intuitive overview of what is going on is attempted. 

1.3. Miscellaneous 

All of the material in the thesis, unless explicitly stated otherwise, describes original 

work, except for Chapters 5 and 13, which summarize existing terminology and 

review existing techniques. 

Some of the material contained in this thesis has been previously published. Of note 

are ““Topology as a Framework for Solid Modeling” [Weiler 84], which is incor- 

porated in Chapter 4, and ‘‘Edge-based Data Structures for Solid Modeling in Curved 

Surface Environments’ [Weiler 85a], which is incorporated in parts of Chapter 12 

and Appendix B. 

The thesis also incorporates work from several currently unpublished papers. These 

include ‘‘Adjacency Relationships in Boundary Graph Based Solid Models’’ [Weiler 

83], which is incorporated in Chapter 11 and Appendix A, ‘“The Radial Edge Struc- 

ture: a Topological Representation for Non-Manifold Geometric Modeling’* [Weiler 

85b], which is incorporated in Chapters 15, 16, and 17, and ““Boundary Graph Opera- 

tors for Non-Manifold Geometric Modeling Representations’ [Weiler 85¢], which is 

incorporated in Chapters 15, 16, and 19. 

All of the original work described here was done while pursuing a doctorate at 

Rensselaer Polytechnic Institute.



SECTION I 

GEOMETRIC MODELING



Chapter 2 

INTRODUCTION 

Geometric modeling currently involves the use of computers to aid in the creation, 

manipuiation, maintenance, and analysis of representations of the geometric shape of 

two- and three-dimensional objects. It is used in a wide variety of applications includ- 

ing industrial mechanical part design and analysis, engineering and scientific visualiza- 

tion, commercial video and motion picture production, artistic pursuits, and many 

other areas. 

This thesis emphasizes the role of topology in geometric modeling, 

This major section has two objectives. First, it provides some background for those 

unfamiliar with some of the details of geometric modeling and topology. Second, it 

takes a fresh look at several general geometric modeling concepts in order to provide 

background for later sections on two important geometric modeling representational 

forms, manifold and non-manifold representations. 

2.1. Organization of This Section 

The first of the following chapters, Chapter 3, provides a brief description of the 

different forms of geometric modeling representations currently available. 

Next, Chapter 4 provides an intuitive introduction to the use of topology as a frame- 

work in geometric modeling implementations, and provides the philosophical basis for 

the approach taken in the remainder of the thesis. 

Chapter 5 briefly identifies relevant terminology from graph theory, topology, and



geometric modeling. 

Chapter 6 discusses topological elements and topological adjacency relationships, and 

describes a comprehensive terminology to describe important characteristics of adja- 

cency relationships relevant to geometric modeling, 

Finally, Chapter 7 discusses the importance of specifying the domain of geometric 

modeling systems and of proving sufficiency of the representation over that domain.



Chapter 3 

FORMS OF GEOMETRIC MODELING 

This chapter briefly describes many of the different approaches to geometric modeling 

representations that have evolved over the last twenty-five years. 

3.1. Geometric Modeling Forms 

Different forms of geometric modeling can be distinguished based on exactly what is 

being represented, the amount and type of information directly available without 

derivation, and what other information can and cannot be derived. 

Historically, several different geometric modeling forms have evolved. 

Wireframe modeling, one of the earliest geometric modeling techniques, represents 

objects by edge curves and points on the surface of the object (see Figure 

3 - ta). 

Surface modeling techniques, first developed in the early 1960’s, go one step further 

than wireframe representations by also providing mathematical descriptions 

of the shape of the surfaces of objects (see Figure 3 — 1b). Surface 

modeling techniques allow graphic display and numerical control machining 

of carefully constructed models, but usually offer few integrity checking 

features, 

Solid modeling, a technique developed in the early 1970°s, explicitly or implicitly con- 

tains information about the closure and connectivity of the volumes of 

solid shapes. It is becoming an increasingly important part of the process 

10
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Figure 3 - 1. Wireframe, surface, and solid modeling forms 
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of computer aided modeling of solid physical objects for design, analysis, 

manufacturing, simulation, and other applications. Solid modeling offers a 

number of advantages over previous surface modeling techniques, because 

it provides a guarantee that any models which are created will form closed 

and bounded objects more closely related to physically realizable shapes 

than can be guaranteed for surface models. Figure 3 - lc illustrates that 

for boundary based solid models every surface boundary is always directly 

adjacent to one other surface boundary, guaranteeing a closed volume. 

Solid models, unlike surface models, enable a modeler system to distin- 

guish the outside of a volume from the inside, allowing mass property 

analysis for the determination of volume, center of gravity, and the like. 

Typical solid modeling systems also offer tools for the creation and mani- 

pulation of complete solid shapes, while maintaining the integrity of the 

representations. 

Non-manifold geometric modeling, as defined here, is a new modeling form which 

removes constraints traditionally associated with manifold solid modeling 

forms by embodying all of the capabilities of the previous three modeling 

forms in a unified representation and extending the representational 

domain beyond that of the previous modeling forms (see Figure 3 - 2). 

Non-manifold representations are the most recent development. Some volume based 

solid modeling systems have allowed some non-manifold conditions, but did not 

allow the full range of non-manifold conditions involving boundary objects such as 

surfaces and wireframe edges. Focus on full non-manifold systems allowing all such 

conditions is new. By definition such systems must have some boundary representa- 

tion capability. The work in this thesis emphasizes non-manifold representations 

which explicitly store topological adjacencies. 

The differences between manifold solid representations and non-manifold representa- 

tions merit further discussion. 

In a manifold (two-manifold) solid representation, every point on a surface is two-
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Figure 3 - 2. Example of a non-manifold geometric modeling form 
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dimensional; that is, every point has a neighborhood which is homeomorphic to a 

two-dimensional disk. In other words, even though the surface exists in three- 

dimensional space it is topologically ‘‘flat’’ when the surface is examined closely in a 

small enough area around any given point. Historically, boundary based solid model- 

ing systems which store topological adjacencies have used manifold representations. 

Non-manifold is a geometric modeling term referring to topological situations which 

are not two-manifold. In an environment which allows non-manifold situations the 

surface area around a given point on a surface might not be “‘flat”’ in the sense that 

the neighborhood of the point need not be a simple two-dimensional disk. This 

allows topological conditions such as a cone touching upon another surface at a single 

point, more than two faces meeting along a common edge, and wire edges emanating 

from a point on a surface (see Figure 3 - 3 ). A non-manifold representation there- 

fore allows a general wire mesh with surfaces and enclosed volumes embedded in 

space. 

A set of common solid modeling operations, the Boolean set operations, are not 

closed under manifold representations. A modification of the Boolean operations, 

called the regularized set operators [Requicha & Voelcker 77], is designed to permit 

only volume filling results from the Boolean operations. The regularized set opera- 

tions therefore avoid a subset of the non-manifold results which can result from 

applying the Boolean operations on manifold inputs. However, with some manifold 

inputs the results of Boolean operations, regularized or not, are non-manifold and 

therefore not representable under manifold representations. For example, an append- 

age reaching out from the main volume of an object and then touching back on the 

surface of the same object at a single point is not directly representable with mani- 

folds, and creation of such an object even with regularized set operations cannot yield 

a valid manifold result (see Figure 3 — 4). Non-manifold representations avoid these 

singularities by representing non-manifold situations directly instead of restricting the 

domain of the output. 

Overall, non-manifold representations have superior flexibility, can represent a larger
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Figure 3 - 3. The 2-dimensional disk around points on a surface 
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Figure 3 - 4. The Boolean union of two manifold objects yielding a non-manifold 
result 

variety of objects, and can support a wider variety of applications than manifold 

representations, but at a cost of a larger size data structure. Boolean operation imple- 

mentations operating on either manifold or non-manifold representations must detect 

and deal with non-manifold results in some fashion; however, in a non-manifold 

representation such results are uniformly and cleanly represented and manipulated. 

Thus non-manifold representations are required if accurate closed form Boolean 

operations with faithful representation of non-manifold results are desired. Non- 

manifold representations are also required if one is interested in the interior volume 

structures in an object and the relationships between them, such as in composite 

objects and finite element meshes. 

Perhaps most importantly, generalized non-manifold representations can represent
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wireframe, surface, and solid modeling representations simultaneously in a single uni- 

form format. This uniformity offers significant advantages in the staging, delivery, 

and maintenance of geometric modeling systems. 

Manifold topology representations may still be preferable, however, in situations 

where storage space is at a premium, and the additional advantages of non-manifold 

capability are not required. 

3.2. A Taxonomy of Geometric Modeling Representations 

More detailed analysis of the many different representations that have been 

developed for geometric modeling reveals a more complex picture than that shown by 

the basic representational form classification presented in the previous subsection. 

A more detailed taxonomy of these representations is now presented. 

A wide variety of representations have been developed for geometric models, each 

with its own strengths and weaknesses in the context of different applications. These 

techniques can be differentiated on the basis of at least three independent criteria 

concerning whether the representation is: 

s boundary based or volume based 

® object based or spatially based 

¢ evaluated or unevatuated in form 

A representation is boundary based if the solid volume is specified by its surface 

boundary; if the solid is specified directly by its volume it is volume based. 

A representation is object based if it is fundamentally organized according to the 

characteristics of the actual geometric shape itself; it is spatially based when the 

representation is organized around the characteristics of the spatial coordinate system 

it uses. 

The evaluated/unevaluated characterization is roughly a measure of the amount of
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work necessary to obtain information about the objects being represented with respect 

to a stated goal. In this thesis, for simplicity, it is assumed that the goal is obtaining 

enough information for wireframe or surface display of an object. 

Thus many representational techniques are potentially available by choosing different 

combinations of values of the above criteria. The most appropriate modeling tech- 

nique to use depends not only on the intended application but also on the particular 

phase of the application one is concerned with. Many modeling systems support mul- 

tiple representational techniques to ensure their efficacy over a broad range of applica- 

tions and phases of the same application. 

If each of the three way criteria presented is considered to allow binary choices, then 

eight categories result. Several examples of the application of this classification to a 

variety of current geometric modeling representational schemes are presented in Fig- 

ure 3 - 5. The representation names in the boxes are not the only examples that can 

be found for each of the classifications. 

Unevaluated representation systems require some form of procedural interpretation to 

be used with respect to the specified application. Examples of the unevaluated, spatial, 

boundary classification include the halfspace solid representation technique where the 

spatial region of interest is defined by successively dividing space in halves with usu- 

ally infinite surface descriptions which coincide with portions of the desired region 

boundary and selecting the half space on a specified side of the surface, eventually 

enclosing the solid region. The halfspace technique is classified here as spatial based 

because the surface descriptions are positioned in spatial coordinate space rather than 

being relative to the object. An unevaluated, spatial, volume based approach is the 

octree solid representation technique which represents solid regions of interest by 

hierarchically decomposing a usually cubic volume of space into successively smaller 

cubes. Hierarchical division and cube orientation usually follows the spatial coordi- 

nate system. An unevaluated, object, boundary based representation example is the 

procedural description of an object as a sequence of Euler operations, an edge based 

construction technique described later in this thesis. A popular unevaluated, object,
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Figure 3 - 5. Geometric modeling representation classification and examples 
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volume based example is CSG (Constructive Solid Geometry), where desired regions 

are described as a series of Boolean set operations combining primitive volumes. 

Sweeps, where geometric objects are swept through space, usually to produce a higher 

dimensional element (such as sweeping an area to obtain a volume) are another 

example falling into this category. Parametric primitives, standard shapes that come 

with size, orientation, position; and other parameters, also fail into this category. 

Evaluated representation systems usually require substantially less interpretation to 

use with respect to the specified application. An example of a evaluated, spatial, 

volume based representation is cell enumeration, which may be as simple as a three- 

dimensional Boolean array, with each cell representing a cubic volume of space, with 

a cell having a true value if the region of interest intersects with that cell. A boun- 

dary based version of the same technique, an example of a evaluated, spatial, boundary 

based representation, is boundary cell enumeration where only the cells which inter- 

sect region b;.)undaries have true values. An popular example of a evaluated, object, 

boundary based representation is the boundary representation, where objects are 

represented in terms of their boundary elements; for example, a polygon may be 

represented by its bounding edges, and a solid volume by its finite bounding surfaces. 

An evaluated, object, volume based representation is that of non-parametric primitives, 

such as a simple fixed position object; this is not a particularly flexible representation. 

The application domain of particular interest to this thesis is the design, analysis, and 

manufacture of solid mechanical parts. Early in the design phase of such objects a 

high level of abstraction, a symbolic form, offers the most powerful means of per- 

forming complex design tasks —as long as the abstraction is appropriate to the design 

task at hand and to the designer performing it. However, during modification, 

analysis, and use of the constructed model, easy availability of complete information 

on the model is a prime consideration. For this phase of this application it has been 

popular to use an object based, evaluated, boundary form of geometric model which 

explicitly stores topological adjacency information, that is, the information specifying 

which topological elements such as faces, edges, and vertices touch upon one another.
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The focus in this thesis will be on evaluated, object based, boundary representations 

which explicitly store topological adjacency information and can be used as a frame- 

work for the implementation of geometric modeling systems. Both manifold solid 

modeling and non-manifold geometric modeling representations will be addressed.,



Chapter 4 

TOPOLOGY AS A FRAMEWORK 

This chapter provides an intuitive introduction to the use of topology as a framework 

in geometric modeling implementations, and provides the philosophical basis for the 

approach taken in the remainder of the thesis. It is intended to provide motivation 

for following material rather than provide a completely rigorous mathematical descrip- 

tion of the topological aspects of geometric modeling. 

4.1. Topology and Geometry 

Complete geometry can be considered to represent essentially all information about 

the geometric shape of an object including where it lies in space and the precise 

geometric location of all aspects of its various elements. 

Topology, by definition, is an abstraction, a coherent subset, of the information avail- 

able from the geometry of a shape. More formally, it is a set of properties invariant 

under a specified set of geometric transformations. Invariance of these properties 

under transformation implies by definition that the properties represented by the 

topology do not include the set of information which is actually changed by such 

transformations. Therefore all information is not present in topology; topology is 

incomplete shape information which can theoretically be derived from the complete 

geometric specification. A carefully selected, coherent subset of information, one that 

supports a meaningful view of the whole, is the essence of an abstraction. 

22
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Given this idea, one can consider topological information as a fuzzy definition of an 

object located somewhere on the continuum between no information on the object 

and a complete geometric definition of the object (see Figure 4 — 1 ). As such, topol- 

ogy constrains, but does not uniquely define, the final geometry of an object. On the 

other hand, a complete geometric description completely defines the topology of an 

object, though such geometric information may not be in a form convenient for the 

derivation of topological information. 

4.2. Different Kinds of Topology 

In the context of geometric modeling, when we think of topology we most often 

No information 

Topology 

\J 
Geometry 

(Complete information) 

Figure 4 - 1. Topological information in the continuum of information about 
the geometric shape of an object 
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think of the adjacencies between topological elements such as vertices, edges, and 

faces (see Figure 4 - 2 ). An individual adjacency relationship is the adjacency, in 

terms of physical proximity and order, of a group of topological elements of one type 

(such as vertices, edges, or faces) around some other specific single topological ele- 

ment. An example of one topological adjacency relationship is the group of edges 

found in a cyclic order around each vertex on an manifold object’s surface. 

But an adjacency topology is only one subset of many possible subsets of geometric 

information — only one among many forms of topology. Knot theory topology — 

knots involving interlocking loops in objects which cannot be undone by geometric 

transformation short of intersecting the objects — is one example of a different form 

of topology (see Figure 4 — 3a). The amofint of twist in an object of genus greater 

than zero is another form of topology which is totally unrelated to adjacency or knot 

topology (see Figure 4 — 3b). In this case all three forms of topology are orthogonal; 

that is, each has information which is completely independent of the other two. 

We will restrict our consideration here to the adjacency form of topology since that 

form has so far been found the most useful in our selected application areas. Accept- 

ing this restriction, adjacency information is often informally referred to as the topol- 

ogy of the solid model. The actual geometric surface descriptions, curve descriptions, 

and point locations are then referred to as the geometry of the solid model. This 

topology information can serve as a framework into which the geometric information 

is placed, and the topology can therefore serve as the ‘‘glue’’ which holds all the indi- 

vidual component geometry and topology information together. 

4.3. Using Topology 

What benefit is there to considering the topology of a geometric model apart from the 

complete geometric description ? 

When it is a unified, coherent, high level abstraction of available information, topol-
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Figure 4 - 2. The nine element adjacency relationships in a manifold adjacency 
topology consisting of faces, edges, and vertices 
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Figure 4 - 3, Different forms of topology 

ogy is useful in several situations. First, it is useful whenever a concise global abstrac- 

tion or summary of information can save time over being forced to view in full detail 

all data associated with a geometric model. Often, a top-down down hierarchical 

description is used for this purpose, with higher levels serving as abstractions of the 

lower levels. Second, during local manipulaticn of a small portion of an object, it is 

useful to be able to find directly adjacent portions of the object without having to 

review all data associated with the object. 

Use of these two properties can simplify geometric modeling manipulation algorithms 

and greatly improve their efficiency. However, topology can be even more useful 

when it serves as a framework around which the geometric modeling representation 

can be built.
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4.4. Topology as a Framework 

By using topology as a framework for a geometric modeling representation we mean 

first that topological information is explicitly available and second that it serves as the 

organizing factor in the schema of the data structures used in the representation (and 

therefore in the algorithms which operate on the structures). Third, to provide a 

unified total structure, all topological information must be associated together. To 

date, the most commonly useful approach has been to organize the topological infor- 

mation in a top-down hierarchical fashion from higher to lower levels of dimensional- 

ity (see Figure 4 - 4). 

The usefulness of topological information as described in the previous section is not 

Shelt 

’\'/ 
S 

Figure 4 - 4. Top-down hierarchical representation of topological elements 
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the only reason topology should be considered as a framework around which a solid 

modeling representation can be built. There are more compelling reasons. 

First, once the topological and geometric domain which the representation is intended 

to cover has been defined, and the corresponding topological representation has been 

selected, the topological portion of the implementation remains relatively stable. 

Geometric surface representation and implementation techniques are still a subject of 

research; the modeling field has not yet converged on any single ‘‘ultimate’’ or 

canonical geometric surface representation technique, and is still plagued by funda- 

mental numerical accuracy problems. As a result, many different forms of geometric 

surface representation and implementation techniques currently exist, and more are 

under development. If a topological framework is used in a modeling implementation, 

old geometric representations can be pulled out and new ones plugged in or multiple 

geometric representations can be handled simultaneously without major changes to 

the structure of the implementation. With a stable topological framework the impact 

of such geometric representation changes can be minimized to small portions of the 

implementation and the ability to add new or replace existing geometric representa- 

tions is enhanced. Thus a system implementation based on a topological framework 

provides for a smoother evolution of the geometric modeling system over its lifetime. 

Second, because of the approximate nature of geometric representations of general- 

ized curved surfaces as currently formulated and implemented on computers, it is 

possible that numerical accuracy problems can develop, such as small gaps appearing 

between surface patches that were intended to be adjacent. Relying on geometric 

information alone to determine topological relationships such as patch to patch adja- 

cency can be an error prone proposition, particularly since arithmetic operations on 

the underlying scalar number representations being used are not closed form. If adja- 

cency information is known at the time of model creation, combining a topological 

framework with one or more geometric surface representation techniques provides a 

way to represent the intended properties of an object, in spite of some types of 

geometric inaccuracies (though certainly not all of them).
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Third, separation of topological and geometric information in a geometric modeling 

representation provides a more systematic approach to implementation, providing for 

simpler creation, verification, and analysis of the model. 

4.5. Sufficient Topology 

In an adjacency topology consisting of three primitive elements such as faces, edges, 

and vertices, there are nine possible adjacency relationships (as seen in Figure 4 — 2 

). If a topological representation contains enough information to recreate all nine of 

these adjacency relationships without error or ambiguity, it can be considered a 

sufficient adjacency topology representation. 

A complete characterization of a sufficient representation cannot be made without 

first identifying the domain, or representational range over which the representation is 

intended to be valid. 

Since it is not necessary in general to- store all possible adjacency relationships in 

order to have a sufficient topological representation, identifying a sufficient minimat 

subset of that information becomes an issue. While only a small subset of the possi- 

ble adjacency relationships can be considered sufficient and are theoretically necessary, 

practical topological representations useful in geometric modeling normally utilize a 

sufficient subset of adjacency relationships in combination with one or more other 

adjacency relationships. This is necessary in order to associate together all of the 

unique topological elements found in a particular model. For example, in a three ele- 

ment adjacency topology, since each adjacency relationship involves only two element 

types, a second adjacency relationship is necessary to associate all three element types 

together while maintaining the unique identity of each element (which is necessary to 

be able to assign unique non-topological attributes to each element, a requirement in 

most modeling applications). If the combination of adjacency relationships selected 

for a representation is sufficient, it is then not necessary to rely on geometric infor- 

mation to obtain any of the remaining topological adjacency relationships. Because of
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possible inaccuracies in geometric data, a sufficient topological representation is there- 

fore highly desirable. 

4,6. Sufficient Topology as a Framework 

When topological information is used as a framework for geometric modeling 

representations and their implementations, its advantages are best realized if it is 

independent of geometric representations. Otherwise changes cannot be made to the 

geometric representation portion of the system implementation without putting the 

entire framework at risk. In other words, a topological representation chosen as a 

framework for a geomsetric modeling system should be a sufficient topological 

representation. The use of a sufficient topological representation for the framework 

also allows a more complete consistency check against geometry, often avoiding or 

identifying some types of inconsistencies due to geometric inaccuracy. Furthermore, it 

can help avoid the inadvertent assumption of sufficient information by algorithms 

which manipulate the representation. 

In an object based evaluated boundary form of geometric modeler it is highly desir- 

able to utilize an adjacency topology data structure as a framework in the structure of 

the implementation. The abstraction implicit in this topology based organization of 

the data can increase the efficiency and simplicity of the modeling system. For this 

scheme to gain full advantage, however, the topological information used as the 

framework must be mathematically sufficient information, independent of the 

geometric information in the model. In this case the use of topology as a stable 

framework for the implementation structure can minimize the impact of changes in 

the geometric representation portions of the system implementation, can help sur- 

mount some types of geometric accuracy problems, and can simplify creation, 

verification, and analysis of the geometric model.



Chapter 5 

TOPOLOGY AND GEOMETRY 

This chapter provides a brief introduction to terminology from existing graph theory, 

algebraic topology, and geometric modeling that will prove useful in later sections of 

the thesis. It is not intended to be completely rigorous, but rather to be accessible to 

the average geometric modeling practitioner. 

$.1. Graph Theoretic Concepts 

Since the topology representations described in later chapters use graphs to represent 

the edges and vertices of both planar and curved surface polyhedral solids, a brief 

review of some ideas from graph theory will be helpful [Harary 72]. 

A vertex is a unique point. In modeling discussions we will assume it is associated 

with a unique three-dimensional geometric point in modeling space. An edge is an 

unordered set of two vertices. Strictly speaking, these vertices must be distinct, 

meaning that each edge has twe different vertices and at most one edge exists 

between any two particular vertices; however we will relax this definition below. A 

graph is a set of vertices and a set of distinct edges which utilize the vertices. In 

modeling representations, edges are often associated with closed boundaries of sur- 

face areas, and may be curved or straight non-self-intersecting finite segments of 

space curves. 

Edges whose set includes a particular vertex are incident with that vertex. The degree 

of a vertex is the number of edges incident with it. Vertices which share an edge 

between them are considered to be adjacent to each other. 

31
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The trivial graph is a graph consisting of a single vertex. 

A graph is connected if every two vertices are joined by some path, that is, there is an 

alternating sequence of vertices and edges which begin and end at the two vertices 

and where each edge in the path is incident to each vertex before and after it in the 

sequence. 

The connectivity of a graph, also called the point connectivity, is the minimum number 

of vertices which, when removed along with their incident edges, results in a discon- 

nected graph. A graph of connectivity » is said to be n-connected. This should not 

be confused with line-connectivity, which is the minimum number of edges whose 

removal results in a disconnected graph. 

A self-loop is a graph configuration in which an edge joins a vertex to itself; in other 

words the two vertices associated with the edge are not distinct. A multigraph is a 

graph configuration where multiple edges are allowed to join the same two vertices; 

the vertex set of a multigraph edge is therefore not necessarily unique as in the usual 

definition of a graph. While ordinary graphs, by strict definition do not allow these 

conditions, we will allow both. Graphs that allow both self loops and multiple edges 

are called pseudographs. When we refer to graphs in this thesis we are always refer- 

ring to pseudographs unless noted otherwise. 

A labeled graph is a graph where each vertex and edge is uniquely identified by some 

means independent of the graph. 

Commonly used graph theory terminology has overlaps with terminology from the 

field of topology; some of this relevant terminology is therefore described in the next 

subsection. 

5.2. Topological Concepts 

Some ideas from topological theory will also be necessary to characterize the domain 

of the shapes that are of interest in the context of geometric modeling. An intuitive
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introduction to topology may be found in [Arnold 62]. A more formal approach may 

be found in [Agoston 76]. The following definitions, while not completely rigorous, 

will be helpful in later discussions. 

A homeomorphism is a one to one, onto, topological transformation which is continu- 

ous and has a continuous inverse. Topology is the study of properties which are 

invariant under homeomorphisms; such properties determine topological equivalence. 

Intuitively homeomorphisms can be thought of as elastic deformations which 

preserve adjacency properties. 

An open disk is that portion of a two-dimensional space which lies within some circle 

of positive radius centered at a given point, excluding the circle itself. An open ball or 

open sphere is the three-dimensional analog of the open disk and is a set of points 

inside a sphere centered at a point and with a radius greater than zero, and excludes 

the sphere itself, 

A subset of a topological space is arcwise-connected if for any two points in the subset 

of space there is a continuous path between them which is entirely contained within 

that subset of space. 

A surface, for our purposes, is an arcwise-connected space that is topologically two- 

dimensional in nature. Note that although a surface is locally two-dimensional, it may 

geometrically exist in a three-dimensional space, and may be curved. 

A surface is bounded if the entire surface can be contained in some open ball. A 

boundary on a surface may be a closed or open curve, or a single point on the surface. 

A closed curve boundary separates a piece of the surface from the rest of the surface. 

A surface is closed if it is bounded and has no boundary. For example, a plane has no 

boundary but is unbounded, while a sphere is a closed surface. 

A swo-manifold surface is a topologically two-dimensional connected surface where 

each point on the surface has a neighborhood which is topologically equivalent to an 

open disk. A manifold may or may not be a closed surface. We will always be refer- 

ring to two-manifolds when the word manifold is used in this thesis.
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The study of three-manifolds is concerned with the shape of three-dimensional space; 

this area of study will not be of direct concern in this thesis and a Euclidean space will 

be assumed. 

A manifold is orientable if it is two sided, that is, if it is not a surface like a Moebius 

strip or Klein bottle. The surfaces of a solid volume are required to be oriented as 

well as closed so that there is a clear distinction between the inside and outside of the 

volume. Note that while the manifold surface of a solid volume may consist of 

several pieces, these pieces must be joined together to form a single closed surface. 

A graph can be embedded in (or mapped into) a surface if it is drawn on the surface so 

that no two edges intersect, except at their incident vertices. A planar graph is a 

graph which can be embedded in a planar surface. Graphs may be embedded in 

non-planar surfaces unrestricted in the genus of the surface. A graph may also be 

embedded in three-dimensional space, with or without accompanying bounded sur- 

faces, as long as non-intersection properties are observed, that is, that no two ele- 

ments intersect except at common lower dimensional boundary elements. 

Faces are the connected subsets of the surface defined by a graph embedded in a sur- 

face. Each face is a connected component of the set obtained by subtracting the ver- 

tices and edges of the embedded graph from the surface. The boundary of a face 

consists of those edges and vertices of the embedded graph whose every part touches 

upon the face. Note that a face does not contain its boundary. 

When a graph is embedded in an orientable two-manifold surface, each edge of the 

graph is used exactly twice in the traversal of the edges around each face, once in 

each direction. The traversal can be done by moving along each of the edges and 

vertices in sequence around each face such that the area of the face is always to one 

side, say the right, and the end vertex of each edge is the beginning vertex of the 

next edge in the traversal, 

A simply connected face is a face which has a single, connected boundary. A multiply- 

connected face has a boundary that consists of two or more disconnected components,



as in a face with a hole in it, 

A handle on an object can be formed by cutting two holes in the surface of the object 

and then constructing a tube to join these two holes together. A doughnut shape or 

torus is topologically equivalent to a sphere with one handle. The genus of a graph is 

the minimum number of handles which must be added to a sphere so that the graph 

can be embedded in the resulting surface without edges crossing at places other than 

their common vertices. 

A relationship known as the Euler-Poincaré formula describes the relationships of 

numbers of elements in a planar graph: 

V-E+ F= 2 

where V, E, and F refer to the numbers of vertices, edges, and faces in the graph, 

respectively. 

In its more general form, where the graph may be embedded in a non-planar surface, 

V-E+ F= 2(1-G) 

where G refers to the genus of the graph. These formulae will be expanded further 

in a later chapter dealing with manifold disconnected embedded graph representa- 

tions. 

5.3. Geometric Modeling Concepts 

The geometric modeling community has also developed its own terminology. Many 

of the terms describe concepts of particular interest in geometric modeling which are 

not addressed or addressed in less detail in other fields with different concerns. 

Non-manifold, as mentioned earlier, is a geometric modeling term referring to topolog- 

ical situations which are not restricted to be manifold [Braid 83] [Requicha and 

Voelcker 83]. In a non-manifold environment the surface area around a given point 

on a surface might not be topologically ““flat’’ in the sense that the neighborhood of
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the point need not be a simple two-dimensional disk. This allows topological condi- 

tions such as a cone touching upon another surface at a single point, more than two 

faces meeting along a common edge, and wire edges emanating from a point on 2 

surface (see Figure 3 - 3 ). Non-manifold representations are defined here as being 

represéntations that allow non-manifold topological conditions, including those 

involving volume, area, curve, and point elements. 

The following terms have sometimes been used inconsistently in the literature; so the 

definitions utilized in this thesis are given here. 

Edges can be classified according to their use as boundaries by adjacent faces. A wire 

or wireframe edge is an edge embedded in space which is not a boundary of any face. 

A lamina edge is an edge which is used only once on the boundary of a single face. A 

manifold edge is an edge which is used exactly twice on the boundary of one face or 

exactly once each on the boundaries of two faces. A non-manifold edge is an edge 

which is used three or more times on the boundaries of one or more faces. 

A strut edge is a manifold edge which bounds one face and has one vertex which has 

no other incident edges. An isthmus edge is a manifold edge which bounds only one 

face but both vertices of the edge have additional incident edges. 

Adjacency relationships are the information specifying which (and in what order) topo- 

logical elements such as faces, edges, and vertices touch upon one another. They are 

are defined in detail later in the text. 

The regularized set operations are Boolean set operations which restrict their output so 

that only volume filling resuits may occur. Thus so-called ‘‘dangling’’ faces and edges 

which could be a result of the standard Boolean set operations are not present in the 

output of a regularized set operator, but non-manifold output may be present 

[Requicha 77].
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5.4. Drawing Boundary Graphs 

One practical issue that comes up in discussing adjacency topologies for manifold solid 

modeling representations is in determining how to draw the boundary graphs of solid 

objects on the flat sheets of paper (or CRT’s) to which we’ve become so accustomed. 

It is often convenient to do so for purposes of discussion or exposition. 

The graphs used in object based, boundary based, evaluated manifold solid modeling 

representations are graphs which have been embedded in a surface. A common form 

of diagramming these embedded graphs when they are planar is called a Schlegel 

diagram. A Schlegel diagram is a projection (or its combinatorial equivalent) of the 

vertices, edges, and faces of the embedded boundary graph of an object as seen from 

a point very close to the surface of the object from just outside the object. In a 

Schiegel diagram, as in the embedding of the graph onto its surface, edges may not 

cross except at their incident vertices, and vertices may not coincide. An example of 

a Schlegel diagram of a cube is shown in Figure 5 -~ 1. From here on in this subsec- 

tion, when we say graphs we are referring to graphs which have been embedded in 

manifold surfaces unless explicitly stated otherwise. 

Since the objects being represented in the case of manifold solids are actually closed 

objects, diagrams of their boundary graphs drawn on paper use the device of an 

“infinite’’ face surrounding the graph drawn on the paper. Intuitively, the diagram 

can be considered to be drawn on a small, nearly “‘flat”’ portion of a sphere, and this 

infinite face can be thought of as the ‘‘back side’ of the sphere which closes the 

object up. 

Objects of genus greater than zero, that is, objects whose boundary graphs are non- 

planar, need some additional mechanisms for representation on a flat piece of paper. 

We extend the Schiegel diagram technique here by allowing voids to be drawn. 

Voids are labeled areas which always appear in pairs (for 2-manifold objects), with 

each pair having a unique label. Voids are used to connect portions of the graph 

together by conceptually establishing a ‘‘bridge’” over the plane of the paper. Thus
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a)cube b)Schlegel diagram of cube 

Figure 5 - 1. Schlegel diagram of a cube 

the edges and vertices surrounding a void appear twice in the diagram (adjacent to the 

two voids with the same label) and are used in opposite directions by the faces adja- 

cent to the voids. The two faces which are adjacent to the same edge on the boun- 

dary of a void pair are actually adjacent to each other. Thus the matching pair of 

voids can be considered to be conceptually *‘glued” together, 

Voids have no actual counterpart on the surface of the object being represented. 

They are a diagramming convenience and have no function other than to convey the
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adjacency information present in the boundary graphs of objects of genus greater than 

zero within the confines of a planar diagram. The labeling of the voids serves to 

associate together each pair of voids to complete the adjacency association. The 

number of void pairs necessary in a diagram is equal to the genus of the boundary 

graph, 

Figure 5 - 2 illustrates the void technique with an object of genus one. An advantage 

of the void technique of representing boundary graphs on a plane is that it easily 

allows boundary graphs with a genus greater than one in a uniform fashion. 

Another technique used to draw non-planar maps on the plane when lines cross in 

the plane drawing but not on the actual surface, is to indicate in some notation that 

they do not actually meet, such as by making one of the edges dotted near the 

\ey 

Figure 5 - 2. Boundary graph diagram of an object of genus one using voids 



40 

crossing area (see Figure 5 — 3). We’ll call this technique the dotted-line technique, 

Both techniques have pros and cons. The dotted-line technique has the disadvantage 

that it is difficult to trace face boundaries and determine the number of faces in the 

mapping, which is relatively easy with the void technique. On the other hand, deter- 

mining the order that edges meet at a vertex is easy with the dotted-line technique 

but somewhat less obvious with the void technique when the vertex is located on the 

boundary of a void. 

Figure 5 - 3. Crossing edge diagram of torus in Figure 5-2 
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Boundary graphs of non-manifold models can be drawn on the plane if suitable 

domain specifications are made and additional techniques are utilized. In the case of 

the non-manifold domain specified in this thesis in Chapter 15, individual faces 

(which do not include bounding edges and vertices) are restricted to be mappable to a 

plane. Thus their boundary graphs can be drawn on the plane in at least a piecewise 

fashion using additional drawing techniques. 

Drawing boundary graphs of non-manifold models requires techniques similar to 

those used for manifold boundaries but the situations represented can be considerably 

more complex. For example, consider a manifold spherical surface. Push together 

two points on opposite sides of the sphere until they touch at the center to form a 

single boundary vertex. The surface is now a non-manifold surface. A drawing of its 

boundary graph on the plane involves the use of the infinite face technique to 

represent the closed surface, but the single boundary vertex shows up two places in 

the drawing. Similarly, non-manifold edges may show up several places in a planar 

drawing of a non-manifold boundary graph. 

Wire edges, lamina faces, and individual regions are often drawn separately for non- 

manifold boundary graphs, utilizing element labels and occasionat region labels to 

indicate actual adjacencies. This style of diagramming provides adjacency information 

but still does not specify the complete spatial ordering of faces around edges required 

for the complete description of a full non-manifold environment.



Chapter 6 

TOPOLOGICAL ADJACENCY RELATIONSHIPS 

Adjacency topology concerns the physical adjacencies of the topological elements 

embedded in space or on the surfaces of an object. 

This chapter discusses topological elements and their topological adjacency relation- 

ships, and introduces a comprehensive terminology to describe characteristics of adja- 

cency relationships relevant to geometric modeling. Topological adjacency relation- 

ships form the basis of the topological information in all of the topological representa- 

tions described in this thesis. 

6.1. Terminologies for Adjacency Relationships 

A terminology for identifying the nine element pair adjacency relationships for con- 

nected graph manifold topologies was developed by Baer et al [Baer et al 79] for the 

purpose of comparing which adjacency relationships were stored in various geometric 

modeling systems. That terminology symbolized each adjacency relationship as a pair 

of symbols separated by a colon. Each of the symbols refers to one of the three ele- 

ment types. The first symbol is a letter which stands for the element type used as the 

viewpoint from which the adjacency relationship is expressed. The second symbol 

represents the element type which is adjacent in some way to the first element type 

(see Figure 6 ~ 1). This terminology is sufficient for the identification of the nine 

element adjacency relationship classes and in some cases includes additional informa- 

tion, but does not consistently include enough information for detailed discussion of 

the nature of the element adjacency relationships themselves or their interrelation- 

ships. 

42
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Figure 6 - 1. Baer et al. terminology for element adjacency relationships 

An expanded terminology is needed which separately specifies the two types of infor- 

mation which comprise each of the nine adjacency relationships: 

¢ identification of which of the element adjacency relationships is involved (a 

specification of adjacency as in the previous terminology) 

¢ a specification of the order and direction of order of the adjacency given ail the 

similar components in that relationship, 

This last type of information is critical to boundary representation schemes but has 

not been previously emphasized. As will be shown later, both kinds of information 

are necessary to represent a complete adjacency topology using the adjacency relation- 

ships. 

A more comprehensive and general terminology has been developed to explicitly 

include this ordering and orientation information as well as other information that will 

facilitate discussion of some of the properties of the adjacency relationships both as a 

class and in individual cases. Additions for these purposes include the ability to dis- 

tinguish between a specific individual element and a group of elements (including the 

entire element class itse}t). The terminology is generalized enough to handle both 

manifold and non-manifdlsd topological adjacencies. 

This new terminology is used throughout the remainder of the thesis in discussions 

involving the topological element adjacency relationships.
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6.2. Topological Element Adjacency Relationship Terminology 

This terminology expresses six concepts related to the elements of graphs embedded 

in space or in a surface and their topological adjacency relationships. Each is 

described in the following sections. 

6.2.1. Element Type Symbol 

Three alphabetic letter symbols are used to specify which of the three basic topological 

element types is being referred to: 

vV the vertex element type 
E  the edge element type 
F  the face element type 

In more complex topologies, such as those allowing disconnected graphs and non- 

manifold conditions, additional topological element type symbols are required. They 

will be defined in the relevant chapters as needed. 

6.2.2. Symbol Plurality 

The plurality of an element symbol determines whether the symbol refers to one or 

more or all elements of the given type ina specific topology. Plurality is indicated in 

the following manner: 

v (lower case) - singular plurality; refers to one 
specific element 

14 (upper case) - multiple plurality; refers to a collec- 
tion of zero or more elements 
(upper case with bar) - multiple plurality; refers to 
a collection of all elemegg of the specified type 

<|
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6.2.3. Group Ordering 

A group is a collection of elements. Groups are allowed to have one of four group 

ordering specifications. Groups of elements are symbolized either by the proper plu- 

rality of a single symbol or by a list of element symbols. While the plurality of a sym- 

bol indicates whether the symbol refers to a single element or a group of elements, it 

does not identify the ordering of the group. A sequential list also does not neces- 

sarily imply an ordering. The following terminology is used to specify which ordering 

an element group actually has: 

group indicates that the grouP ordering is unspecified; it 
could be any of the following three orders 

[ group ] indicates an ordered linear list of elements 

< group > indicates an ordered cyclic list of elements 

{ group } indicates an unordered set of elements 

As an example, < E> refers to a group of edges in a cyclic ordering. 

The group specification within the brackets can take either the general form indicated 

by the multiple plurality of a single symbol, or a specific form indicated by a series of 

symbols of singular plurality. Therefore if the plurality of a symbol in a group is 

singular, then all members of the group must be specified. As used here, all ele- 

ments in a single group are usuaily of the same type and ordering. 

Ordering refers to both sequence and direction information. 

It is also useful in some cases to nest groups inside of other groups; that is, a group 

may consist of a list of other groups. An example of a nested group is {{£](E]} which 

refers to an unordered set of two items, both of which are ordered linear lists of 

. edges. 

Parenthesis are not used as a bracketing symbol in this terminology; they therefore 

retain their usual mathematical meaning of associating parts of an expression when- 

ever they are used in conjunction with the adjacency relationship terminology.
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If the group specification within the group ordering brackets is a single symbol of 

multiple plurality, it binds to the group ordering brackets. For example, because of 

this binding action [V] means a linear ordered group of individual vertices rather a 

linear ordered group of nested groups of vertices. In cases where it is important to 

specify nesting of groups without making an ordering specification, parenthesis can be 

used to make the overall specification unambiguous. In the example above, a linear 

ordered group of nested groups of vertices (of an unspecified ordering) could be writ- 

ten as (V)1 

Two additional notational devices are used in the adjacency relationship terminology 

relating to groups. First, the cardinality of a group is specified as a superscript follow- 

ing the group ordering form brackets (as in < > *), indicating that the group has the 

specific number of members specified by the superscript. Second, a subscript follow- 

ing the group ordering form brackets (as in [I, ) indicates a reference to the a th ele- 

ment in the group. The following section on referencing and enumeration discusses 

such references for unordered groups and cyclic ordered groups. Superscripts may be 

zero or any positive number, subscripts may be any positive number less than or 

equal to the number of elements in the group. 

The use of the word ‘‘group” here should not be confused with other uses of the 

word in mathematics. 

6.2.4. Adjacency Relationship 

The element adjacency relationships indicate the topological adjacency of a group of ele- 

ments with regard to a single element or element type. This is represented as a pair- 

ing of symbols. The first symbol in the pair is the single reference element, and the 

second symbol, called the adjacent group, refers to the group of elements adjacent to 

the reference element:; 

reference adjacentgroup  indicates a specific adjacency relationship
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Adjacency relationships deal with distinct ordered pairs of element types, so the 

number of adjacency relationships in an adjacency topology of n element types is n’ 

In the examples initially presented three topological element types are present, creat- 

ing nine distinct combinations of element types. Each distinct combination is called 

an adjacency relationship class or type. For example, VE refers to the adjacency rela- 

tionship class involving the groups of edges which surround all of the vertices of a 

graph. V< E> is more specific and refers to the circular ordered lists of edges which 

surround vertices. 

As a form of shorthand, EE can be used to signify E£. This includes situations where 

group ordering specifications are made, so E< V> can be used to signify E< V> . 

This means that the reference element part of an adjacency relationship always refers 

to all elements when a multiple plurality symbol is used. Whether the general adja- 

cency relationship concept itself or a specific adjacency in an embedded graph is being 

referred to is determined by the plurality of the symbols used. 

An adjacency relationship carries two kinds of information: the class of the adjacency 

relationship and the ordering information of the adjacent group. Adjacency relation- 

ships which have unordered adjacent groups are called unordered adjacency relation- 

ships; relationships with linearly or circularly ordered adjacent groups are cailed 

ordered adjacency relationships. For example, V< E> is an ordered adjacency rela- 

tionship while V {£} is an unordered adjacency relationship. The distinction is a vital 

one in terms of the informational sufficiency of the adjacency relationships, as will be 

discussed in Chapter 11, 

Adjacency relationship classes can be organized into an adjacency relationship matrix, a 

standard way of presenting the déscriptions of the classes. The matrix is organized 

into n columns and n rows, where n is the number of topological elements. The 

matrix starts at the upper left corner. The rows are labeled top to bottom from the 

lowest dimensional element (the vertex) to the highest dimensional element (in the 

examples given here, the face). The columns are similarly labeled left to right. For a 

given position in the matrix, the row labeling specifies the reference element type and
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YV VE VF 
EV EE EF 
FV FE FF 

Figure 6 — 2. The element adjacency relationship class matrix 

the column labeling specifies the adjacent group type of the adjacency relationship 

class. 

One can alsc name groups of classes based on their position within the matrix. The 

main diagonal consists of the n adjacency classes falling on the diagonal of classes 

from upper left to lower right. All of the classes lying above the main diagonal are 

the upward hierarchical relationships, and those below the main diagonal are the down- 

ward hierarchical relationships. The subset of the (n—1) upward hierarchical relation- 

ship classes immediately adjacent to the main diagonal is the upward hierarchical diago- 

nal, and the subset of the (n-1) downward hierarchical relationships immediately 

adjacent to the main diagonal is the downward hierarchical diagonal. Figure 6 — 2 

shows the element adjacency relationship matrix for the three basic topological ele- 

ment types. 

An adjacency relationship matrix may be referred to as A, with the specific matrix 

indicated by context. A specific adjacency relationship may then be specified in a 

positional notation, ;mw,columnl where the adjacency relationship is located in the 

specified position in the adjacency relationship matrix. For example, in Figure 6 - 2, 

A, refers to the EF adjacency relationship. 

The element adjacency relationships are discussed in detail in Chapters 10 and 16 for 

manifold and non-manifold domains, respectively.
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6.2.5. Correspondence 

Correspondence is the ability to make adjacency associations between adjacency rela- 

tionships which utilize the same element type in either their reference element or 

adjacent group. An example is the ability to make correspondences between elements 

in the ordered adjacent groups of two or more adjacency relationships. 

The strongest form of correspondence is when two adjacency relationships have the 

same reference element type. Other forms of correspondence have the common ele- 

ment type in the adjacent group type or mixed between the adjacent group type and 

reference element type. Correspondences with the same reference element type are 

referred to as strong correspondences because, unlike other correspondences, their adja- 

cent lists can be interleaved and combined in a fashion which contains more informa- 

tion than either of the adjacency relationships individually. 

For example, using correspondence one may associate the VE adjacency relationship 

with the VF adjacency relationship. Then one has available not only the edge-around- 

a-vertex information and face-around-a-vertex information, but also all edge-then-face- 

then-edge information around a vertex. That is, the correspondence information logi- 

cally links together the adjacency information about the various elements so that their 

ordering information can be coordinated. 

Correspondence is symbolized as two or more adjacency relationships connected by a 

dash. For example, the V< V> and V< E> manifold adjacency relationships in 

correspondence are symbolized as V< V> -V<E>. In this case correspondence 

means that information about vertex-and-edge-then-vertex-and-edge ... around-a-vertex 

information is available in addition to the expected edge-then-edge-around-a-vertex ( 

V< E> ) and vertex-then-vertex-around-a-vertex ( V< V> ) information, 

The order of appearance of the adjacency relationships in the correspondence is not 

significant. For example, V< V> -V< E> is the same as V< E> -V< V> . 

Strong correspondence appears to embody information not found in the individual
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corresponding adjacency relationships; generating correspondence information 

requires information from additional adjacency relationships. For example, in the 

VV-VE correspondence above, EV is required to generate the correspondence. 

While correspondence will be used in several places in this thesis, the topic is not 

treated in detail, and represents an area of possible further research. 

6.2.6. Referencing and Enumeration 

When dealing with a specific labeled graph, which has been mapped into a surface for 

manifold topologies, or embedded in space for non-manifold topologies, it is assumed 

there is available: 

V= ({V} 

Fe (F} 
Fe (F} 

which are the unordered sets of all vertices, all edges, and all faces of the embedded 

graph. Similarly, the sets of all of any additional elements would also be available. In 

order to refer to specific elements of these unordered sets, an ordering shall be 

assumed, [V], [E], [F]. Specific elements may then be referred to by the group sub- 

scripting mechanism, so that [V]; specifies the ith element of that ordering. A short- 

hand form for referring to specific elements is the form v; , ¢ , and f; , which 

signifies (V};, (E);, [F}; respectively, and again refers to specific members of these 

sets, where the subscript specifies the ith element of that ordering. The ordering 

chosen is arbitrary, but once chosen remains constant for a given consideration of the 

embedded graph. Thus the embedded graph is a labeled graph. 

Similarly, cyclic groups, < N>, are assumed to have an ordering [N], so that its 

members may be referred to by the standard group subscripting, < N> ; , to indicate 

the ith element of the group. To arrive at such an ordering, a specific (but arbitrarily 

chosen) element in the cyclic list is chosen as a first element of the ordered list. Sub-
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scripted list elements then refer to the ith element in this ordered list modulo the size 

of the cyclic list. 

The number of elements in a set or ordered group is the cardinality designated by 

bracketing, as in {V |, meaning the number of vertices in the entire graph, or as in 

vi< E> |, meaning the number of edge elements in the cyclic adjacency group associ- 

ated with v; . 

An iteration over the elements of a set or list can then be specified by, for example, 

Vi E> il E> | 

which iterates over each member in the adjacent group of vi< E>, or 

vi<e>j,jeln 

for short. The iteration is usually stated by itself on a line and the scope of the itera- 

tion is specified by indentation of relevant statements towards the right. The iteration 

may be nested, in which case the rightmost iteration varies fastest. 

This terminology allows discussion of algorithms which refer to adjacency relation- 

ships of elements in a specific embedded graph. 

6.2.7. Examples 

The following examples further illustrate use of this terminology. 

v represents the collection of all vertices in a graph. 

VE re%pres.ents the general adjacency relationship class 
of adjacent groups of edges surrounding vertex 
r;ference elements. It can also be stated as VE for 
short. 

V< E> is a more detailed description of a VE adjacency 
relationship class, specifying that the adjacent 
groups are cyclicly ordered. 

v represents a specific vertex, namely [V}, the ith 
element in the group of all vertices in a graph,



vi< E> 

< e>y 

EYY 

E{<E>} 

vy < e e e > 

VE - VF 

VvV -VE - VF 

{E1P 

(ei< L> ;)< V> 

Eiiel.n 

Vi<E>,,jelunkelon 

represents the specific VE adjacency relationship 
consisting of the circularly ordered adjacent group 
of edges surrounding the reference element ver- 
tex [V); . 

indicates a reference to the third edge element in 
the cyclic list of the adjacent group edge elements 
surrounding the vertex reference element (V], . 

represents the adjacency relationship class EV with 
unordered adjacent groups of vertices surrounding 
a edge reference elements, and further specifies 
that there are always exactly two vertices in each 
adjacent group. 

represents the adjacency relationship class EE with 
unordered adjacent groups, each member of which 
is itself a cf}{lclicly ordered group of edges. The 
description further specifies that there are always 
exactly two < E> groups in the adjacent group of 
each edge. This could also be written out as 
E{<E><E>}. 

represents a fully detailed description of the circu- 
larly ordered list of edges around a specific vertex. 
Note that here, all members of the group must be 
enumerated, since the adjacent group consists of 
specific elements rather than a single multiple plu- 
rality group symbol. 

indicates that the VE and VF adjacency relation- 
shl;ps are maintained in correspondence” with each 
other. ’ 

indicates that all three of these adjacency relation- 
ships are maintained in correspondence. 

represents the relationships of ed§es adjacent to 
each end of a particular edge ¢;. See Chapter 10 
for a more detatled explanation. 

is the L< V> adjacency for a sgecific loop. The 
loop reference element is found by taking a refer- 
ence to the jth element of the ¢;< L> adjacency 
relationship’s adjacent group. The parentheses are 
not strictly required here but do provide clarity. 

is an iteration over each edge in an entire graph. 

is a nested iteration over each edge in the adjacent 
group of the V< E> adjacency relationship for 
every vertex in a gragh..The. edge is referenced 
within the scope of the iteration by its complete 
expression V;< E>, . The index & varies fastest 
in this iteration. 
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represents a specific adjacency relationship in an 
adjacency relationship relationship matrix using 
the row, column positional notation. The adjacency 
relationship matrix being referred should be clear 
from context. In this example, referring to the 
adjacency relfationship matrix in Figure 6 — 2, the 
adjacency relationship specified is the VF adjacen- 
cy relationship. 
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Chapter 7 

TOPOLOGICAL DOMAIN AND SUFFICIENCY 

A computer representation of an application consists not only of static data and data 

structures but also of the operators and procedures applied against them. The two are 

inextricably intertwined. 

The domain of a representation is the complete set of possibilities for which the 

representation is valid. The domain addressed by any representation should be care- 

fully specified; it is the only measure of success of the representation and is the start- 

ing point for any formal proof of correctness. 

The correctness of a representation depends on: 

e the complete specification of the domain over which it is intended to be use- 

ful. 

¢ proof of sufficiency over that entire domain. 

¢ operators which can be proven to cover the entire domain yet cannot create 

or manipulate the data into a state outside of the intended domain of 

the representation. 

Early influential work by Requicha {Requicha 77] emphasized consideration of the 

topological aspects of domain, but much of this work used a point set topological 

approach, which is less directly applicable to boundéry representations than to other 

representation forms. The approach taken here utilizes algebraic topology, which is 

directly related to the adjacency topologies addressed in this thesis. 

This section will address the importance of providing a specification for the intended 

domain of geometric modeling representations, as well as the importance of



determining their topological sufficiency over that domain. 

7.1. Domain 

Traditionally, the careful specification of the domain for geometric modeling represen- 

tations, especially boundary based representations, was rarely done — often leaving 

open the question of their validity for various applications. Considering the amount 

of effort required to construct a significant robust geometric modeling system, imple- 

mentors can ill afford to base an implementation around a representation structure 

which is insufficient over the domain it is intended to support. It is therefore vital to 

prove sufficiency of the representation before significant investment of resources. 

Specification of the domain which a modeling system is intended to address is the first 

step in such an examination of the sufficiency of a representation. 

The domain, in this case the topological domain, must be specified as completely as 

possible. The domain specification is usually made by stating an initial environment 

followed by a series of further restrictions on that environment. Two types of restric- 

tions can be made. 

First, representational restrictions places further limits on the gross topological condi- 

tions affecting the geometric shapes that are allowed to exist in the representation, 

directly affecting what is representable in the representation. For example, placing 

restrictions on the allowable genus of an object, such as stating that the genus must 

always be zero, reduces the number of possible shapes that are representable, in this 

case making doughnut (torus) shapes unrepresentable. 

Second, procedural restrictions place additional conditions on the representation, but do 

not directly change what is representable in the representation, only the exact manner 

in which it is represented. For example, restricting individual faces from having han- 

dles does not mean that surfaces with handles are not representable, only that a face 

boundary must be present on a handle. Thus, the allowable partitioning of the sur- 

face is further restricted, but anything representable without the restriction is



transformable into something which is representable without changing the intended 

shape, 

7.2. Topological Sufficiency 

Topological sufficiency of a representation is regarded here as the ability to completely 

and unambiguously represent adjacency topologies. Completeness implies the ability 

to generate all of the topology information from the representation. Unambiguity 

implies that for any unique set of data in the representation, there is only one possi- 

ble set of topology information that can result from interpretation of the representa- 

tion, that is, there is a one-to-one mapping between a representation and the full 

topology information. 

Sufficiency can be regarded at two levels, theoretical and practical sufficiency. 

Theoretical sufficiency is the absolute minimum information required to unambigu- 

ously reproduce a complete adjacency topology, while practical sufficiency is the 

minimum required in a practical geometric modeling representation. 

7.2.1. Theoretical Sufficiency 

Sufficiency of a representation is the ability to recreate all of the topological element 

adjacency relationships without error or ambiguity. In this context, it is the ability of 

a specified subset of the element adjacency relationships taken from a Specific mapped 

graph to provide enough information to uniquely reproduce the original embedding of 

the graph except for labels of the element type(s) which are not in the original subset 

of adjacency relationship(s) chosen. The embedding constructed from the adjacency 

relationship subset must be identical to the original in all of the element adjacency 

relationships, reflecting the ability of the adjacency relationship subset to represent 

the topology of a mapped graph exactly and completely. Note that this definition does 

not allow the use of geometry associated with elements (if any) for derivation of any 

additional topological information.
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In general, it is not necessary to store information on all the adjacency relationship 

classes in the topology to achieve sufficiency. In fact, at least in the manifold domain, 

there can be single adjacency relationships and combinations of single insufficient 

adjacency relationships which can be used to achieve topological sufficiency over a 

specified domain. 

7.2.2. Practical Sufficiency 

All elements in an embedded graph geometric modeling structure must be bound 

together in some fashion in order to produce a single cohesive representation of an 

object. Thus all elements must be related to each other by label, since in a practical 

modeling system additional information is potentiaity uniquely associated with each 

individual element by label, 

This means that any representation which includes n topological element types for 

which reproducible labels are desired, must allow the derivation of at least n—1 adja- 

cency relationships involving all n element types. This is the key to understanding 

the difference between theoretical minimal sufficient topological information and the 

minimal sufficient topological information practical in a geometric modeling system. 

For example, in a labeled graph environment consisting of three topological element 

types, at least two or more adjacency relationships are necessary to bind all of the 

different element types together, since each individual relationship can only refer to at 

most two element types. Thus in a practical modeling representation for this environ- 

ment sufficient combinations of two individually insufficient adjacency relationships 

are just as interesting for geometric modeling representations as individually sufficient 

relationships (as long as they involve all three element types), since two adjacency 

relationships are required anyway.



SECTION II 

MANIFOLD SOLID REPRESENTATIONS



Chapter 8 

INTRODUCTION 

This major section discusses object based evaluated boundary based manifold solid 

modeling representations which explicitly represent information about the adjacencies 

of topological elements. To date, all of these representations, with only partial excep- 

tions, have been manifold representations. 

Manifold representations are currently in use in many commercial boundary based 

solid modeling systems, as well as in prototype industry standards, and reflect a heavy 

investment in manifold technology by industry. When storage space is at a premium 

and the flexibility and unified representational advantages of non-manifold representa- 

tions will never be required in a representation, manifold representations will con- 

tinue to be used in preference over non-manifold representations. Thus manifold 

topology systems will likely be around for some time, and are worthy of detailed 

theoretical analysis. 

8.1. Organization of This Section 

This major section is organized into the following five chapters concerning manifold 

topology representations. 

First, the domain of interest is described in Chapter 9. 

Chapter 10 describes the manifold adjacency relationships. 

Next, Chapter 11 details the theoretical sufficiency of various combinations of the 

manifold adjacency relationship information. 
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Chapter 12 describes several data structures for manifold topology representations 

and provides proof of their sufficiency. 

Lastly, Chapter 13 describes operators for manipulating manifold topologies. 

{



Chapter 9 

DOMAIN 

In this section we are interested in restricting our range of topological representational 

capability from the domain of all topological possibilities to only that portion which 

corresponds to physically realizable solids with manifold surfaces. Making such res- 

trictions will simplify our stated goal of unambiguously representing topologies of 

manifold solid polyhedra using boundary graph based techniques. 

The domain conditions identified in this chapter will provide the context which will be 

assumed in the rest of this major section on manifold solid modeling representations, 

unless explicitly noted otherwise. 

9.1. Topological Considerations 

Our primary assumption in this section is that of a manifold domain in a three- 

dimensional Euclidean space. We are going to restrict the range of solid objects of 

interest to those with compact (closed) orientable 2-manifold surfaces. This elim- 

inates the possibility of vertices, edges, and one sided faces which *‘hang off’’ the 

mapped boundary graph of the object. Thus non-manifold objects such as Figure 

3 ~ 2 are excluded from consideration here (but are treated in the next major section 

of the thesis). 

In many current modeling applications the final result does not require non-manifold 

objects; such objects are not physically realizable as single objects since they can be 

connected through infinitely thin vertices or edges. Thus a manifold representation is 
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often adequate for representing the final result, if only solid shape information is 

desired. This does have the effect of restricting the modeling sequence of operations, 

however, since non-manifold objects would not be allowed even as intermediate 

results; these restrictions can be removed by the use of more advanced non-manifold 

representations. This major section of the thesis will accept this limitation and require 

a manifold representation at all stages of modeling. 

{Requicha 771 and {Mantyla 81} discusses objects with ‘‘pseudo-manifold’’ surfaces. 

Basically such objects have non-manifold regions at certain points and curves, but, 

unlike the non-manifold object in Figure 3 - 2, their volumes are completely con- 

nected by regions consisting only of interior points (Figure 3 - 3). Because of this, 

such objects, while not manufacturable in the practical sense because infinitely thin 

portions of the solid cannot be machined or manufactured, do represent possible 

design goals in that they are still single, connected objects. One approach for 

representing such objects could be by simply adding edges and vertices to the mani- 

fold representation until all surfaces were manifolds and then identifying and associat- 

ing together elements involved in the originally non-manifold regions explicitly. 

Geometry is not modified in this scheme so that the originally non-manifold regions 

are still geometrically coincident though no longer directly adjacent topologically 

without use of the additional association information. We will not include such 

objects within our representational range of interest here because of the additional 

complexity an adequate representational scheme for pseudo-manifolds would imply, 

while still not providing the generality or uniformity of a true non-manifold approach 

because implementations of these techniques require special case procedural detection 

and handling of non-manifold conditions. 

The ability to represent boundary graphs as pseudographs which allow self loops and 

multigraphs is very desirable because such situations occur naturally during typical 

modeling operations, particularly those involving the Boolean operations (see Figure 

9 — 1). While such situations can be simulated by dividing each multiple and self 

loop edge into several edges, this approach requires additional intelligence on the part 

of the modeler to detect and deal with such situations. Much of the power of
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boundary graph based solid modeling systems derives from their ability to preserve 

and quickly deliver surface coherence information; unnecessarily increasing the 

number of elements necessary to represent an object decreases this performance. 

a) self loops created by subtraction of a cylinder from a rectangular solid 

b) multigraph created by subtraction of a sphere from a rectangular solid 

Figure 9 ~ 1. Seif loops and multigraphs resulting from common modeling 
operations 
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9.2. Geometric Considerations 

In a sense the topology of an object is a ‘‘fuzzy’’ geometry specification which 

prescribes certain limits which a geometric instantiation must maintain. Thus 

geometric instantiations of topological representations by definition are subject to cer- 

tain geometric restrictions in order to preserve their topological integrity. It is 

worthwhile discussing some of the geometric implications of the topological restric- 

tions we wiil be making. 

Perhaps the most important geometric restriction on the geometric instantiation of a 

manifold polyhedron topology in this regard is that the manifold surfaces of the topol- 

ogy may not intersect except at the specified adjacent face boundaries. This is neces- 

sary to keep the surface homeomorphic to an open disk as required in the definition 

of a manifold. If the geometric instantiation of the object surface intersects itself at a 

point, curve, or area then the combination of the object topology and geometry 

representations is invalid under the requirements we have identified so far. At such 

intersections the surface becomes non-manifold and non-orientable with repsect to a 

single volume when one considers the entire surface of the object at one time. 

Non-manifold objects such as those described above can be the result of common 

modeling operations such as the Boolean operations. Requicha discusses constraints 

on the Boolean set operations (the regularized set operations [Requicha 77]) which 

guarantee that all resulting surfaces are used as boundaries of space filling volumes. 

It is the responsibility of manifold modeling system implementations that depend on 

manifold characteristics for their topological integrity to ensure that all possible 

modeling operations result in manifold objects or at least declare non-manifold results 

invalid since they are unrepresentable in the manifold domain. Non-manifold model- 

ing systems can avoid this problem entirely. 

Another geometric restriction involves the valid range of the geometric definition of 

an individual face of a manifold solid object model which uses boundary graph based 

representation techniques. Every embedding of a graph into a surface must be a
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two-cell embedding. That is, each face is homeomorphic to an open disk. Every 

face, whether singly or multiply connected, must be mappable to a plane. This means 

that each face is topologically ‘‘flat’’ and cannot contain handles. Otherwise one could 

arbitrarily add any number of handles to each face and information about such global 

features as genus would have to be contained in geometric surface definitions rather 

than the boundary graph structure. Allowing this would remove many of the advan- 

tages of boundary graph based representations of solid models since detailed 

geometric information would have to be consulted to determine some of the global 

characteristics such as genus of the entire surface. At any rate, flexible geometric 

representations of such multi-handled surface types independent of topological infor- 

mation appear intractable with today’s geometric surface representation techniques, 

particularly when one considers the intersections of such surfaces. Since this is an 

undesirable situation, we will therefore restrict all face geometric surface definitions to 

form surfaces which are topologicaily ““flat’’ and mappable to a plane. 

We can include the surface of a sphere under this constraint if we omit at least one 

point. A truncated cylindrical surface is mappable to a plane and implies a discon- 

nected graph, Both connected and disconnected graph conditions will be discussed in 

this section. 

Following {Requicha 80a], we also restrict geometric surface descriptions to have 

“finiteness’’ properties, that is, they are well behaved in the sense of having finite 

surface area and not having infinitely varying surface properties. 

9.3. Domain Characterization 

We will now describe the domain over which we are examining these solid modeling 

representations in more detail. We are specifically interested in representations of the 

class of manifold solid objects with the following (not necessarily distinct) characteris- 

tics: 

Compact Orientable 2-Manifolds - The surfaces of the objects are compact
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orientable 2-manifolds in a three-dimensional Euclidean space. This 

implies that no faces are allowed which self-intersect, or intersect with 

each other, forcing the adjacency topology to explicitly carry ail surface 

intersection information through adjacency information. Thus in a traver- 

sal of edges bordering faces, every edge is traversed exactly twice, and no 

non-manifold conditions are allowed. The orientability guarantees that the 

interior of a solid volume is distinguishable from its exterior. Note also 

that we are talking about single volumes completely connected by interior 

points, 

Embedded Graph Adjacency Topology - Their topologies are represented by 2-cell 

embeddings of graphs into a surface. In other words, the graph is totally 

contained in the surface, without any edges crossing except at mutual end- 

points. Every face in the embedded graph must have a boundary of at 

least one vertex. 

Pseudographs - Their graphs are pseudographs; they may be muitigraphs and may 

contain self loops. This allows curved edges with little constraint on 

geometry, other than the embedded graph constraint that edges must not 

intersect except at endpoints. This ability is very desirable because such 

situations occur naturally during typical modeling operations involving 

curved surfaces, particularly those involving the Boolean set operations. 

More restricted graphs are briefly considered in Appendix A. 

Labeled Graphs - Their graphs are labeled (at least for those element types 

involved in the adjacency relationships being used to represent their topol- 

ogy). Our interest in maintaining the labels of graph elements is explained 

below. 

Faces contain no handles - This ensures that an arbitrary number of handles can- 

not be added to the surface of a solid without changing its boundary graph 

structure, forcing the adjacency topology to carry all genus information 

(and maintain the validity of the Euler-Poincaré formula). It is important 

to note that a face does not include its boundary; otherwise faces of 

objects like the one in Figure 12 - 4 would have to contain a handle.
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Intuitively this can also be described as the condition that the face must be 

mappable to a plane without cutting the face or changing its boundary. 

Note that the no handle on faces restriction is not implied by the two- 

manifold condition. 

Genus - There is no restriction on the genus of the total object being represented. 

Connected Graph - In initial discussions on sufficiency and data structures, we will 

assume the graphs are connected graphs, and their individual faces are 

simply connected. There are no other connectivity restrictions other than 

being l-connected. This restriction will be lifted in a later parts of the 

relevant discussion. 

The compact orientable manifold, embedded graph, and connected graph conditions 

ensure the validity of the basic Euler-Poincaré equation. 

While polyhedra are normally thought of as having straight edges and planar faces, 

topologically it makes no difference if the edges and surfaces are curved. Therefore, 

in general, graph based solid boundary representational techniques are equally valid 

for representing both planar and nonplanar faced solid objects with curved or straight 

line edges. However, there is a much wider variety of embedded graph 

configurations that are possible if the underlying surface is curved, as indicated by the 

pseudograph condition. This condition is not needed for domains involving only 

planar surfaces, since self loops and multigraphs cannot occur in these more restricted 

environments. 

There are actually several reasons for using labeled graphs. First, it is desirable to 

have the ability to associate non-topological and possibly non-unique attributes with 

topological elements for application purposes (including associating geometric coordi- 

nate values with a vertex). Second, adjacency relationship information, even if 

sufficient, does not in general uniquely identify an element. Third, all element types 

will in general be required in a solid modeling representation since we want the rela- 

tionships of all topological element types to be derivable and associated with each 

other by label.
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Holes in faces and internal cavities in solids can be represented with disconnected 

graphs. Both of these situations are not directly allowed by the connected graph con- 

dition, but this restriction will be removed, and an expanded version of the Euler- 

Poincaré equation will be presented to support removal of this restriction in a subsec- 

tion on disconnected graphs in the following chapter.



. Chapter 10 

TOPOLOGICAL ADJACENCY RELATIONSHIPS 

The basic concepts behind the topological adjacency relationships have been described 

in Chapter 6; this chapter describes the specific topological adjacency relationships 

found in the manifold domain specified in the previous chapter. 

10.1. The Manifold Topological Elements 

Since topological element adjacency relationships concern the relationships between 

individual topological elements, we must now define the elements more carefully 

before describing the adjacency relationships themselves. 

At least seven distinct element types, including six basic topological element types are 

involved in a manifold evaluated object based boundary topology representation. 

They can be seen as being related in a hierarchical fashion, where lower dimensional 

elements are used as boundaries of higher dimensional elements. 

A model is a single three-dimensional topological modeling space, consisting of one or 

more distinct regions of space. A model is not strictly a topological element as such, 

but acts as a repository for all topological elements contained in a geometric model, 

allowing the manipulation of multiple geometric models by a modeling system. 

A region is a volume of space. There is always at least one in a model. Only one 

region in a model may have infinite extent; all others have a finite extent, and when 

more than one region exists in a model, all regions have a boundary. For example, a 

single solid would require two regions in the model, one for the inside of the object, 

and one for the outside (which has an infinite extent). For manifold solid modeling 
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it is usually assumed that there is only one volume of interest (where there would be 

only two regions in a model) so in this situation it is not necessary to directly 

represent regions in an adjacency relationship topology. The only times that more 

than two regions show up in a manifold solid topology is when a solid model has 

several interior voids or when voids have additional shells within them. Even in 

these cases regions are usually not represented directly, since there is a one-to-one 

correspondence between shells and regions in a manifold model. Regions will there- 

fore not be considered further in this section. 

A shell is an oriented boundary surface of a region. Shells are applicable to discon- 

nected graph topologies. A single region may have more than one shell, as in the 

case of a solid object with a void contained within it. A region may have no shell 

only where all space exists as a single region, as in the initial state where no modeling 

has been done, or after all components of a model have been deleted. A shell must 

consist of a connected set of faces which form a closed volume. 

A face is a bounded portion of a shell. It is oriented. Note that an orientable element 

implies only that it is possible to assign an orientation, while an oriented element 

actually specifies a particular orientation. Strictly speaking, a face consists of the piece 

of surface it covers, but does not include its boundaries. 

A loop is a connected boundary of a single face. Loops are applicable to disconnected 

graph topologies. A face may have one or more loops; for example a simple polygo- 

nal face would require one loop, and a face with a hole in it would require two loops. 

Loops normally consist of an alternating sequence of edges and vertices in a complete 

circuit, but may consist of only a single vertex. Loops are also oriented. 

An edge is a portion of a loop boundary between two vertices. Topologically, an edge 

is a bounding curve segment which may serve as part of a loop boundary for the one 

or two faces which meet at that edge. Every edge is bounded by a vertex at each end 

(possibly the same one). An edge is orientable, though not oriented; it is the use of 

an edge which is oriented.
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A vertex is simply a unique point in space, that is, no two vertices may exist at the 

same geometric location (although the topology alone does not specify an exact 

geometric location beyond these topological constraints). Single vertices may also 

serve as boundaries of faces. 

Thus, discounting models and regions, there are three topological elements of interest 

for connected graph manifold adjacency topologies and five topological elements of 

interest for disconnected graph manifold adjacency topologies. 

Although not directly represented in adjacency relationships as described here, at least 

two additional structure types of topological element adjacency uses associated with 

the edge, and vertex elements may also be defined. Their purpose is to represent the 

use of a specific basic topological element in the adjacent group of an adjacency rela- 

tionship; in some representations they are represented directly. 

An edge-use is an oriented bounding curve segment on a loop of a face and represents 

the use of an edge by that loop. There are always two uses of a single edge in a man- 

ifold model. 

A vertex-use is a structure representing the adjacency use of a vertex by an edge, or a 

loop. 

10.2. The Manifold Connected Graph Topological Adjacency Relationships 

The nine manifold element adjacency relationships of topological elements in mani- 

fold embedded graphs, as expressed in the new adjacency relationship terminology, 

are shown in Figure 10 - 1. A diagram of the ordered element adjacency relation- 

ships, along with the unordered relationships (which lack ordering information) is 

shown in Figure 10 - 2. The unordered relationships have been included in these 

figures for later discussions of orderedness of topological models under certain con- 

straints. Figure 10 - 2 includes ordered adjacency relationships with the edge as a 

reference element, although the ordering is not intrinsic to the relationships and can
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only be induced by correspondence (see Section 10.2.1). An expanded example of 

the actual values of adjacency relationships in a particular embedded graph is shown 

in Figure 10 - 3. 

Variations on how each relationship is represented and defined are possible. These 

variations involve the semantics of the adjacency relationships and not necessarily 

storage representation formats. The adjacency relationship definitions shown in the 

figures include a few cases which reflect choice as to the exact meaning of the rela- 

tionship. 

The EE adjacency relationship can be defined at least two different ways. In both 

cases the adjacent group of the reference edge is an unordered list of length two. The 

length of two is due to an edge having two ends and the list is unordered since there 

is no means of identifying one end of an edge from the other solely in terms of its 

edge adjacencies. The difference in the two definitions given is in how the members 

of the adjacent group themselves are defined. 

class  ordered unordered 

VW V<V> Vv 
VE V<E> VIE} 
VF V< F> Vi{F} 

EV E{V} see text 
EE E{[E]} E{{EW EE def. A, see text 
EF E{FP see text 
FV F<V> F{} 

FE  F<E> F{E} 
FF F< F> F{F} FF def. A, see text 

Figure 10 ~ 1. The ordered and unordered adjacency relationships for manifold 
topologies 

{
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\ 
Edge is Facels 

refarence 

Clament element 
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olement 

@ © . 

Figure 10 - 2. Diagram of the ordered and unordered element adjacency rela- 
tionships 
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a) a solid tetrahedron and its labeled embedded graph structure 

b) adjacency relationships 

v l/fz 

V< V> V< E> V< F> 

VIS V> = vi< vy vy v Vi< E> = vi<ejese Vi< B> = vi< fyfafa> 
V< V> = vy vy vy v Vo< B> = vy< eserep> Vo< B> = vy< fifaf o> 
Vi< V> = < vy vy vy Vi< B> = va< ggepes> v3< F> = vy< fifafs> 
Vi< V> = < Uy vy V3> v4< B> = vy< egeieg> va< F> = va< fifafa> 

E{V} E{(E]} E{F} 
e {Vi= {v; v4} e{[ETF= eqllesesllegeq) e{F}= e {24} 
ea{Vi= {vy va} er{lEIF = ey{le ezlles eql) ex{F}= e;{f1f4} 
e3{V}= {v; vy} es{lEIY = es{leselleq esl} e3{F}= e3{f,fs} 
eqfVi= {vy ve} 34{[E]}Z= es{leseslley eql} ey{Fl= eq4{f i f2} 
es{Vi= {vy vs} es{[E]}2= es{leseqlleq eal} es{F}= es{fif1} 
eg{V}= vy vy} e{lE]Y = eg{lereslleq e} e{F}= eg{f1f4} 

F< V> F< E> F< F> 

F1a Ve = fi<vyvgvs F1<E> = fi<eqeqes> Fi< B> = fi<fafaf e 
fa2 V> = foxvgvy v L1 B> = fa< eqezep> fax B> = fo< fifsfe> 
f3< V> = fyvpvyve> f3 B> = fi<esesep Fa< B> = fa<fof ife 
fac Vo> = fucvivave fa<E> = fu< eseqer> fa< B> = fu<fafaf> 

Figure 10 - 3. Actual adjacency relationships for a tetrahedron 



In the first EE definition, E {{E]P, (or E{{[E])* in correspondence) referred to here as 

EE definition A, each of the two members of the adjacent group is itself a group of 

two linearly ordered edges, symbolized by [E]. The two edges, in order, refer to the 

left and right nearest neighbor of the reference edge clockwise and counterclockwise 

from the reference edge respectively about that end of the reference edge. Such rota- 

tional directions are as seen from outside the solid volume looking directly towards 

the surface. This definition of EE has the advantage of requiring a short constant 

length implementation data structure. 

In the second EE definition, E{< E> }*, referred to here as EE definition B, each 

member of the adjacent group is a cyclicly ordered group of edges, symbolized as 

< E>. Each member < E> of the adjacent group refers to the cyclicly ordered list of 

all of the edges surrounding one end of the edge. To effectively use the relation- 

ships, the reference edge would usuaily need to be found in the < £> group in order 

to determine the relationship of the reference edge to other edges, and further, an 

indication of which occurrence of the edge in the adjacent group was relevant to a 

particular end of the edge would need to be maintained for seif Ioop edges. 

An example illustrating the differences in the two definitions are shown in Figure 

10 - 4. 

FF will be defined in terms of the adjacency of faces to vertex and/or edge elements 

in the boundary of the reference face. Even then, the FF relationship can still be 

defined at least two semantically different as well as syntactically different ways. The 

difference is in how the adjacent goup is defined (see also Figure 10 - 5): 

Definition A - only faces adjacent to edges surrounding the reference face are in the 

adjacent group 

Definition B - faces adjacent to edges and vertices of the reference face are in the adja- 

cent group; no differentiation of the two is made in the adjacent group 

Unless specified otherwise, we will be referring to definition A when FF is mentioned. 

The preferred definition is largely a matter of taste; definition 4 is chosen here
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a) topology 

b) E{{E1P form (definition A) generates: 

erfles erlleqesl} 

¢) E{< E> ¥ form (definition B) generates: 

er{< ey eze e9> < ejeqe5e6> } 

Figure 10 -~ 4. EE adjacency relationship formats 
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a) topology 

b) definition A 

1< F> = fi< fufsfsfr> 

¢) definition B 

Fi<F> = fi< fofafsfafsfsf1fsfs> 

Figure 10 - S. Two definitions of the F< F> adjacency relationship 

because of its simplicity and because of the convenience of having the same number 

of members in its adjacent group as F< V> and F< E> . 

In the F< V> relationship, strut or isthmus edges and self loops in faces are 

represented as shown in Figure 10 - 6. 

The V< F> relationship is defined such that the adjacent group enumerates all faces 

encountered between all the edges surrounding a vertex. The number of elements in 

the adjacent group of F< V> is therefore the same as in the V< E> relationship.



78 

For example, in the case of v, in Figure 10 — 6, the adjacent group is < f, f1 f1 > . 

This is the maximum amount of information we can ascribe to V< F> . 

10.2.1. Edge Adjacency Relationships 

The element adjacency relationships where the edge is the reference element have 

several characteristics which are different from the other adjacency relationships and 

are worth mentioning at this point. 

The relationships where the edge is the reference element are the only relationships 

in which the adjacent groups can be of fixed length, are essentially unordered, and 

can not be truly cyclic. 

EV and EF are defined as E{V}and E{F} and are exceptional in that they are the only 

adjacency relationships which always have exactly two members in their adjacent 

group (le{V}l = 2 and le {F}|= 2). Without combining information together, 

there is no basis for differentiating one end or one side of the edge from the other in 

any in.dividual adjacency relationship involving the edge as the reference element. 

Thus EV and EF are by themselves unorderable without réferring to other elements 

for positioning, One might argue that EV and EF have cyclic ordered adjacent groups 

of length two, but this is semantically equivalent to an unordered list in terms of ord- 

ering information, and it is unclear if a claim can be made for any cyclic nature of the 

two ends of an edge. Therefore, since EV and EF can't reflect any true ordering they 

are represented as unordered element adjacency relationships, and there are no 

ordered versions of EV and EF. 

Similarly, the adjacent group of the EE relationship is also unordered. In this case, 

however, it is listed as an ordered adjacency relationship because some relative order- 

ing information is retained in each of the individual members of the adjacent group in 

both definitions discussed. 

Any two or all three of the adjacency relationships with the edge as the reference ele-
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a) F< V> relationship 

FIRV> = i< vsvivgyvavavyv,> 

b) V< F> relationship 

Vi F> = v < faf o fy> 

¢) V< E> relationship 

viK E> = vi< e eges> 

d) E{[E1P relationship (EE definition A) 

eellEIY = eg{le el [ese, ]} 
e{[E1P = e7{lesesl[e5e7]} 

e) E{< E> ¥ relationship (EE definition B) 

eg{< E> P = es{< ejeges> < eg> } 
e{<E> P = e;{< eqeqere3> < egeqeqe,> } 

Figure 10 - 6. Adjacency relationship example involving strut edges and self 
loops 
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ment may be put into correspondence. In this case the correspondence information 

may be represented by having the adjacent group assume an ordering for coordination 

only, as in E{V) and E{F] for E{V } and E{F} in correspondence, and using the order- 

ing to coordinate between the two relationships. ‘Although the ordering is arbitrary 

for the first relationship chosen, it provides a basis for ordering the remaining ele- 

ments, allowing the correspondence to be made. Thus while E{V ¥, E{{E]P, and E {F} 

all consist of unordered adjacent groups, the imposition of an ordering can be used to 

represent the correspondence between all of them, creating E(V12-E[[E1}%-E(F]? This 

ordering would be used for correspondence and does not represent information 

inherently present in the specific adjacency relationships in correspondence. 

An example of the representation of strut and seif loop edges in terms of both 

definition A and definition B of the EE relationship are shown in Figure 10 - 6d and 

10 — 6e. Ends of strut edges, since they are not adjacent to any other edges, are 

represented in definition A, E{{E]1¥, as a set including the reference edge twice for 

the corresponding member of the adjacent group. In defi‘nition B, however, a strut 

edge does have a single member in its adjacent group member < E>, which is the 

reference edge itself. 

An advantage of the EE definition A is that with the correspondence E[VI*-E[[E])* 

E[FY?, efficient clockwise and counterclockwise traversals around the edges and ver- 

tices surrounding a face can be made. This allows traversal of the entire graph 

without resorting to local searches through cyclic lists of elements of arbitrary length, 

as would be necessary with EE definition B unless the cyclic adjacent groups were 

somehow marked to indicate the location of the reference element edge in the cyclic 

list. 

10.2.2. Correspondence 

The twenty-seven pairs and the six triplets of possible correspondences of the nine 

possible adjacency relationships are listed in Figure 10 - 7. Nine of the possible
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thirty-six pairs of adjacency relationships (thirty-six since the number of unique unor- 

dered pairs in a group of n objects is fl%fi ) do not allow correspondence because 

they involve the adjacency relationships where one of the pair of adjacency relation- 

ships has the same reference and adjacent group element type and the other of the _ 

pair of adjacency relationships consists of the two element types not found in the first 

relationship. 

same reference element type 

EV - EF VE - VF FV - FE 

EV - EE VE - VV FV - FF 

EE - EF VV - VF FE - FF 
EV-EE-EF VV-VE-VF FV-.FE-FF 

same adjacent group element type 

VV - EV VE - EE VF - EF 
VV - FV VE - FE VF - FF 

EV - FV EE - FE EF - FF 
VV-EV-FV VE-EE-FE VF-.EF-FF 

mixed same reference and adjacent group element type 

VE-EV VF-FV EF-FE 

VE-EF VF-FE EF-FV 

VE-FV VF-EV EV-FE 

Figure 10 - 7. Correspondences between the nine adjacency relationships 
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10.3. Adjacency Relationships for Disconnected Graphs 

Although early boundary modelers (such as [Baumgart 72]) had simpler data struc- 

tures which represented topology information using the element adjacency relations 

much as they have already been described, several later boundary based solid 

modelers (including [Eastman & Weiler 79] and [Braid et al 78]) have expanded the 

number of basic elements to remove both the surface and volume connectivity res- 

trictions encountered with the original representations. The basic idea is that the new 

element types ‘‘bridge’’ the gap between common boundaries of the same face or 

volume. Since the same conditions can be represented in a connected graph 

representation, the changes are more a practical matter of convenience and a clean 

representation rather than an extension of theory. 

The loop structure modification was originally created to eliminate the otherwise 

unnecessary artifact edges used to associate ‘‘inner’’ hole contours with the “‘outer’’ 

face boundaries (see Figure 10 — 8). The addition of the loop structure generalizes 

the representations to allow disconnected graphs within single surfaces of a solid 

volume, 

The shell structure extension was made to allow multiple shelled objects (solid 

volumes with internal cavities) without resorting to artifact faces created solely to pro- 

vide a connected graph representation of the desired separate surfaces (see Figure 

10 - 9). Similarly, this addition generalizes the representation schemes to allow sin- 

gle volumes to contain multiple surfaces. 

Both of these additions together modify the Euler-Poincaré equation: 

V-E+ F= 2-2G 

to the following form: 

V-E+ F-(L-F)= 2(S-G) 

where L is the number of loops and S is the number of shells or surfaces in the
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object being represented. 

10.3.1. Loops 

Note that the quantity (L - F) in the Euler-Poincaré equation above is the number of 

contours of multiply connected faces “‘in addition’’ to the first contour in faces of the 

object being represented. The effect of subtracting the “‘additional’’ contours on the 

left side of the equation is identical to the effect of including an additional artifact 

edge, since the edges appear with a negative sign on the left side of the equation. 

Thus the overall effects of the two different multiple contour face representation tech- 

niques are identical in terms of their effect on the Euler characteristic of the topology: 

While the artifact edge technique is convenient from a theoretical point of view for its 

simplicity, it has several problems from a practical standpoint. In a geometric model- 

ing situation, where models are constantly modified during the design of an object, 

the artifact edges may be split several times, increasing the computational costs of 

manipulating the model. The system must also be able to decide which vertices of 

vy Va v A 

Vs Vs Vs Vg 

Vg vz Ve vy 

Va V3 Vy V3 

Figure 10 — 8. Artifact edges to associate separate boundaries of a face 
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artifact faces 

[\ 
LM< 

Figure 10 — 9. Artifact faces to associate separate boundaries of a volume 

the contours to use when locating the artifact edge in the structure during its creation. 

In systems which actually display artifact edges, the appearance of these edges to pro- 

duce a hole in a face is conceptually disturbing to users whose modeling requests 

(such as remove the volume of a cylindrical shape from a block) did not imply 

“‘extra’’ lines on faces with holes. 

10.3.2. Shells 

Object representations with multiple shells could be represented by a list of several 

separate surface topologies. Unlike artifact edges used to represent holes in faces, 

independent shells cannot be represented by ‘“‘artifact faces’® without significant com- 

putational effort and additional tags to differentiate ‘‘real” faces from artifact faces.
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This is necessary because two matching coincident ‘‘faces’” are required to tie 

together an outer shell to an inner shell. Normally, geometrically coincident faces 

which are topologically separate would not otherwise occur in such representations. 

Some additional topological information not derivable from the other adjacency rela- 

tionships can also be stored at the shell level. This information is the characterization 

of which shell is the outer shell of the finite object and which are the inner shells 

entirely contained by the outer shells. The usefulness of representing this informa- 

tion in the topological model instead of deriving it from geometric information is 

again dependent upon its frequency of use in a given application. Such information 

can reduce computational cost dramatically in situations such as the determination of 

whether a point is interior or exterior to a solid since it allows a hierarchical spatial 

search to be performed. 

10.3.3. Disconnected Graph Adjacency Relationships 

If the loop and shell elements are considered as additional topological element types, 

then several new adjacency relationships emerge, as well as changes in the semantics 

of the old adjacency relationships. There can be many variations on the way these 

relationships are specified; one way is shown in the adjacency relationship matrix in 

Figure 10 - 10. 

Since we are only allowing manifold surfaces on objects, the adjacency relationships 

V{Sh E{S} L{§} F{S}, may only have one member in their adjacent group. L {F}is 

part of the definition of a face and therefore has only one member in its adjacent 

group. Since edges have only two sides on a manifold, similar to the initial set of 

adjacency relationships, the adjacent groups of E{V}, E{L}, E{F}, and each of the 

member groups of the adjacent groups of E{{E]} have exactly two members. 

V< L> is defined as the cyclically ordered list of loops which use a vertex (see Figure 

10 — 11). LL could be defined as the list of loops adjacent to the reference loop by
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Ve V> V< E> V<L> V< F> VY 

E(P E{[EIP EQLY E{FP E{fY 

L<V> L<E> L<L> L{F} LS} 

Fi<V>} F{E>} F{L} F{<F>} F§} 

SV} S{E} S} S{F} sy 

Figure 10 - 10. The manifold disconnected graph adjacency relationship matrix 

sharing an edge (LL definition A), or as the list of other loops used in the face to 

which the loop belongs (LL definition B), as shown in Figure 10 - 12. We will use 

LL definition A here. 

F{L }is the list of loops belonging to a face. 

FV, FE, and FF adjacent groups may have multiple members, each member of which 

is a group, one for each loop in the face. For a given face f;, there will therefore be 

exactly |f;{L }| members in the unordered adjacent groups of F{< V> }'/"(“' , 

Fi<E> }lf,-{L)l £ H 
, and F{< F>} , with each adjacent group consisting of |f;{L }| 

members consisting of < V>, <E>, and < F> groups, respectively. These < V> 

and < E> adjacent groups are equivalent to L< V> and L< E> for each loop of the 

face. 

§{S} has no members in its adjacent group since shells may not touch in manifold 

environments. §{F} simply provides a lists of faces in a shell; the remaining adja- 

cency relationships using a shell as the reference element can be derived from §{F} 

and similar adjacency relationships using the face as the reference element.
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viLl> = < lilhlls> 

Figufe 10 - 11. V< L> adjacency relationship example 
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a) LL Definition A: 

IH{L } = {lslylsle} 
L} = {4} 

b) LL Definition B: 

lhi<L> = <Ip» 

< L> =< - 

Figure 10 - 12. LL adjacency relationship example 

A model normally keeps a simple list of shells. More complex structures may be 

desirable in some situations to differentiate the outermost shell or completely capture 

the shells of multiple objects or an ability to differentiate containment relationships 

between shells (such as with hierarchical tree structured lists). 

The new FL and LF adjacency relationships involving the loop element type embody 

the connective information allowing faces to have multiple disconnected contours. 

Such connective information was only available through adjacency relationships 

involving edges in the previous system of adjacency relationships, which is why the 

artifact edge technique was developed to simulate disconnected contours.
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Since the addition of the shell element type occurs at a hierarchically higher level 

above the existing elements, its effects on the other element adjacency relationships 

are minimal,



Chapter 11 

TOPOLOGICAL SUFFICIENCY 

Proving the topological sufficiency of a geometric modeling representation is an 

important part of the process of verifying the correctness of a representation over a 

specified domain, The most concise way to prove topological sufficiency of a 

representation is to start from information about the theoretical minimum informa- 

tion necessary to attain sufficiency. 

This chapter develops the theoretical minimum topological adjacency information 

necessary for manifold boundary geometric modeling representations. This is done 

by examining the topological element adjacency relationships for topological 

sufficiency. Sufficiency of specific data structures is discussed in Chapter 12, which 

describes the data structures. 

The topological element adjacency relationships are first considered for sufficiency 

individually, and are then considered for sufficiency in combination. The findings are 

then summarized. 

Some readers may wish to skip directly to the summary subsection at the end of this 

chapter on a first reading. 

11.1. Sufficiency of the Manifold Element Adjacency Relationships 

To examine the topological sufficiency of a representation or of its specific implemen- 

tation data structures we first need to find what information is sufficient, in other 

words which set of adjacency relationships are sufficient, 

The overall objective of this chapter is to characterize the theoretical sufficiency of 

90
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various subsets of the manifold ordered element adjacency relationships, and in par- 

ticular each individual adjacency relationship, to represent manifold curved surface 

domain polyhedral topologies. 

It can be proven with simple counterexamples that none of the individual unordered 

element adjacency relationships are sufficient to specify a complete manifoid 

polyhedron topology under the conditions identified in Chapter 9. Although 

insufficiency of two of the unordered adjacency relationships will be proven here, this 

section will concentrate on examining the sufficiency of the ordered element adja- 

cency relationships and their ability to unambiguously produce a compiete polyhedron 

topology representation under the conditions identified in Chapter 9. This includes 

the topic of whether some combinations of individually insufficient adjacency relation- 

ships are together sufficient, 

First, sufficiency will be defined, then sufficiency of three of the nine individual ele- 

ment adjacency relationships will be proven, and then insufficiency of the remaining 

six will be proven. The sufficiency of some pairs of individually insufficient element 

adjacency relationships will also be considered. Finally, a summary will characterize 

the findings. 

11.1.1. The Individually Sufficient Adjacency Relationships 

Three element adjacency relationships, V< E> , the specific £E adjacency relationship 

E{< E> P, and F< E> , are individually sufficient to represent polyhedral topologies. 

All three sufficient element adjacency relationships have the edge element type as the 

type of their adjacent group. 

11.1.1.1. V < E> Sufficiency 

A theorem due to Edmonds [Edmonds 60] determined that the directed cyclic orders 

of the edges around the vertices in an embedded graph are sufficient information to 
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completely and uniquely describe polyhedron topologies (see [White 73] and [Graver 

& Watkins 771). The cyclicly ordered edge-around-a-vertex information is equivalent 

to the definition of the V< E> element adjacency relationship given here. Therefore 

the V< E> adjacency relationship by itself is sufficient for representing polyhedral 

topologies unambiguously. 

A major result of the theorem is an embedding enumeration algorithm, called the 

Edmonds embedding technique, which can produce all of the 2-cell embeddings in an 

orientable surface of a given graph (the connectivity information V{V}or E{V}). The 

algorithm operates by turning the lists of edges incident to each vertex into a cyclic 

list, which creates a specific instantiation of V< E> information. By permuting the 

orders of the edges in the cyclic lists, all possible V< E> adjacency relationships can 

be created. The theorem states that each possible ordering corresponds to a specific 

embedding of the graph in an oriented surface. Thus, by permuting the V< E> adja- 

cent group information created in this way, each of the possible embeddings can be 

produced. 

Generating the actual embedding from a specific instantiation of the V< E> informa- 

tion (see [White 73]) involves constructing the boundaries of the faces of an embed- 

ding from the V< E> information, and then ‘‘sewing” the face boundaries together 

by matching up their edges much like assembling a picture puzzle. Every edge of an 

embedded graph is used exactly twice in the V< E> adjacent groups of edges, and 

each such use of an edge is associated with one of the two directed edges between the 

two vertices of the edge. Since this map construction or embedding technique results 

in a mapped graph where every edge is used twice and in opposite directions, the map 

is closed and oriented. 

To illustrate how the boundaries of the faces of an embedded graph can be deter- 

mined, the following algorithm which is part of the Edmonds embedding technique 

(see [White 73] and [Young 63]) is presented in adjacency relationship terminology.
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To traverse the boundary of a face in a clockwise direction given the clockwise cyclicly 

ordered V< E> information: 

L. Select a vertex v;. This will be called the original vertex. 

2. Select an edge which is a member of v;< E>, say v;< E> ,. This will be called 

the original edge. 

3. Find some v;< E>, such that i< E> , = vw< E>, and if i = & then a# b. 

4. Find v,< E> ,, the successor edge to v,< E> , in the traversal of the face 

boundary, from the v,< E> information using 6. w< E>, is simply the 

edge preceding vi< E> , in the cyclic sequence v, < E> , that is ve< E> ,_;. 

5. Until v, = the original vertex and v,< E> ., = the original edge, g0 to step 3, 

using v, as the new v; and vy< E> , as the new vi< E> . 

The traversal of the boundary of a face in the embedded graph from the V< £> 

information alone is now complete. To construct all face boundaries from the V< E> 

information the above process is repeated until all edges have been used twice during 

the traversals of the face boundaries. 

Note that the F< V> -F< E> adjacency relationships in correspondence can also be 

created during the face boundary traversal. These relationships are used to *‘sew’’ 

together the face boundaries into a complete embedding by an identification process 

which matches up each use of an edge so that each of its two adjacent faces uses the 

edge in opposite directions in their boundary. This is done by making sure the ver- 

tices of the two uses of the edge “‘match up’ when the two faces are made adjacent 

along their common boundary. In the case of an isthmus or strut edge the two sides 

or uses of the edge are sewn together on the same face boundary. 

Using this embedding technique, V< E> information taken from a specific embed- 

ding can be used to generate an embedding which will be identical to the original up 

to the label of the faces. If desired, after the embedding process is complete, the 

faces of the embedded graph may be uniquely labeled, and other adjacency relation- 

ships derived. 
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11.1.1.2. E {< E> } Sufficiency 

It is apparent that E{< E> }*, EE definition B contains nearly identical information to 

V< E> since each member of the adjacent group contains information identical to the 

entire adjacent group of the V< E> relationship of one of the vertices to which the 

edge is incident. The difference is that the reference vertex of each < E> adjacent 

group is unknown, and there are multiple copies of each < E> group. In fact, for 

every vertex of degree n there are n copies of an adjacent group equivalent to the 

vertex’s v;< E> adjacent group. E{< E> ¥ cannot be used directly for traversal of the 

edges bounding a face because there is no foolproof way of determining which edge 

of the < E> groups to use when multiple self loops occur at a vertex of the reference 

edge. In order to determine face boundaries and embeddings from the E{< E> P 

information, V< E> information must first be created. 

V< E> information can be created from E{< E> ¥ information by a simple algorithm 

which eliminates the duplicate copies of the < E> groups and then labels the vertices. 

Establishing the equivalence between E{< E> }? and V< E> in this way will prove the 

sufficiency of E {< E> 

The algorithm is: 

1. If there are no E{< E> P adjacency relationships, then our embedded graph is 

the trivial graph and we are finished. 

2. Otherwise, for each adjacent group member < E> of every ¢;{< E> }? create an 

equivalent < E> and place it in set A, a set of all < E>’s found in all 

E{< E> }s. 

3. Until set A is empty: 

a) Remove some < E>, a member of set A, from set A, 

b) Find and eliminate the other (n-1) members of set A which 

exactly match in membership and cyclic order the < E> origi- 

nally removed from set A in step 3a, where n = |< E> |. 

c) Place the < E> originally removed from set A in step 3a into set B.
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4. Until set B is empty: 

a) Remove < E>, any member of set B. 

b) Create a unique label of a vertex, i . 

c) Join the label with the < £> to create a v;< E> adjacency relation- 

ship. 

Given the ability to generate V< E> information uniquely from E{< E> ¥ informa- 

tion, we can claim sufficiency for E {< E> ¥ (EE definition B). 

Theorem 11-1: The E{< E> ¥ adjacency relationship is sufficient to unambiguously 

represent adjacency topologies of polyhedra, 

proof: Given the above algorithm, one can convert E{< E> P into V< E>. The algo- 

rithm is correct because by the EE definition B of E{< E> }* there must be 

n copies of the < E> cyclic ordered groups of edges surrounding each ver- 

tex of degree n, one for every edge incident to a vertex. Given the one- 

to-one correspondence between V< E> and E{< E> ¥ using this algo- 

rithm, E{< E> P is then sufficient by the Edmonds theorem. 

11.1.1L.3. F < E> Sufficiency 

The ordered cyclic list of edges surrounding a face preserves the orientation and 

embedding of the face. Because each edge can only be used twice, and because the 

orientation information is preserved, an embedding technique can be constructed to 

create the complete embedding from the F< E> information. 

The embedding process is similar to the Edmonds embedding technique and is basi- 

cally an identification process which matches up each of the two directed uses of a 

given edge as well as each of the uses of a vertex. The identification process will 

form a closed and oriented surface. Unlike the Edmonds technique, information on 

vertex identity is not directly available and vertex identification must be made solely 

through the use of edge information.
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The embedding procedure involves the examination of all adjacent groups of all 

fi< E>: 

1. edge identification procedure 

If any f,< E>, = f.,< E>, where a may or may not equal ¢ (but if a= 

c, as in the case of a strut edge, then b# d), then the boundaries of f, and 

fe are adjacent along this edge. The two uses of the edge are the only 

uses of the edge and are of opposite orientation in the‘boundary cycles of 

fo and £.. 

2. vertex identification procedure 

Every edge has two ends or vertices. A traversal of the boundary cycle of 

a face first encounters one vertex of the edge, called the starting vertex of 

the edge, then encounters the edge itself, and then encounters the second 

vertex of the edge, called the ending vertex of the edge with respect to the 

face boundary cycle. There are two rules for vertex identification: 

A) The starting vertex of an edge f,< E>; is the same vertex as the end- 

ing vertex of the edge f,< E> ;_; directly previous to f,< E>; 

in the face boundary cycle. The ending vertex of an edge 

fa< E>; is the same vertex as the starting vertex of the edge 

fa< E> 4y directly following f,< E>; in the face boundary 

cycle. 

B) For any matching uses of an edge f,< E>, = f.< E>, , the starting 

vertex of edge f,< E> , is the same vertex as the ending vertex 

of edge f.< E> ; and the ending vertex of edge f,< E> , is the 

same vertex as the starting vertex of edge f.< E> 4. 

As a direct result of rule A in the vertex identification procedure, if | f,< E> |= 1 or 

| fe< E> | = 1 then the starting and ending vertices of the edge are in fact the same 

vertex. Intuitively this makes any previously discovered common uses of the starting 

and ending vertices in the partially embedded graph coalesce so that they converge 

upon the same vertex. If | f,< E> |# 1and | f,<E> |=# 1 then the two vertices
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of any given edge in the face boundary cycles may or may not be distinct. In other 

words, a self loop must be encountered before it will be recognized that two potential 

vertices are in fact the same vertex, since the vertices have not been labeled. 

As a result of vertex identification rules A and B combined, if any two-edge sequence 

fa< E>j, fn< E> 4y in the face boundary cycle of face f» matches in opposite order 

a sequence f,< E> ; ... f,< E> ;;1,,, a sequence in the face boundary cycle of face f, 

in which there may be n= 0 or more edges between fa<E>;and f,< E> .y, then 

the ending vertex of f,< E> ; is the starting veftex of fm< E> ;4 is the ending vertex 

of fo< E>; is the starting vertex of f,< E> j+1 is the ending vertex of f,< E> jen 1S 

the starting vertex of f,< E> j+1+n (see Figure 11 - 1), 

F< E> information is similar to the information which had to be constructed in the 

fSESj4n frsEdyq 

fn<E>i+1+n ffl(E)i 

fm 

Figure 11 - 1. Result of application of vertex identification rules A and B 
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first part of the Edmonds embedding technique, except that the additional F< V> 

information is not directly available and must be constructed. Direct information on 

the vertices of the edges of the face boundaries is not necessary to match up edges 

during embedding because uses of the edges already reflect orientation. Therefore 

each of the two uses of a given edge in the F< E> information necessarily uses the 

edge in a direction opposite to the other use. Vertex identification is more involved 

than for V< E> during embedding since vertices are not directly represented in 

F< E> and the information must be derived from edge adjacencies by the rules given 

above. 

If desired, after the embedding process (the identification process) is complete, the 

vertices of the embedded graph may be uniquely labeled, and other adjacency rela- 

tionships derived. 

Theorem 11-2: The F< E> adjacency relationship is sufficient to unambiguously 

represent the adjacency topologies of curved surface polyhedra, 

proof: Using the identification process above, since every instance of an edge on a face 

boundary is matched with another instance of the same edge on a face 

boundary, and every vertex use is connected, the resulting embedding is 

closed. Since the two instances of each edge are of opposite orientation 

for the two adjoining faces, the embedding is oriented. The order of the 

rules applied in the identification or ‘‘sewing’’ process does not affect the 

outcome since all affects are local. At every step in the sewing process for 

any given edge instance remaining to be sewn there is only one possible 

other edge instance in a boundary to which it can be matched. By the ver- 

tex identification rules there are a finite number of steps to determine 

common vertex identity. The process is therefore deterministic, and the 

embedding produced unique. 

A point of minor interest is the representation of the trivial graph in the three 

sufficient adjacency relationships. In V< E> it is represented as a single adjacency 

relationship with an empty adjacent group. In E{< E> ¥ and F< E> there is no direct
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way of representing vertices unattached to edges, so they must represent the trivial 

graph as simply the absence of any adjacency relationships. 

11.1.2. The Insufficient Individual Adjacency Relationships 

Six of the nine element adjacency relationships are individually insufficient for unam- 

biguously representing the topologies of polyhedra. These six relationships are E{V}, 

EFY V<V>,F<V>,V<F>, and F< F>. Additionally, EE definition A, E{{E]}, 

is also insufficient, 

Intuitively, the proofs utilize counterexamples to the unambiguous reconstruction of 

a mapping of the graph from the adjacency relationship information under considera- 

tion. In these counterexamples, it is shown that for a given adjacency relationship of 

the type under consideration there exists more than one mapping. This is not accept- 

able for the unambiguous representation of the topology of polyhedra and proves the 

insufficiency of the particular adjacency relationship under consideration for represent- 

ing topologies of polyhedra. 

Proofs of the insufficiencies are most easily given in the form of counterexamples. 

All of the insufficiency proofs in this paper have the same basic format, so the format 

is described once and referred to from the insufficiency theorems in the following sec- 

tions, The general format of the proofs is: 

General Format for Insufficiency Theorems 11-3 through 11-5: 

Theorem: The X adjacency relationship information is not sufficient to unambiguously 

represent the manifold adjacency topologies of curved surface polyhedra. 

proof (by contradiction): If the X adjacency relationship is sufficient to unambiguously 

represent the manifold adjacency topologies of curved surface polyhedra, 

then one could reconstruct the unique mapping of the embedded graph of 

the object shown in the Figure X part @ (along with all of the adjacency 

relationships up to the labels of the other element type(s) not involved in 

the X adjacency relationship) from its X adjacency relationship information 
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alone (Figure X part b). Note, however, that another mapping consistent 

with the X adjacency relationship information can be found which is not 

consistent with other adjacency relationships in the original, meaning the 

two labeled mappings are not homeomorphic (Figure Xpart ¢). The X adja- 

cency relationship is ambiguous and does not contain enough information 

to uniquely represent the topology (mapped graph) shown in the figure. 

Therefore the X adjacency relationship is insufficient to unambiguously 

represent manifold curved surface polyhedra topologies. 

Proofs of insufficiency for the remaining six element adjacency relationships now fol- 

low. Where appropriate, comments are made regarding causes of the insufficiency 

and restrictions which would allow the particular element adjacency relationship to be 

sufficient. 

For completeness, proofs of the insufficiency of E {V } and E{F} are given even though 

they are not ordered adjacency relationships. 

Theorem 11-3: Each of the E{V}, E{F}, V<V>, F<V>, V< F>, and F< F> adja- 

cency relationships are individually not sufficient to uwnambiguously 

represent the adjacency topologies of curved surface polyhedra. 

proof (by contradiction): Using the insufficiency proof form, and the Figures 11 — 2, 

11-3, 11 -4, 11 -5, 11 -6, and 11 - 7, respectively, we can see that 

each is insufficient by counterexample, 

Given that the £{V} and E {F} adjacency relationships are not truly ordered element 

adjacency relationships, it is not surprising they are not sufficient. 

While each of the two element adjacency relationships V< V> and F< V> are 

insufficient for the general case, they are each sufficient if the range of representation 

is restricted to disallow multigraphs and self loops. Intuitively, it is possible to see 

this is true because it is only with multigraphs and self loops that edges are not 

uniquely identified by the set of their two endpoints. If the restriction is made and 

pseudographs are not allowed, then it is fairly straightforward to develop a function
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a) Mapping 1 

b) E{V} information 

eV = e{vi val sV} = esfvy vo} 
eV = ey{vy va}  eufV} = es{vy vi} 

c) Mapping 2 

©1 

Note: while this is a convenient proof, use of pseudographs are not necessary to 
prove E{V} insufficient; an example is the hypercube. 

Figure 11 - 2. Insufficiency of the E{V} adjacency relationship 
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a) Mapping 1 (and object) 

b) E{F} information 

e{Ft = e{fy fi} 
ex{F} = e{fy fs} 
es{F} = es{fs fa} 
esfF} = esdfs f4} 

¢) Mapping 2 

es{f1 fa} 
ee{fs fa} 
er{f1 fa} 

es{fs fa} 

Figure 11 ~ 3. Insufficiency of the E{F} adjacency relationship 
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a) Mapping 1 

b) V< V> information 

i V> = vi< vy vy vy vy> Vi< V> = v vy vavgv> 
vk V> = v vy> v V> = v vy> 

c) Mapping 2 

Figure 11 - 4. Insufficiency of the V< V> adjacency relationship 
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a) Mapping 1 

b) F< V> information 

f1IRV> = fi< vy vp> fi< V> = fi< vy vy> 

[ V> = fa< vy vp> fa< V> = fu< vy vp> 

¢) Mapping 2 

1 

v v 

Figure 11 - 5. Insufficiency of the F< V> adjacency relationship 



105 

a} Mapping 1 

b) V< F> information 

VISEF> = v fifafafo> v F> = v fy o> 
Vo F> = vy f3 o> Vs F> = vs< fy o> 
Vi< F> = vy f3 fo> 

c) Mapping 2 * 

(note that orientation of f 4 has changed) 

Figure 11 - 6. Insufficiency of the V< F> adjacency relationship 
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a) Mapping 1 

4 

b} V< F> information 

fi<F> = fi<fafafafafafe>  fi<F> = fa< fafafo 
fi<F> = fo<fi f1 fe> fa< B> = f<fifofifafs fo> 

c) Mapping 2 

f1 

Figure 11 - 7. Insufficiency of the F< F> adjacency relationship 
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that transforms V< V> into V< E> and F< V> into F< E> . Since both V< E> and 

F< E> are sufficient without restriction, V< V> and F< V> would be sufficient 

under these restrictions. Sufficiency under this restriction is addressed in detail in 

Appendix A. 

In a fashion similar to V< V> and F< V> under constraint, if we constrain the adja- 

cent groups of £ {F} to be unique so that the reference edge element can be uniquely 

identified, V< F> and F< F> can be transformed to V< E> and F< E> respectively 

and can be considered sufficient under constraint (see Appendix A). 

EE definition A, E{[E]}, is also insufficient: 

Theorem 11-4: The EE definition A adjacency relationship, E {{E1¥, is insufficient to 

unambiguously represent the adjacency topology of curved surface polyhe- 

dra, 

proof (by contradiction): Using the insufficiency proof form, and the Figure 11 - §, 

we can see that E{[E]} is insufficient by counterexample. 

11.1.3. Sufficiency of Combinations of Adjacency Relationships 

Since some of the individual element adjacency relationships are insufficient, it is 

interesting to consider whether combinations of individually insufficient element adja- 

cency relationships are together sufficient. 

Out of thirty-six possible unique unordered pairs of the nine adjacency relationships, 

twenty-one already involve sufficient relationships, Of those remaining, three have 

no basis for correspondence and do not appear in the list of twenty-seven correspon- 

dences of Figure 10 — 7, We are therefore left with twelve pairs of possible interest. 

As previously mentioned, practical modeling systems need to label all three element 

types so that additional application related information may be associated with the ele- 

ments. This means that at least two adjacency relationships will be needed in these
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a) Mapping 1 

M 
I 

il 

e e 

" 2 ' @ ’ 

83 » 

. M 

b) E{V} information 

e {lEVP= el e; 3]l ez €3]} 
e{lEVF= ex{les el e5 (1} 
es{ET¥= es{l e, e;]l ey es]} 

¢) Mapping 2 

vy 

Figure 11 - 8. Insufficiency of the E{[E]} adjacency relationship 
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systems so that all three element types are labeled and properly associated to be able 

to combine the adjacency information. This makes it interesting to ask whether any 

two of the individually insufficient element adjacency relationships which involve all 

three element types are together sufficient to represent the topology of polyhedra. 

Of the remaining twelve possible pairs of adjacency relationships, only five pairs of 

element adjacency relationships involve all three element types. One pair, consisting 

of E{V}-E{F}, has the same element type as reference element and therefore has the 

strongest correspondence. Two more pairs, E{V}-F< V> and E{F}-V< F> , have 

the same element type in their adjacent groups, and the last two pairs, E{V}-V< F> 

and E{F}-F< V> are mixed with the common element type in both the reference ele- 

ment and adjacent group. 

As will be now shown, none of these five pairs of element adjacency relationships are 

sufficient to unambiguously represent the topologies of polyhedra. The form of the 

proofs is identical to that used in the proofs of insufficiency for the individual rela- 

tionships and so will not be repeated here. The only difference is that pairs of rela- 

tionships instead of single relationships will be considered. 

In the E{V }-E {F} pair it will be assumed that we have access to both of the adjacency 

relationships in strong correspondence since this will allow the maximal amount of 

information to be available. If E[V]-E[F] in correspondence is not sufficient (as we 

will prove next) then the pair E{V} and E {F} together without correspondence is also 

not sufficient since even less information is availabie. 

Theorem 11-5: Each of the E(VI*E(F, E{VP-F< V>, E{FP-V< F> , E[VP-V< F> , 

and E{fFP-F<V> adjacency relationship pairs with correspondence is 

insufficient to unambiguously represent the adjacency topologies of curved 

surface polyhedra. 

proof (by contradiction): Using the insufficiency proof form, and the Figures 11 ~ 9, 

11-10, 11~ 11, 11 - 11, and 11! - 12, respectively, we can see that 

EWVIRE[FI,, E{VP-F<V>, E{FP-V<F>, E{YP-V<F>, and E{FP- 

F< V> are each insufficient, 
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Another, more complex combination of particular interest is the so called “‘winged- 

edge’’ structure polyhedral topology representation which is discussed in more detail 

in Chapter 12. This representation is essentially E{V]? - E[{E]]? - E{F)? in correspon- 

dence, utilizing each of the adjacency relationships with the edge as the reference ele- 

ment including the EE definition A. All three have been proven individually 

insufficient previously in this thesis. However, see Section 12.3.2 for proof of the 

conditions required for sufficiency of the adjacency relationship pair E [V 1%-E([E])% 

The seven other pairs of the original twelve pairs of interest are not examined here 

since they do not involve all three element types. Additionally, if one also examines 

others pairs involving EE definition A, several more pairs of possible interest can be 

generated. 

Combinations of three or more individually insufficient element adjacencies are also 

not examined here. 

11.2. Sufficiency of the Disconnected Graph Adjacency Relationships 

Disconnected graph topology representations can always be reduced to connected 

graph domain by the addition of artifact edges and faces to eliminated loops and 

shells, 

The introduction of the new element types does produce some differences in the 

sufficiency of the various adjacency relationships for representing polyhedral topolo- 

gies. The new adjacency relationships together contain the same information available 

with the old adjacency relationships, but the information in some cases has been dis- 

tributed over a greater number of adjacency relationships. This directly affects the 

sufficiency of the new element adjacency relationships. 

Intuitively, the addition of the loop element effectively “‘spreads out’’ the information 

for sufficient representation of a polyhedron from the from the information previ- 

ously available in the FE relationship over several new element adjacency relation-



111 

a} Mapping 1 

v, 

b) E{V2-E[F}? information 

Vy Vi 

f1 f2 f2 f2 

e[V 
Va Vq sV 

€4 e, ey[V] 
e VY 
es(V1? 

c] Mapping 2 

fy 

v2 

[ 
I 

= 

er vy 
ey vy 
es]vy 

eq[vy 

eslvs 

V3 

Vi 

fo | f 

Vs 
€3 

vol  ey[FJ? 
vil  eFT? 
vsl  e3(F1? 
vil e FT? 
vyl es[F)? 

v3 

n
o
a
o
n
o
n
o
n
 

Vi 

fy 
ellfi fal 
e2lf2 fal V3 
e3[fa fal 
eslfz f1l 
eslf2 fil 

f, 

€, 

V3 

fa| fy 

Vs 
€5 

Figure 11 - 9, Insufficiency of the E[V]-E[F] adjacency relationships in strong 
correspondence 
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a) Mapping 1 

b) E{Vv ¥-F< V> information 

alVE = e{vyval fi<V> = fi<v v 
VP = exfvi va}  fi< V> = fo<vy vp> 
sV = e3fvy val  fa V> = fi< v vy 
VP = eqfvi va}  Fe< V> = fu<v v 

¢} Mapping 2 

Note that both mappings have identical F< V> , E{V} information yet differ in 

E{F}. 

Figure 11 - 10. Insufficiency of the E{V}F< V> adjacency relationships in 

correspondence 
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a) Mapping 1 

b) E{FP, E{VP, and V< F> information (E{F} and E{V} not in correspondence) 

alV P = efvi vl elf P = eilfi fa} wi<F> = vi<f fa fifa> 
VY = exvi val  eF P = ex{fs fa} v F> = < fy fo> 
eslVP = eslvy v} esfFP = eslfs ol va< P> = v< fy fp> 
eV = exvi vs} eofFP = edlfa f1} Vi< F> = vi< fy fo> 
eslVY = eslvy vi}  esfFP = es{fy f3} vs<F> = vs< f1 fo> 
eslVP = eslvy vs}  esfFP = eslfy fa} 

c) Mapping 2 

Note orientation of f4 has changed. 

Note that both mappings have identical E{F}V< F> and E{V}-V< F> infor- 
mation yet differ in F< V> , F< E> , V< E> , and E{(E)(E)}. 

Figure 11 - 11. Insufficiency of the E{F}V< F> adjacency relationships in 
correspondence and the E{V}V< F> adjacency relationships in 
correspondence 
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a) Mapping 1 

b) E{FP-F< V> information 

efF P = efi fi} fi<V> = fi<vp 
efF P = exfs F3} fax V> = fo<vy vy vp> 
es{F¥ = e3{f2 fa} fic V> = fa<vp> 

fac V> = fu<vp 

¢) Mapping 2 

e f1 1 

Vi 

Note that both mappings have identical E{F ¥, E{V ¥, and F< V> information 
yet differ in F< E> , E{[E]P, and V< E> 

Figure 11 - 12. Insufficiency of the E{F}-F< V> adjacency relationships in 
correspondence 
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ships (F{L} and L< E>) in order to explicitly represent the separate multiple con- 

tours of the faces. Thus in this new system L< E> is not sufficient by itself to 

unambiguously represent polyhedral topologies, but requires F{L } or L [F]!. The new 

system is primarily a change of form for convenience and efficiency; no additional 

information (that is, no information which is not derivable from existing information) 

was brought to the model compared to the artifact edge technique. 

Similarly, V< E> is no longer sufficient because it does not contain the information 

giving connectivity across the surface of a face with multiple boundaries; but V< E> 

along with V< L> and either L(F]' or F{L} would be sufficient. There are many 

other possibilities, but these are not treated in detail here. 

11.3. Summary of Findings 

Of the nine manifold connected graph adjacency relationships, three of the ordered 

adjacency relationships are individually sufficient over the domain specified in Chapter 

9. The three are the V< E>, F< E> , and some forms of the EE relationship. These 

three sufficient relationships are those which use the edge element type in their adja- 

cent groups. 

It has been proven here that six of the nine element adjacency relationships are indi- 

vidually insufficient to unambiguously represent the topologies of polyhedra under the 

domain specified. 

Much of this work is based on a theorem due to Edmonds ([Edmonds 60],[Graver & 

Watkins 77],[White 73]) which states that the directed circular orderings of the edges 

around the vertices in an embedded graph (essentially the V< E> relationships) are 

sufficient information to completely and uniquely describe polyhedron topologies. It 

can be seen from the duality principle in planar graph environments that the F< E> 

adjacency relationship is also sufficient by itself. The proof given here, however, 

involves a topological identification procedure. 
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EV 

VE 

EE 

FE 

Sufficient 

EF 

> Sufficient if EV Uniquely Identifies Edge 

<] Sufficient if EF Uniquely Identifies Edge 

note that only one rarely used form of EE is actually sufficient 

(see Section 11.2.1.2) 

Figure 11 - 13. Adjacency relationship matrix showing sufficiency of the indivi- 
dual ordered adjacency relationships 
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Only twelve of the possible thirty-six pairs of element adjacency relationships do not 

involve an already sufficient adjacency relationship and do allow correspondence to be 

made. It turns out that there are five possible pairs out of the twelve of individually 

insufficient element adjacency relationships in correspondence which reference all 

three topological element types. Unfortunately, none are sufficient, however. 

Thus, although a minimum of two adjacency relationships are usually required to tie a 

graph based representation together, at least one of the two adjacency relationships 

must be individually sufficient (must be V< E>, F< E> , or a sufficient form of EE) 

in order for the representation to be informationally sufficient. 

A detailed proof of the sufficiency of the pair E{{E]Y*-E[V] in correspondence may be 

found in Section 12.3.2 under the discussion of the winged edge structure. 

Under more restricted environments than the domain specified here, other adjacency 

relationships are also individually sufficient. If the two vertices of edges, E{V}, 

uniquely define edge identity (as in a planar faced polyhedral environment), then 

V< V> a‘nd F<V> are also sufficient. If the two adjacent faces of edges, E{F}, 

uniquely define edge identity then V< F> and F< F> are also sufficient. This subject 

is covered in detail in Appendix A. 

Figure 11 - 13 summarizes these results and notes sufficiencies under restrictions. It 

is interesting to note that the findings appear to support a kind of symmetry in the 

diagram when the element adjacency relationships are organized in a regular fashion 

as in the adjacency relationship matrix. 



Chapter 12 

TOPOLOGICAL DATA STRUCTURES 

There are many possible topologically sufficient representation schemes for evaluated 

manifold boundary object solid models. The focus in this chapter is on several 

representational schemes for edge based representations. They are edge based in the 

sense that ail the information required to reproduce the entire embedded graph topol- 

ogy is contained in the edge related data structures, 

There are many reasons why this particular form of representation is interesting, but 

one reason is the historical popularity of the existing winged edge representation and 

an accompanying, though more general, set of operators called the Euler operators, . 

Detailed analysis of the existing winged edge structure in light of the information on 

topological sufficiency of the previous chapter led to three new data structures. All 

four data structures are described here with proof of their sufficiency, 

12.1. Edge Based Graph Data Structures 

Four different edge based data structures for representing manifold embedded graph 

topologies useful in solid modeling are presented: The winged edge structure, the 

modified winged edge structure, the vertex-edge structure, and the face-edge structure. For 

brevity, these will also be referred to as the W-E, modified W-E, V-E,and F-E struc- 

tures, respectively. 

The winged edge structure, will be familiar to many. The modified winged edge 

structure and the face-edge and vertex-edge structures originally introduced in 

[Weiler 85a] are new. All four are based on use of the edge element as the reference 

118
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element from which adjacencies with other elements are determined. Two of the 

structures, the winged edge and the modified winged edge structures, keep the edge 

information as a single unit, while the face-edge and vertex-edge structures split the 

information related to each edge into two parts based on the specific usage of the 

edge in the adjacency relationships. These last two are identical in the form of their 

storage format, but differ greatly in the semantic interpretation of their storage for- 

mat. 

The data structures are discussed in the context of a computer implementation, and 

are described in detail after a preliminary section on supporting data structures. For 

each data structure a description is given followed by a proof of sufficiency. 

A detailed comparison of the four data structures in terms of storage requirements, 

accessing efficiency, and algorithmic complexity is given in Appendix B. 

12.2. Support Data Structures 

Most of the topological information for the structures described here is embodied in 

the edge structures, Before the actual edge based data structures are described, how- 

ever, we will consider the structure of the other data structure elements in the 

embedded graph representation. We will show a representation for these other ele- 

ments which is essentially the same regardless of which of the four edge data struc- 

tures is used. 

Data structures for two of the three element types, faces and vertices, and a structure 

to pull together the entire ensemble of elements found on a single surface, called the 

shell, are now described. 

Descriptions of these support structures are shown in Figure 12 - 1. This figure and 

the following figures describing the four edge based data structures show Pascal 

record declarations of the structures, a graphic depiction of the storage fields required, 

and, in the case of the edge structures, a graphic depiction of the adjacency relation-



120 

ships embodied. 

Data objects refer to each other by the use of pointers. The naming convention for 

the pointers in the data structures described is: 

from-element-type to-element-type ptr 

where the topological element types are symbolized by the letters s, f, [, e, and v for 

a} Pascal declarations 

type face_ptr = “face; 

edge ptr = “edge; { used for W-E and modified W-E edges } 

edgeuse_ptr = “edgeuse; { edge halves - used for F-E and V-E edges } 
vertex_ptr = “vertex; 

shell attrib_ptr = “shell_attrib; 
face_attrib_ptr = “face_attrib; 
edge_attrib_ptr = “edge_attrib; 
edgeuse_attrib_ptr = “edgeuse_attrib; 
vertex_attrib_ptr = “vertex_attrib; 

ptr_type = SHELLptr, FACEptr, EDGEptr, EDGEUSEptr, VERTEXptr; 

shell = record 

sa_ptr: shell_attrib_ptr; { attributes } 
sf_ptr: face_ptr { heads circular doubly linked list } 
end; 

face = record 

sf_next, sf_last: face_ptr; { doubly linked list of faces } 
fa_ptr: face_attrib_ptr; { geometry and other attributes } 
case downptr: ptr_type of { EDGEptr if any edges on boundary } 

VERTEXptr: (fv_ptr: vertex_ptr); 
EDGEptr: (fe_ptr: edge_ptr {or feu_ptr for edge halves} ) 

end; 

vertex = record 
va_ptr: vertex_attrib_ptr { geometry and other attributes } 
end; 

Figure 12 — 1a. Pascal description of the support data structures 



. 121 

b) Storage allocation description 

shell 

sf_ptr 

sa_ptr 

face 

sf_next 

sf_last (same) 

fa_ptr 

downptr 

fe_ptr or fv_ptr 

vertex 

| va_ptr | 

Figure 12 — 1b. Pascal description. of the support data structures 

shell, face, loop, edge, and vertex, respectively. There is sometimes an additional 

name before the ‘'ptr’’ suffix when there is more than one pointer of the given type 

combination. Circular liniked lists of lower dimension elements maintained by higher 

dimension elements often use pointers embedded in the lower dimension elements. 

The pointers are usually named in the form: 

higher-dimension-type lower-dimension-type next 

There is some bias in the design of these support structures in that, together with the 

edge structures, they form a hierarchical description of the graph from higher levels 

of dimensionality (shell) to lower levels (vertex). This is not the only way to organ- 

ize a graph representation. For example, one could use the vertex type as the root of 

the data structure. But information hierarchically organized top-down allows 

increased time efficiency in many modeling applications because objects can often be 

processed at higher levels of abstraction which roughly correspond to grosser 
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geometric features. Thus if a solid modeling system utilizing such boundary topologi- 

cal representations provides a top-down hierarchical topological description of an 

object, then more abstract (and more concise) levels of the structure can be consulted 

before deciding if detailed information is needed for a given application. For exam- 

ple, if bounding box or sphere information is associated with higher level topological 

elements, interference analysis tasks need only check the higher level shell extents to 

eliminate many possible object overlaps without referring to lower level and more 

numerous face elements. The support structures given here follow this principle. 

Since we are primarily concerned with addressing the topological issues, geometry has 

been excluded from the structures for clarity, with the exception of three-dimensional 

coordinate values for the vertex element. In a typical complete solid modeling 

representation, a face might include plane equation or patch geometric information, 

and edges might contain spline or other curve information, as well as additional non- 

topological and non-geometric data. 

Strictly speaking the boundary of a face refers to the ordered alternating sequence of 

edges and vertices which surround the face. In most cases, a sequence of edges, with 

orientation information, can be used in place of this list of edges and vertices, and the 

vertex information can be derived when needed. It is possible, however, for a boun- 

dary of a face to consist of only a single vertex. A Pascal record variant is shown in 

the face structure record given here to handle this unusual situation. For connected 

graphs this situation usually occurs as only an initial condition, where the entire graph 

is the graph consisting of only a single vertex and the face surrounding it. Normally 

the face representation structure will point to an edge on its boundary, but in this 

case there are no edges and the face points to the single vertex on its boundary, This 

solution is more general than others which treat the situation as a special case of the 

shell, as will be seen when the structures are extended to handle disconnected graphs 

in a later section of this chapter. 

When pointers in the structures are not pointing to structures of their own type, they 

usually point from higher dimension elements to lower dimension elements, such as
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from edges to vertices, as might be expected in a top-down hierarchical arrangement. 

Backpointers, pointing from lower to higher levels of dimensionality, are generally not 

included here for clarity, though an actual implementation often uses them for 

increased efficiency, trading space for time by eliminating search. Backpointers typi- 

cally included are edge-to-face, face-to-shell, and sometimes vertex-to-edge. Often, 

linear lists of vertices, edges, and faces associated with a shell are also maintained for 

applications requiring fast enumeration of single element types, such as graphic 

display of edges. 

12.3. The Winged Edge Structure 

12.3.1. Description 

The winged edge or W-E structure represents the edge adjacency information as a sin- 

gle unified structure. As is true for all four edge structures presented here, it 

features a fixed number and length of data fields. 

The winged edge structure was originally developed by Baumgart at Stanford in the 

early seventies [Baumgart 72]. It served to model environments of planar polyhedral 

solids in computer vision research applied towards robotics. The winged edge struc- 

ture has often been applied in the solid modeling field to represent the boundary 

graph of the topological adjacencies of faces, edges, and vertices embedded in the sur- 

face of planar faced polyhedral solid models. 

Groups of researchers at Carnegie-Mellon and Cambridge universities independently 

enhanced the winged edge representation to allow disconnected graphs by making 

additions to the supporting structures ([Eastman & Weiler 791,[Braid et al 80}), an 

example of which is discussed here in a later section, These enhanced winged edge 

representations were incorporated into these groups’ respective solid modeling sys- 

tems, GLIDE [Eastman & Henrion 77}, [Eastman & Thornton 791 and Build2 {Braid
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79]. 

The topological information stored in the winged edge structure for each edge is com- 

posed of the adjacencies of the given edge with other edges, vertices, and faces. The 

“‘winged edge’’ name results from the graphical appearance of the adjacent edges 

when drawn in relation to the reference edge (see Figure 12 — 2). Note that this 

implies a labeled graph environment, where all three basic elements are uniquely 

fabeled or named. 

As seen in Figure 12 — 2, the winged edge structure maintains the adjacency informa- 

tion with pointers to the two faces, the two vertices, and some of the edges adjacent 

to the reference edge. This latter set of adjacencies is divided into two sections, each 

section associated with the use of one of the sides of the reference edge in the circuit 

of edges around a face. The only edge adjacencies represented therefore are the four 

edges which directly follow or precede the reference edge in the edge cycles surround- 

ing the two faces adjacent to the reference edge. The ee_cw ptr and ee_ccw pir field 

names used here therefore refer to their use in determining the cycle of edges sur- 

rounding a face, as viewed from just outside the solid volume looking towards the 

surface. This is different from the original Baumgart field names which used cw 

(clockwise) and cew (counter-clockwise) to refer to the positioning of the adjacent 

edges around a vertex of the edge. 

The information in the winged edge structure can be described in adjacency relation- 

ship terminology as the E{V]-E{[E]}%-E[F] adjacency relationships in correspondence, 

where the adjacent edge information is represented as two ordered lists of length two, 

one for each endpoint of the edge. The adjacent groups of the three adjacency rela- 

tionships are ordered here to allow the correspondence. The other edge based data 

structures embody similar information, though with subtle but important differences.



125 

a) Pascal description 

side = 1.2; 

edge = record 
ev_ptr: array [side] of vertex_ptr; 
ee_cw_ptr,ee_ccw_ptr: array {side} of edge_ptr; 
ef_ptr: array [side] of face_ptr; 
ea_ptr: edge_attrib_ptr { geometry and other attributes } 
end; 

b) Storage allocation description 

ev_ptr(1] ev_ptr(2] 

ee_cw_ptr{1] ee_cw_ptr(2] 

ee_ccw ptr[l] | ee_ccw ptr[2] 

ef_ptr(1] ef ptr{2] 

ea_ptr 

¢) Diagram 

ee ccw_p;% /ee cw__ptr{1} 

ev__ptr{2] @ 

ef__ptr(2] | ef_ptr{1} 

@ ov__ptr1] 

ee_cw_ptr[2]/ &_ccw_pn[?] 

Figure 12 - 2. The winged edge data structure 
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12.3.2. Sufficiency 

Recently there has been much interest in using the winged edge and other structures 

in a curved surface solid modeling domain. Extending the geometric surface 

representation capability from a planar surface to curved surfaces widens the range of 

graph configurations possible from those of a standard graph to those of a pseudo- 

graph. The validity of these structures must therefore be examined in this wider 

domain. 

It is worth noting that the discussion of sufficiency here concerns the informational 

sufficiency of data structures. While information about a sufficient adjacency relation- 

ship must be available from the data structures, the use of particular adjacency rela- 

tionship information does not imply a particular format for the data structure. Many 

data structure formats are possible even with the information of the same sufficient 

adjacency relationship, by distributing and partitioning the information in different 

ways across different data structure elements. A data structure is sufficient itself as 

long as its information content allows for the derivation of some sufficient adjacency 

relationship. 

As stated before, the W-E representation is essentially the E[V*-E[[ET%-E(F)? adja- 

cencies in correspondence, utilizing all of the adjacency relationships which use the 

edge as the reference element. All three are individually insufficient (the E{{E}*]? 

form of the EE adjacency relationship is shown to be individually insufficient in 

[Weiler 83] and here in Section 11.2.2). As mentioned in [Hanrahan 82}, the winged 

edge structure can be shown to be equivalent with the Edmonds representation 

involving V< E> information. This is clearly true for the case of planar surfaces 

where self loops and multigraphs are disallowed. We will demonstrate here in detail, 

however, that specifically the adjacency relationship pair £{V*-E{{E1%? in correspon- 

dence is sufficient to generate unique topological embeddings for the curved surface 

case, but only if some additional mechanisms (but not additional information) are 

available.
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Theorem 12-1: The pair of E[VI*-E{{ET*)? adjacency relationships in correspondence with 

an additional form of *‘global’’ memory is sufficient to unambiguously represent adja- 

cency topologies of general polyhedra. 

The proof involves examination of whether ambiguity can result during an attempt to 

uniquely construct V< E> information from the £(V]%-E[(E]%? adjacency relationship 

pair in correspondence. If at any point during the derivation of the next edge clock- 

wise (looking towards the surface from just above it and outside of the solid volume) 

around a given vertex, say vy, starting from a given edge incident to that vertex, say 

ey, there is more than one choice of which edge should be the next edge, and that 

choice will result in a topologically different embedding, then the E(V2-E{{E]*}? adja- 

cency relationship pair is insufficient, 

Given access to E[VI-E([E}% vy, and e,, the identity of the next edge clockwise 

about the vertex, say e, is always known, but which use is intended (in this case, 

which end) is not explicit. The only possible source of confusion would be if the 

next edge e, were a self loop. In that case, it is not known which end of e, should be 

included next; choosing the wrong end might cause a misordering of the V< E> adja- 

cent group being constructed or even cause some edges to be missed unless all edges 

were examined to detect errors and backtracking were done. But one can look at 

each end of e, and only use the end where the counterclockwise edge from e, is ¢ 

(note that this makes the ee_ccw pwr fields mandatory in the W-E structure). The 

only possible source of confusion then would be if ¢, were also a self loop, for only 

then would it be possible for e; to be counterclockwise from e, about vy at two places, 

So far we have a possible situation where e; and e, are self loops, where e, is clock- 

wise from e; about v, in at least one place, and where ¢, is counterclockwise from ey 

about vy in two places (see Figure 12 — 3a), But if ¢; is counterclockwise from e, in 

two places, then ¢, must be clockwise from e, in two places also (see Figure 12 - 3b). 

Given this configuration any additional structure in the graph can only exist in 

sequential positions A and/or B (see Figure 12 ~ 3b). No matter how these addi- 

tional structures are configured, the V< £> relationship for v, will be of the form 
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vi< E> = vi< e ey edges—of —A ey e, edges—of —B> . 

The key feature of the vi< E> adjacent group is the repeating sequence (e; ¢, some- 

thing). Because the sequence repeats, a choice of either end of e, following ¢, (or a 

choice of either end of ¢; following a structure, or a choice of either additional struc- 

ture following e,) will generate identical topological results when one considers that 

the sequences in the V< E> adjacent group forms a circular list. 

Another way of looking at it is that the E[[E1%? adjacencies are the same for both 

positions A and. B and there is no basis in adjacency topology for distinguishing 

between them given E [V *-E[{E14% 

Note, however, that in order for this adjacency relationship pair to be sufficient, the 

ability to recognize (remember) which of the ends of an edge have been used already 

~must be present; otherwise spurious and infinite sequences could be generated for 

vi< E> . This is the “‘global’”” memory we previously referred to — an ability to mark 

an edge end and return to it later to determine its status. We assume this capability 

since both adjacent groups of E(V?-E[[EJ%]? are ordered as part of correspondence, 

and a marker field would be easy to add to the W-E structure. It is also possible to 

embed this memory in the local state of procedures which operate on the W-E struc- 

ture, 

To further demonstrate that identical embeddings will be generated regardless of 

which ends of the edges are used in the only ambiguous situations, all three possible 

configurations of additional structures are shown: /) no additional structure (Figure 

12 - 3b) 2) one additional structure at A or B (Figure 12 - 3¢) 3) two additional 

structures at A and B, These structures may be disconnected (Figure 12 - 3d) or 

connected (Figures 12 — 3e and 12 — 3f). In any of the cases it is the repeating 

sequence in the circular group which is controlled by the original adjacencies of ¢; and 

e, about v, that guarantees a choice of either end of an edge will generate an identical 

embedding in the only situation where confusion could arise, as long as the edge is 

used only twice, which can be guaranteed by use of a marker field. 

It should be noted that objects with multiple self loops are not necessarily totaily
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a) b) <) 
- - Structure 

Alternalive 
Structure 

x 

vi<E>=v <e.e50,.0,> v<E>=v,<e e,A0,6,8> Vy<ED> = v,<0,0)K X,8,8)> 
or 

<818,8,8,X,X,> 
which are cyclicly equivalent 

dy e) f) 

Structure Structure Structure 

Structure 

Y 

v‘<E>=v‘<e‘ezx‘xze,ezy,y2> Vi<E> = v,<0,08,%,X,8,8,%,%,> v <E>=v <e e X, X,8,8,%,X,> 
or of 

<€,8)Y,Y90485X Xy > <84€,X,X€8,XXg> 

which are cyclicly squivalent which are cyciicly squivatent 

Figure 12 - 3. Sufficiency of E[V]-{[E]] 
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esoteric or of little concern; Figure 12 — 4 shows a fairly familiar example of such an 

object. 

Since F< E> is also a sufficient adjacency relationship, the configurations of vy, ey, 

and e, shown will also create repeating or identical sequences in the adjacent groups 

of the F< E> information. We would also need marker fields or procedural state 

memory to remove any confusion, but in this case the sequence would be associated 

with each of the two edge sides instead of ends. Note that the purpose of using these 

additional mechanisms of extended pointers and mark bits is to easily distinguish 

which use of the edge is intended in a given adjacency relationship (which end or 

side). 

Since the derivation of V< E> information is therefore unique, E[VI*-E[[E}*? is 

sufficient to represent polyhedral topologies by way of the Edmonds theorem. 

a) OBJECT b} BOUNDARY GRAPHA 

Figure 12 — 4, An object with multiple self loops using the same vertex 
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Perhaps more importantly, this verifies in detail that the winged edge structure 

E{VP-E{[E1)*E(F}? used in several solid modeling systems, is indeed sufficient for 

the representation of polyhedral topologies for planar faced polyhedra since it is a 

superset of the information in the sufficient adjacency relationship pair E[V1%-E [[E ]2 

As has been demonstrated, it is also sufficient for curved surface polyhedra, however, 

some additional and complex mechanisms, but not additional information, are neces- 

sary in order to effectively use the winged edge structure. 

While the W-E structure is informationally sufficient, additional marker field space 

and comparatively intelligent algorithms (which check the mandatory backpointers) 

are required to determine the next edge around a vertex or the next edge around a 

face in curved surface domains. Even in the planar face environment, however, sim- 

ple adjacent edge field access is not sufficient to handle traversals of the edges around 

faces, especially in cases involving struts. Traversal and adjacency relationship access 

algorithms for the W-E structure must perform conditional testing to derive the 

proper adjacencies, 

12.4. The Modified Winged Edge Structure 

12.4.1. Description 

The modified winged edge or modified W-E structure is a slight but important varia- 

tion on the W-E structure. Like the W-E structure, it represents the edge adjacency 

information as a single unified structure. In fact, it is identical to the W-E structure 

except that it contains additional data. The difference is that each of the ee_cw _ptr 

and ee_ccw_ptr pointers are accompanied by edge ee_cw_half and ee_ccw_half fields 

which indicate exactly which side of the unified edge pointed at is intended. As will 

be seen later, this reduces algorithm complexity which is particularly troublesome in 

curved surface domains. 

The structure is shown in Figure 12 - 5; its diagram description is similar to the W-E 
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structure. 

12.4.2, Sufficiency 

Being a superset of the information contained in the W-E structure, the modified W- 

E structure is also sufficient. In fact, another proof of the sufficiency of the modified 

W-E structure can be constructed which is similar to the proof of sufficiency of the 

F-E structure, described later, since the sufficient F< E> adjacency relationship can 

be trivially derived from it even under curved surface conditions. The proof is 

simpler than the proof of the F-E structure, however, since the other side of the edge 

is already known. 

a) Pascal description 

side = 1..2; 

edge = record 
ev_ptr: array {side] of vpir; 
ee_cw_ptr,ee_ccw_ptr: array [side] of eptr; 
ee_cw_half,ee_ccw_half: array [side] of side; 
ef_ptr: array [side] of fptr; 
ea_ptr: edge_attrib_ptr { geometry and other attributes } 

end; 

b) Storage allocation description 

ev_ptr{i] ev_ptr{2] 

ee_cw_ptr{1] ee_cw_half{1] ee_cw_ptr[2} ee_cw_half{2] 

ee_ccw ptr[1] | ee ccw halffl] | ee ccw_ptr{2] | ee_ccw_half{2] 

ef ptr[l] ef ptr{2] 

ea_ptr 

Figure 12 — 5. The modified winged edge data structure 
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The modified W-E structure avoids the computational complexity of algorithms for 

the W-E structure by explicitly including information concerning the which of two 

possible uses of an edge element is intended, via the ee_cw_half and ee_ccw_half fields. 

This simplifies accessing algorithms compared to the W-E structure, especially in 

curved surface environments. The additional fields do cause more complexity in 

accessing than for the V-E and F-E structures, however, as can be seen in the access- 

ing procedures described in the Appendix B. 

12.5. The Vertex-Edge Structure 

12.5.1. Description 

The vertex-edge or V-E structure represents the adjacency information of the edge by 

splitting it into two structures, each of which is related to one of the two edge ends 

which is found adjacent to other edge ends around a vertex. 

The structure is shown in Figure 12 - 6. The adjacency of edges around a vertex 

represents a circular ordered list and is represented using the ee_cw _psr fields. The 

opposite vertex (shown as the solid dark circle), one of the adjacent faces, and the 

other end of the edge are also available through pointers. The ee_cew prr field is 

optional, but is usually included for access time efficiency. The reference element 

vertex is shown in the diagram as the outlined circle. 

The opposite vertex information was chosen to be included in the vertex-edge struc- 

ture for efficiency in recovering the V< V> adjacency relationship (see Appendix B). 

The choice of which face should be included is an arbitrary one. 

12.5.2. Sufficiency 

Access to the other half of the edge is mandatory in the V-E structure even in a gen- 

eral planar faced domain since E{F} does not uniquely determine edge identity
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a) Pascal description 

edgeuse = record 
ev_ptr: vertex_ptr; 
ee_cw_ptr, ee_ccwptr: edgeuse_ptr; 
ef ptr: face_ptr; 
ee_mate_ptr: edgeuse_ptr; 
ea_ptr: edgeuse_attrib_ptr { geometry and other attributes } 
end; 

b) Storage allocation description 

ev_pir 

ee_cw ptr 

ee ccw_pir 

ef ptr 

ee_mate_ptr 

ea ptr 

c) Diagram 

ee__cw__ptr ee__ccw__ ptr 

ef__ptr 

® ev_ptr 

Figure 12 - 6. The vertex-edge data structure 



135 

without some additional connectivity restrictions (see Figure A — 1). 

Sufficiency for the V-E structure is most easily shown by deriving the V< E> adja- 

cency which proves its sufficiency by the Edmonds theorem. This can be obtained 

directly from the ee_cw_ptr pointers of edge end structures. First one can find one 

edge adjacent to each vertex by using the ee_mare_ptr field of an edge whose ev_ptr 

field matches the vertex in question. Then, for each vertex, follow the ee cw prr 

fields of each edge in sequence until the cycle of edge ends around each vertex is 

complete. This is not ambiguous even in the presence of self loops because edge 

ends are pointed to instead of entire edges. 

12.6. The Face-Edge Structure 

12.6.1. Desecription 

The face-edge or F-E structure represents the adjacency information of the edge by 

splitting it into two structures, each of which is related to one of the two edge sides as 

found around the periphery of faces. 

The structure is shown in Figure 12 - 7. The adjacency of edges around a face 

represents a circular ordered list and is represented using the ee_cw_per fields. Access 

to one vertex, the opposite adjacent face, and the other side of the edge is also avail- 

able through pointers. The ee_ccw ptr field is optior{al, but is usually included for 

access time efficiency. 

The opposite face information was chosen to be included in the face-edge structure 

for efficiency in recovering the F< F> adjacency relationship (see Appendix B). The 

choice of which vertex should be included is an arbitrary one; the one chosen here is 

shown as the solid dark circle in the diagram, 

Each side of an edge is used only once as a boundary of a face, and the side implies 

an orientation towards that face. This orientation is specified here as the area to the
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a) Pascal description 

edgeuse = record 
ev_ptr: vertex_ptr; 
ee_cw_ptr, ee_ccwptr: edgeuse_ptr; 
ef_ptr: face_ptr; 
ee_mate_ptr: edgeuse_ptr; 
ea_ptr: edgeuse_attrib_ptr { geometry and other attributes } 

end; 

b) Storage allocation description 

ev_ptr 
ee_Cw_ptr 
ee_ccw_ptr 

ef ptr 

ee_mate_ptr 
ea_ptr 

¢) Diagram 

ee__cwe_ ptr 

(o}
 

ef__ptr 

@ ev_ptr 

ee__ccwe__ptr 

Figure 12 - 7. The face-edge data structure 
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right of the edge side when traveling along the edge side from the vertex specified in 

the ev_ptr field to the other vertex of the edge. Each edge is therefore used twice and 

in opposite directions by face boundaries when the entire embedded graph is con- 

sidered. 

The CRIPL-edge representation structure was an early edge based representation with 

an edge structure similar to the face-edge structure but intended for the planar faced 

domain [Stoker 74]. It utilized ev_ptr, ee_cw ptr, and ef ptr fields, but not an 

ee_mate_ptr field. As will be seen, the missing ee_mate_ptr field is critical for curved 

surface applications, The CRIPL-edge representation had some unusual initialization 

conditions and other limitations because of design decisions unrelated to the edge 

structure chosen. The representation was used in the Carnegie-Mellon solid modeling 

effort [Eastman & Henrion 77} until replaced by an enhanced winged edge representa- 

tion [Eastman & Weiler 79]. 

It is interesting to note the structural similarity between the face-edge and vertex- 

edge structures; their semantics, however, are quite different. 

12.6.2. Sufficiency 

The F-E structure is sufficient if it can be used to correctly and unambiguously derive 

the singly sufficient F< £> adjacency relationship. 

In the case of a planar faced domain the F-E structure can easily generate F< E> us- 

ing only its ev_ptr and ee_cw_ptr fields. This can be done by traversing all of the edge 

half structures which represent the edge sides surrounding each face, following the 

ee_cw_ptr fields of the edge half structures until one arrives back at the starting edge 

half structure. The vertex field is necessary for determining the adjacency of the 

faces, as explained below. The ev prr and ee_cw ptr fields alone are therefore 

sufficient information for the planar faced domain. 

Finding the other side of the edge is possible without the ee_mate_ptr field since the
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other vertex of the edge can be found as the vertex of the next edge; in a planar 

faced domain E {V} uniquely determines the identity of an edge. Edge sides with the 

same two vertices therefore belong to the same edge. This allows the total surface 

mesh of faces to be assembled into the whole closed surface with a topological 

identification procedure. The identification procedure matches edge halves together 

by using the vertex information to find the identity of the full edges to which the 

halves belong. Identifying the edge sides together brings the whole surface together, 

much like a picture puzzle is put together by matching up patterns on the edges of the 

puzzle pieces. 

In a curved surface domain, however, access to the other half of the edge must be 

explicit in order to handle self loops and multigraphs unambiguously. Since all edge 

related pointers are to edge halves, specifically edge sides, which side of the edge is 

intended in the adjacency representation is explicit. Each edge side can only be used 

in one direction, and this direction is unambiguous, due to the convention that an 

edge side is a boundary of the face area found to its right when traveling from its 

specified vertex to its sec< ond vertex. Access to the other side of the edge is expli- 

citly required in order for the individual faces to be assembled into a complete closed 

surface mesh, since in a curved surface domain E{V} does not in general unambigu- 

ously identify a specific edge. 

Thus with access to the other side of the edge given by the pointer in the ee_mate ptr 

field, the F-E structure is topologically sufficient over the specified curved surface 

domain. 

12.7. Topological Elements and Their Uses in Adjacency Relationships 

It is important to distinguish between the occurrence of edge element identity infor- 

mation in adjacency relationships and a representation of the edges themselves. 

As can be seen from the analysis of the sufficiency of the last three data structures 

versus that for the winged edge structure, explicitly representing the use of the ele-
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ments in the adjacency relationships is unambiguous and produces more straightfor- 

ward access algorithms. 

This is what was meant by the difference between use of an edge by an adjacency rela- 

tionship and the edge itself, The primary purpose of the last two edge structures 

presented is to represent the adjacency relationships of the edges, not the edges them- 

selves. In this case, for the V-E structure, we are referring to a particular end of an 

edge around a vertex, and an edge half refers to the end of the edge immediately ad- 

jacent to the vertex. In the case of the F-E structure, we are referring to a side of the 

edge used to bound a face and the edge half there refers to the side rather than end 

of the edge. Since by the definition of the V-E and F-E structures the end and side 

information is coordinated, references (in context) to- either edge sides or ends are 

unambiguous for either structure. 

When edges are described in a single structure, rather than two edge halves, howev- 

er, and simple pointers to the full edges are used, confusion can result because the 

two possible uses of a single edge in a given situation cannot always be easily dis- 

tinguished from one another (in one case which of the two ends should be used, and 

in the other case which of the two sides should be used) without additional process- 

ing. 

This is why proving sufficiency for a curved surface domain in the case of the W-E 

structure is more difficult than for the F-E or V-E structures. The W-E structure uses 

an edge as a single structure rather than representing each of its two uses in adjacen- 

cies separately. This results in a situation where one must use pointers to full edges 

for a given use of each edge in the adjacent group of an adjacency relationship. The 

problem with this is that it leaves the burden of determining which half of the edge 

was intended to be used in the adjacent group up to the algorithms which manipulate 

the structure (as well as leaving it to the proofs to show there is no ambiguity). 

Representing uses of edges (sides or ends) in adjacent groups eliminates such com- 

plexity. 

This particular weakness of the W-E structure is addressed by the modified W-E
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structure. While the modified winged edge structure essentially provides access to 

edge uses, the information is still distributed between its half fields and the edge 

pointers, which causes greater algorithmic complexity for accessing than is the case 

for the V-E and F-E structures which provide a direct representation of the edge uses. 

(see Appendix B). 

To carry out the concept of direct use representation in a more uniform manner, ver- 

tex uses can be specified for the V-E and F-E structures. This would have allowed 

upward hierarchical access from the vertex to all edges using the vertex. This wasn’t 

done in the data structures presented here because the ‘‘extra’’ information was not 

necessary for sufficiency, and the applications considered during design primarily used 

top-down traversals. In many applications, however, traversal in both directions is 

more important and vertex uses should be specified. When using parametric space 

representations with the F-E structure, vertex uses would also be important for speci- 

fying coordinate locations in parametric space (see Chapter 20). 

12.8. Variations 

Minor variations are possible with all four of the edge structures presented; more 

backpointers can be included, with the exception of the W-E structure the ee_cow ptr 

pointers could be removed even with curved surfaces, the ef ptr field of the V-E and 

F-E structures could point to the other face, and the ev_per field of the V-E and F-E 

structures could point to the other vertex. Most of these variations are compute vs. 

store issues which require statistical usage data to support rational preferences. 

Many major variations in the form of the data structures are also possible, particularly 

if more information is moved away from the edge and into other element types such 

as the vertex or loop (introduced later) elements. In this and other cases, other ele- 

ment types can be used as reference elements. Such alternatives are not discussed 

here. 

Adding vertex uses can also be an advantage in many applications, as described
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above, at a cost of increased storage requirements. 

12.9. Extensions for Disconnected Graphs 

Until this section the assumption was made that the embedded boundary graphs being 

used were connected graphs. This restriction is now dispensed with in favor of exten- 

sions of the previously given support data structures and topological elements in ord- 

er to allow direct representation of faces with multiple boundaries and objects with 

multiple shells, 

12.9.1. Multiply Connected Faces 

There are several ways to handle multiply connected faces (faces with more than one 

boundary contour yet still possessing a single connected surface area — such as a face 

with a hole in it) in boundary graph based solid modeling representations. Unrestrict- 

ed use of multiply connected faces can lead to disconnected graph conditions, 

although presence of a multiply connected face does not necessarily mean the total 

graph is disconnected. 

Multiply connected faces can be simulated by the artifact edge technique where an ad- 

ditional edge joins each boundary contour to some other contour on the same face 

(see Figure 10 — 8). The artifact edge therefore has the same face adjacent to both of 

its sides. This technique is not as desirable as an explicit approach, however, since it 

not only demands that the modeling system determine exactly how to connect the 

contours with artifact edges, but also increases the number of edges in a model, 

which can be made worse when a model is subjected to many modeling operations 

which further subdivide the artifact edges (such as Boolean operations or section 

cuts). 

Changes to the graph data structures to directly support multiply connected faces 

without use of the artifact edge technique do not affect the data structures at the edge 

level, but rather at the face level.
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There are several ways to modify the face structures already described to explicitly 

handle multiply connected faces. One explicit technique is an additional fixed length 

structure called a loop which is required for each boundary contour associated with a 

face. In this scheme the face points to a list of loop records, which contains one loop 

record for each contour associated with the face. Each loop record points to an edge 

(for the winged edge structure) or some form of edge-half (for the other structures), 

or, if it is a single vertex contour, to the vertex. The pointers in the edge records 

themselves store enough information to obtain the complete boundary contour 

definition. An alternative explicit implementation is to simply have a variable length 

face record which keeps a pointer for an edge (or the single vertex) for every contour 

associated with the face, 

While the two approaches are informationally equivalent, we prefer the fixed length 

loop structure approach, since most current popular programming languages are not 

adept or efficient at providing data objects with dynamically variable length. 

As shown in Figures 12 — 8, and 12 ~ 9, the loop structure simply provides the face 

structure with a mechanism to maintain a linked list of pointers to boundary contours 

using fixed size record structures. Thus each contour adjacent with the face has a 

loop structure in the linked list which has a pointer to one of the edge structures (or 

the vertex) associated with it. 

Of note in the loop structure presented is the Pascal record variant to handle the case 

where the particular contour consists of a single vertex rather than a series of edges. 

This situation was handled in the face record structure definition given earlier. This 

is the case previously mentioned where an initialization step in the creation of an ob- 

ject allows the object to consist of only one shell, one vertex, one face, and no edges. 

This general situation can also happen, though, in a situation where a face contains 

many separate vertices on the interior of its surface, perhaps as a transitional state. 

For this reason the record variant approach, associated with the loop level in the data 

structure, is preferable to treating the situation as a special initialization condition at 

the shell level.
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Figure 12 - 8. Loop structure adjacency relationships 
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Pascal declarations 

type loop_ptr = “loop; 

face = record 

sf_next,sf_last: face_ptr; 

fi_ptr: loop_ptr 

end; 

loop = record 

fl_next: loop_ptr; 
case downptr: ptr_type of 

VERTEXptr: (lv_ptr: vertex_ptr); 

EDGEptr: (le_ptr: edge_ptr {or edgeuse_ptr}) 
end; 

Storage allocation description 

face 

sf_next 

sf last . 

fl_ptr 

loop 

fl_next (same) 

downptr 

le_ptr or Iv_ptr 

Figure 12 - 9, Modified and additional data structures for loop 

Naturally, if backpointers are used in the edge records, as is the case with the four 

edge structures presented, what were previously edge-to-face pointers would become 

edge-to-loop pointers when the loop structure is added to the scheme. 

Since the loop structure explicitly stores the boundary contour relationships it is



biased towards the top-down hierarchical approach of maintaining relationships 

between higher to lower level dimensionality elements. The use of this structure 

seems more natural with the W-E and F-E structures for this reason. A representa- 

tion using the V-E edge structure would probably be vertex centered rather than face 

centered in organization. In this case loops may not be considered an important con- 

cept; equivalent information can be derived if the edge-to-face pointers are preserved. 

The top down hierarchical approach is often preferable, however, for reasons already 

discussed. 

12.9.2. Multiple Shell Objects 

Another situation encountered in solid modeling is where a solid object contains one 

or more hollow cavities, but still consists of a single connected volume. This case also 

requires the ability to handle disconnected graphs. Unlike the multiply connected face 

situation discussed above, however, more than one surface is necessary. This re- 

quires changes in the data structure above the face level. This can be handled most 

simply as a list of separate shells in an object. 

In keeping with a hierarchical approach, however, it is also possible to maintain topo- 

logical information on the containment relationships of the shells. This can be done 

utilizing a binary tree structure where one branch of a node is used to list shells in- 

side the shell associated with that node, and the other branch to list those shells out- 

side it (see Figure 12 - 10). Maintaining this additional topological information can 

increase efficiency in many geometric modeling applications, such as interference 

detection, for example. This approach can be used to represent not only single solid 

volumes with multiple voids, but can also be used to represent solids within the 

voids, voids in those solids, and so on, in what amounts to a containment 

classification of space. 

Both the loop and shell containment techniques were utilized in a solid modeler based 

on the W-E structure [Eastman & Weiler 79), although they are equally applicable to
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S, Shell with 
multiple cavities 

S 

Binary sheli 
containment tree 

Inside 

modified and additional data structures Outside 

Pascal declarations 

type shell ptr = “shell; 

shell = record 
ss_inside_ptr,ss_outside_ptr: shell_ptr; 
sf_ptr: face_ptr 
end; 

Storage allocation description 

shell 

ss_inside_ptr 

ss_outside ptr 

sf_ptr 

Figure 12 - 10. Shell structure 
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the other three structures presented here.



Chapter 13 

EULER OPERATORS 

The Euler operators are a set of operators which can manipulate manifold boundary 

graph based topology representations in a low level, incremental and systematic 

fashion, constructing a topology primarily edge by edge. Euler operators can be used 

with any of the four previously described edge based data structures. 

This chapter describes the basic functions of the Euler operators and describes in de- 

tail the external interface of a specific implementation. 

13.1. The Euler Operators 

The Euler operators were originated by Baumgart [Baumgart 72] as a means of mani- 

pulating the winged edge data structures. The operators provide a relatively high lev- 

el way of constructing such adjacency topology graphs without getting into the details 

of the underlying data structure. In general these operators create and manipulate the 

model of the embedded graph on an edge by edge basis in a systematic way indepen- 

dent of the actual data structure, 

The advantage of this approach is that it provides a flexible base for higher level 

operators while insulating them from the details and complexities of the data struc- 

tures utilized. Indeed while an implementation of the Euler operators is specific to the 

data structure actually used (for example, any of the four data structures described in 

the previous chapter), the external interface to the operators can remain the same, and 

the implementation of all higher level operations can be identical regardless of the 

data structure chosen. 

148



149 

There are many variations on how the Euler operators can be implemented. The ver- 

sion of the operators described here were designed and implemented by the author at 

Carnegie-Mellon University and were originally part of the GLIDE system [Eastman 

& Weiler 1979]. 

The description is included here because it offers an example of how the Euler Opera- 

tors have been provided for a complete implementation of a manifold solid modeling 

system, and because they have strongly influenced the design of the new non- 

manifold operators described in a later section. Alternative versions of the Euler 

operators have also been defined for GEOMED [Baumgart 1974], Build2 [Braid et al 

19781, and more recently GWB [Mantyla 1982]. A discussion of the theoretical 

>sufficiency of the Euler operators to cover the representation space is given in [Man- 

tyla 847, 

13.2. The Basic Operators 

Five of the basic Euler operators presented below, MSFLV, MEV, ME, GLUE, and 

KE are sufficient to create any topology, but others are included to add convenience 

and flexibility to the surface construction process. 

The names of the Euler operators traditionally follow those originally defined by 

Baumgart. They describe, with a few exceptions, the effect the operators have on the 

existence of topological elements as well as the genus of the graph. The M stands for 

"Make" or create, and K stands for "Kill" or delete. Each of these is followed by 

letters signifying the types of topological elements created or deleted; S, F, L, E, and 

V stand for shell, face, loop, edge, and vertex, respectively, and G stands for "genus". 

Thus MEV stands for "make edge, vertex”, and KEMSFL stands for "kill edge, make 

shell, face, loop". Other operators, such as GLUE and ESPLIT, have names describ- 

ing their more generic functionality. 

The eight basic operators and their subcases, and a few additional operators are 

shown in Table 13 — 1. The destructive operators which are complements to the con-
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structive operators are shown in the same row alongside each constructive operator. 

Also shown are compound operators which could be implemented as sequences of the 

basic operators, as well as an additional miscellaneous operator. More detailed func- 

tional descriptions will follow. 

The operator names are shown in upper case; below each in lower case are the names 

of the subcases which each operator can distinguish and handle automatically. 

The Euler Operators create small incremental changes in the numbers of the com- 

ponents in a topology. These effect of these changes, as well as their effect on the 

genus of the graph, are described in Table 13 — 2. The subscripted numbers are vari- 

able quantities whose values depend on the number of elements of the specific type 

which involved in the operation. The type in this case is indicated by the subscripted 

letter. In some cases, such as for kflevs, the number of elements involved may be 

the same for more than one element type, in which case the subscript used is the 

same for all of those which are related and must have the same quantity. Note that 

these incremental changes, when substituted into the Euler-Poincaré equation, will al- 

ways balance the equation. Thus if Euler operations are treated as atomic (non- 

interruptible) operators, the data structures are always constrained to represent a valid 

manifold topology at every stage. 

13.3. Direction-Edge-Vertex Positioning Specification 

One of the problems in designing an interface to the Euler operato;s is in how to 

unambiguously specify the exact placement of new edges. For example, in Figure 

13 - 1, if we know we want to attach a new edge to an existing vertex v, should the 

new edge be attached to the vertex above or below the edge between vertices v; and 

vy ? Various implementations have solved this problem in different ways. 

One approach is to restrict the constructive operators so that it is not possible to 

create a situation like that shown in Figure 13 - 1, where the result could be ambigu-



Table 13 - 1. The Euler Operators 

MSFLV 
MEV 

ME 
mefl 

mekl 
meksfl 

GLUE 
kflevmg 
kflevs 

constructive destructive 

KSFLEV 
ESQUEEZE(KEV) 
KE 

kefl 

keml 
kemsfl 

UNGLUE 
mflevkg 
mflevs 

compound 

MME 
ESPLIT 
KVE 

miscellaneous 

LMOVE 

Table 13 - 2. Operator Effect on the Numbers of Topological Elements 

. 

operator 

MSFLV 
MEV 
ME 

mefl 

mekl 

meksfl 

GLUE 
kfleving 

kflevs 

KSFLEV 
ESQUEEZE 
KE 

kefl 

keml 

kemsfl 

UNGLUE 
mflevkg 
mflevs 

+1 

+1 

+1 

changes in number of topological elements 

Shells Faces Loops 

+1 +1 

+1 +1 

-1 

-1 -1 

-2 -2 

-2 -2 

—ngp -ny 

-1 -1 

+1 

+1 +1 

+2 +2 

+2 +2 

Edges 

+1 

+n, 

+n, 

Vertices 

+1 

+1 

+n, 

+n, 

Genus 
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Figure 13 - 1. Specification of placement for an edge 

ous unless additional information is specified. This has the effect of restricting the 

order in which the operators can be applied. The advantage of the approach is that no 

explicit positioning specification is necessary. The disadvantage is that knowledge of 

the restrictions on the order in which operators can be applied to achieve a given 

result must be embedded in all the algorithms which use the Euler operators. The 

destructive operators must similarly be restricted so as not to create graph 

configurations which could lead to ambiguous situations for the constructive opera- 

tors, 

Braid, Hillyard, and Stroud {Braid et al 78] used a mixed mode approach where the 

additional information needed to unambiguously specify the desired action of the 

operation could either be the identity of related topological components (such as 

specifying which loop an MEV operation should place its new edge into) or the rela- 

tion of the new component to an existing one (such as specifying that an MEV opera- 

tion should place its new edge clockwise of some specified existing edge).
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The direction-edge-vertex edge placement specification technique [Eastman & Weiler 

791 uniformly requires the explicit inclusion of the required positioning information 

in all situations where additional information is necessary for disambiguation of the 

semantics of the Euler operators. In this technique the exact position of a new edge 

is specified unambiguously with a vertex, edge, and rotation direction (clockwise or 

counter-clockwise). The new edge will use the vertex specified as one of its end- 

points and will lie in the specified rotation direction from the specified edge about the 

specified vertex (see Figure 13- 2). The new edge can be said as being 

“(counter)clockwise from edge e, about vertex v,’’'. The direction is specified as be- 

ing clockwise or counter-clockwise from the point of view of an observer looking to- 

wards. the vertex from just outside the solid volume above the surface in which the 

vertex is embedded. The advantage of this technique is that it provides an unambi- 

guous specification of placement without any restrictions on ordering the sequence of 

Figure 13 - 2, Direction-edge-vertex edge placement specification 
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operators. The disadvantage is that the positioning information must be specified ex- 

plicitly, creating an explicitly more complex interface. 

13.4. A Specification of the Euler Operators 

Specific functional descriptions of the individual operators follow. 

The version of the operators described here were designed and implemented by the 

author at Carnegie-Mellon University and were originally part of the GLIDE system 

[Eastman & Weiler 1979]. The naming convention has been changed, however; the 

older name body used in the original version has been replaced with the name shell 

for consistency with the rest of the material here. 

The operators described use the direction-edge-vertex specification described earlier. 

Thus direction parameters must be specified as clockwise or counter-clockwise. 

The interface to each operator is described in a Pascal style, listing its input parame- 

ters, followed by its set of output parameters specified as var (call-by-reference) 

parameters. Optional input parameters are italicized; if not specified they should be 

nil valued pointers or unspecified rotational directions. This calling sequence descrip- 

tion is then followed by a detailed description of the operator functionality and the 

various subcases handled by the operator. References to topological element types in 

the calling sequence descriptions refer to pointers to the elements rather than the ele- 

ments themselves. 

The operator specifications are independent of any specific underlying data structure. 

The operator specifications are followed by diagrams illustrating their function in Fig- 

ures 13 -3, 13~ 4, and 13 - 5. The diagrams follow the same order as the 

specifications.



13.4.1. Basic Operators 

MSFLYV (var face_ptr: newf; var loop_ptr: newl; var vertex_ptr: newv) 

“Make Shell, Face, Loop, Vertex’’ creates a new manifold surface in the 

topc;logy, and is therefore the first operator used in any topology con- 

struction. The new shell resulting from the operation is always treated 

implicitly rather than explicitly, since all further operations deal with 

lower level topological elements, and never explicitly require the iden- 

tity of the shell. MSFLV creates a new shell, the face newf, the loop 

newl, and the vertex newv. The single vertex created, newv, can be 

used as a starting point for subsequent construction of additional topo- 

logical features on the manifold surface. 

MEYV (vertex_ptr: v; edge ptr: e; dir_type: dir; 

var edge_ptr: newe; var vertex_ptr: newv) 

“Make Edge, Vertex” creates a new edge and vertex, The new edge 

newe starts at the existing vertex v and ends at the new vertex newv. 

If the optional placement arguments e and dir are specified, newe will 

be positioned in direction dir (clockwise or counter-clockwise) from 

edge e about vertex v, as seen when looking towards the manifold sur- 

face from just outside the volume above the vertex v. 

ME (vertex_ptr: vl; edge ptr: el; dir_type dirl; 

vertex_ptr: v2; edge_ptr: e2; dir_type dir2; 

var edge_ptr: newe; var face_ptr: newf; var loop_ptr: newl) 

“Make Edge” creates an edge between the existing vertices v/ and v2. 

If optionai placement is specified, the new edge, newe, will be direction 

dirl (clockwise or counter-clockwise) about vertex vl from edge el, 

and direction dir2 (clockwise or counter-clockwise) about v2 from e2. 

mefl: ““make edge, face, loop”” occurs when the new edge will close 

Base. T s iser the new face, pows amd Toope wewt wh 
lie to the dirl side of newe about vi. 

mekl: “make edge, kill loop” occurs when the new edge will not
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close off one portion of the face it is on from the rest of ' 
the face. In ‘this case, the vertices v/ and v2 were on 
different loops of the same face, but afterwards will be lo- 
cated on the same loop. The surviving loop is the loop as- 
sociated with vl. 

meksfl: “‘make edge, kill shell, face, loop” occurs when the two 
specified vertices are on different shells. The new edge 
links together the two shells into a single shell. The shell 
of v/ is the surviving shell. 

GLUE (face_ptr: f1; edge_ptr: el; face_ptr: 2; edge_ptr: e2) 

“Glue Faces” merges two single loop faces together, deleting both 

faces and loops and one set of edges and vertices, with the effect of 

joining together the volumes which the two faces are bounding. Both 

loops must have the same number of edges and vertices, and must 

have no edges in common. The merge is performed so that el of fI 

and e2 of f2 are merged into the same edge. The surviving set of 

edges and vertices are those of f1. 

kflevmg: “*kill face, loop, edge, vertex, make genus’’ occurs when 
both faces exist on the same shell. The glue operation in- 
creases the genus of the shell by one, which is topologically 
equivalent to adding a handle to the surface. 

kflevs: “kill face, loop, edge, vertex, shell’ occurs when the two 
faces exist on different shells. The glue operation merges 
the two shells together into a single shell, with the sheil of 
fI being the survivor. 

13.4.2. Complement Operators 

KSFLEV(vertéx_ptr: v) 

“Kill Shell, Face, Loop, Edge, Vertex” determines the sheil of the 

specified vertex v and deletes the shell and all its constituent topologi- 

cal elements (including the specified vertex). 

ESQUEEZE (edge_ptr: e; vertex_ptr: v; var vertex_ptr: vsurvivor) 

“Edge Squeeze’’ (also known as “Kill Edge, Vertex’’) ‘‘squeezes’ the 

ends of the specified edge e together, deleting the edge and a vertex 

while preserving adjacencies. The optional parameter v, if specified, 

designates which vertex of the edge e will survive; in any case, the
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surviving vertex is indicated by the vsurvivor return parameter. 

KE (edge_ptr: el; vertex_ptr: vl; var loop_ptr: newl) 

“Kill Edge” deletes the specified edge e. 

kefl: “'kill edge, face loop” occurs when the edge to be deleted 
separates two different faces. In this case, the edges of the 
two loops using the deleted edge are merged and one face 
and loop are deleted. - The surviving face and loop are 
those found to the right of the edge to be deleted, when 
traversing the edge from the optionally specified vertex v/ 
to the other vertex. Any other loops of the deleted face 
are moved to the surviving face, 

keml: “kill edge, make loop” occurs when the edge to be deleted 
occurs twice on a loop of a single face. In this case, a new 
loop, newl, will be generated on the same face. 

KEMSFL (edge ptr: el; vertex_ptr: vl; 

var face_ptr: newf; var loop_ptr: newl) 

“Kill Edge, Make Shell, Face, and Loop” deletes the specified edge, e, 

which is required to have the same face on both sides. The two 

disconnected graph components that result are each treated as separate 

shells. KEMSFL is shown as a subcase of KE in the tables and di- 

agrams because of its functional similarity to other subcases of KE. 

Differentiating kemsfl from kem! cannot be done without explicit indi- 

cation of intent, however, which is why a separate operator, KEMSFL 

is provided. The face and loop to be left on the original shell are 

those found to the right of the edge to be deleted, when traversing 

the edge from the optionally specified vertex v/ to the other vertex. 

Any other loops of the original face are also left on the specified face. 

UNGLUE (edge_ptr: el; var face_ptr: newf1,newf2; var loop_ptr: newll,newl2) 

“Unglue Faces” takes a single circuit of edges starting with edge el 

which have marked using an edge marking facility, separates the 

model along the circuit, replicating edges and vertices as necessary. 

The process creates two new faces newfl and newsf2, and their respec- 

tive loops newll and newl2 which utilize the edges on each side of the 

separated circuit. This keeps the volume closed in order to maintain a 

closed manifold representation. The circuit marked for the UNGLUE
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must be complete, have no struts or self loops, and must not cross it- 

self. 

mflevkg: “make face, loop, edge, vertex, kill genus’’ occurs when 
the separation induced by the operation leaves the graph 
still connected. In this case the specified circuit lies on a 
handle of the shell which has a genus of one or more. The 
handle is removed, and the single shell with genus reduced 
by one is the result, 

mflevs: “‘make face, loop, edge, vertex, shell” occurs when the 
separation induced by the operation creates a disconnected 
graph. Each component of the result is treated as a 
separate shell; thus two separate volumes is the result, 

13.4.3. Composite Operators 

MME (integer: number; vertex_ptr: v; edge_ptr: e; dir_type: dir; 

var edge_ptr: ebeg,eend; var vertex_ptr: vend) 

“Make Multiple Edges” creates a connected chain of number edges 

starting at the specified vertex v. If the optional placement arguments 

e and dir are specified, ebeg, the first edge created, will bE positioned 

in direction dir (clockwise or counter-clockwise) from edge e about 

vertex v, as seen when looking towards the manifold surface from just 

outside the volume above the vertex v. The action is equivalent to a 

series of MEV’s, and if vertex v is not specified, a MSFLV followed by 

a series of MEV's, 

ESPLIT (edge_ptr: e; vertex_ptr: v; var edge_ptr: newe; var vertex_ptr: newv) 

“‘Edge Split” splits the specified edge e into two connected edges, e and 

newe. A new vertex, newv, is created between these two edges. The 

optional parameter v, if specified, designates which vertex of the edge 

¢ will be found on the new edge. The effect of this operator could be 

simulated by application of the KE operator followed by MEV and ME 

operators, but unlike ESPLIT, edge e would be entirely replaced rather 

than modified in place and, by side effect, a face could be deleted and 

replaced with a new one, perhaps shifting ownership of interior loops.
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KVE (vertex_ptr: v) 

“Kill Vertex, Edge” deletes the vertex specified by v and any edges us- 

ing this vertex. If necessary, faces and their loops are also deleted. 

Ownership of additional loops of deleted face falls the remaining sur- 

rounding face. Three cases may occur. First, when the vertex is the 

only boundary of a shell, it is equivalent to a KSFLEV. Second, when 

the vertex is a single vertex loop of a face, it is equivalent to an appli- 

cation of ME(meki) followed by an ESQUEEZE. Third, when there 

are n edges using a vertex, the result is equivalent to # -  KE’s fol- 

lowed by ESQUEEZE, 

13.4.4. Miscellaneous Operators 

LMOVE(loop_ptrA: 1; face_ptr: f) 

“Loop Move” moves the loop !/ from its current face to the face f 

This can be useful for moving loop$ from an original face over to the 

new face created by application of the ME(mefl) operator. It is not 

strictly an Euler operator since it doesn’t involve any changes to the 

terms of the Euler equation, 
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13.5. Building Higher Level Functions on the Euler Operators 

As previously stated, a great deal of the attraction of the Euler operators is that they 

provide a flexible base for higher level operators while insulating those new operators 

from the details and complexities of the actual data structures utilized. 

They are flexible, because they are fairly low level operators which systematically 

manipulate the model of the embedded graph on an edge by edge basis, providing au- 

tomatic topological integrity checking, Almost any other kind of commonly found 

modeling operator or procedure can be built on top of the Euler operators, including 

parametric primitives, sweeps, and cham fers. 

Boolean operators may aiso be implemented using the Euler operators. Many imple- 

mentations of the Boolean set operations in Euler operation based systems, however, 

opt not to use the Euler operators in some circumstances in favor of direct data struc- 

ture manipulation. This is done mostly to delay integrity checking until the end of 

the set operation and removes algorithmic restrictions caused by topological integrity 

requirements enforced by the Euler operators. It is sometimes claimed that delays in 

integrity maintenance may also improve efficiency. 

For detailed examples of how the Euler operators can be used to build some of these 

higher level operators, see [Eastman & Weiler 79] and {Braid 79].



SECTION III 

NON-MANIFOLD REPRESENTATIONS



Chapter 14 

INTRODUCTION 

Non-manifold is a geometric modeling term referring to topological situations which 

are not restricted to be two-manifold. Non-manifold representations are defined here as 

geometric modeling representations which allow volume, both manifold and non- 

manifold surface, curve, and point elements in a single uniform environment. This 

allows topological surfaces which are not constrained to be homeomorphic to a two- 

dimensional topological disk at every point (such as when a cone touches upon 

another surface at a single point, when more than two faces meet albng a common 

edge, or when a wire edge begins at a point on a surface (see Figure 3 — 3). A non- 

manifold representation therefore allows a general wire mesh with surfaces and 

volumes embedded in space and can be a functional superset of wireframe, surface, 

and traditional manifold solid modeling forms (see Figure 3 - 2). 

Non-manifold conditions naturaily arise as the result of closed form Boolean set 

operations, even when input is restricted to be manifold. Representation of interior 

features of models also require a non-manifold domain. Of special interest, non- 

manifold representations can allow a uniform representation of any combination of 

wireframe, surface, and solid modeling forms, 

Little work has been been done in the area of non-manifold geometric boundary 

modeling, and non-manifold boundary representations which explicitly store topologi- 

cal adjacency information is an entirely new area of research. While the occurrence of 

non-manifold results from Boolean operations with manifold inputs has been noted, 

and the existence of non-manifold equivalents to the Euler operators conjectured 

{Requicha & Voelcker 83], the topic has not previously been addressed by geometric
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modeling technology. 

This major section describes a non-manifold domain useful for geometric modeling, a 

data structure, called the Radial Edge structure, for an object based evaluated non- 

manifold boundary topology representation along with proof of its completeness, and 

general low-level operators, cail the non-manifold topology operators, to manipulate 

non-manifold topologies. 

14.1. Application Areas for Expanded Modeling Capabilities 

Several geometric modeling application areas can be supported by non-manifold 

representations in ways different from existing manifold solid representations. 

1. Modeling - The new uniform non-manifold representation allows wireframe, 

surface, solid, and non-manifold modeling techniques to be utilized 

simultaneously in the same modeling system using the same represen- 

tation. This allows a smooth transition in modeling applications from 

wireframe to surface to solid including the automatic detection of solid 

enclosures without any need for restructuring or translation. Non- 

manifold boundary representations also allow storage of arbitrary 

geometric information, such as center line axes and cutting planes, 

along with the shape description directly in a single model. Composite 

objects consisting of several distinct materials, such as that used in air- 

craft and other applications, can be modeled with adjacencies explicitly 

available in the model without extensive derivation. This flexibility 

can reduce overall implementation and maintenance costs, and allows 

development of a uniform user interface to serve all common aspects 

of the modeling system. It also provides more flexibility in the imple- 

mentation and marketing of a geometric modeling system. Closed 

form implementations of the Boolean operators are possible. 

2. Analysis - FEM (Finite Element Method) meshing can be performed on the
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same representation as the original modeling representation and, using 

the modeling representation as the communication medium, results 

can be passed directly back to the modeler for modification, bypassing 

the traditional manual process of updating models based on FEM 

analysis results. This may lead to integrated tools which automatically 

perform certain kinds of modification of the original model based on 

analysis results directly available from the model representation, and 

eventually, it could lead to tools which model and analyze simultane- 

ously, optimizing the design as modeling proceeds. Non-manifold 

results of Boolean operations are allowable for the representation and 

analysis of points, curves, and areas of overlap as well as volumes of 

overlap. 

3. Composite Objects - The extended domain of the new representation will sup- 

port the representation of interior structures directly. Areas of com- 

mon boundary and volume are represented explicitly, allowing 

specification and analysis of such relationships during the design 

phase,‘ removing the need to re-derive these relationships during 

analysis. 

4. VLSI (Very Large Scale Integration) - Non-manifold representations can sup- 

port advanced integrated circuit fabrication through easy caleulation of 

material area and volume adjacencies, allowing for analysis of electrical 

properties. It can support current two and one-half dimensional and 

future three-dimensional chip building capabilities. 

14.2. Organization of This Section 

This section is organized into the following five chapters concerning non-manifold 

topology representations, 

First, the domain of interest is described in Chapter 15.
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Chapter 16 describes the non-manifold adjacency relationships. 

Chapter 17 describes the Radial Edge data structure for non-manifold topology 

representation. 

Next, Chapter 18 briefly outlines information reiated to the theoretical sufficiency of 

the non-manifold adjacency relationships, and discusses completeness of the Radial 

Edge structure. 

Last, Chapter 19 describes general operators for manipulating non-manifold topolo- 

gies.



Chapter 15 

DOMAIN 

This chapter describes the non-manifold domain addressed in this major section. The 

domain conditions will provide the context which will be assumed in the rest of this 

major section on non-manifold geometric modeling representations, unless explicitly 

noted otherwise. 

15.1. Specification of Domain 

The non-manifold representations addressed here are assumed to be boundary based 

object based evaluated forms of geometric modeling representations, where topologi- 

cal adjacency information is used as a framework for the entire representation. A 

series of further specifications on the geometric and topological domain for a non- 

manifold representation follows. 

L. Non-manifold Surfaces - The representation is a non-manifold topological represen- 

tation which allows the uniform representation of wireframe, surface, and 

solid modeling representations, allows Boolean operations in a closed 

form, and provides an extended domain which includes representation of 

the interior features of objects. 

The representation contains topological information in a graph structure 

embedded in three-dimensional Euclidean space. This embedded topologi- 

cal boundary graph structure provides a framework for the remaining 

geometric model information. The entire non-manifold structure is finite 
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in extent. Any surfaces in it are orientable in the sense that the identity of 

the volume on each side of the surface is known. 

The representation must provide the ability to represent arbitrary three- 

dimensional meshes embedded in space. A cycle in the mesh may or may 

not have a surface piece (a face) associated with it. A group of adjacent 

faces may entirely enclose a volume of space; in this case the closed 

volume is given a unique identity and the elements adjacent to it are 

known, Thus any combination of wireframe, surface, and solid modeling 

techniques is permissible within the constraint that all element intersection 

information (intersection of surfaces, edges) is explicitly represented in the 

embedded graph structure. 

2. Manifold Faces - A face is defined as a cqnnected and bounded portion of a surface, 

but does not include its boundary. While an entire surface may be non- 

manifold, the individual faces of an object are required to be manifold. 

This means that no face is allowed which self-intersects {except at its 

boundary). This forces the topology to carry all surface (as well as edge) 

intersection information. Thus the non-manifold characteristics of the 

representation occur only at the boundaries of individual faces which are 

otherwise manifold. A single non-manifold surface face may therefore be 

represented by ensuring a boundary occurs along all non-manifold points 

and curves. 

3. Faces Mappable to a Plane - Every individual face is required to be mappable to a 

plane without cutting or creating new boundaries in the face. This forces 

the topological framework to carry all genus information. Note this is a 

further restriction not implied by the previous specification. This restric- 

tion is the same as saying that faces may not contain handles, noting that 

faces do not include their boundaries. 

4. Non-intersection Properties - Regions may not intersect with each other except along 

their boundaries. Faces may not intersect each other except along their
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boundaries. Edges in the embedded graph structure may not intersect 

except at their endpoints. Vertices must be distinct in three space. 

Further, as a corollary to the face non-intersection property, edges may 

not intersect faces except along or at their boundaries. Thus topological 

elements of two given types may only intersect each other at a level of 

hierarchy (top down the levels are regions, shells, faces, edges, vertices) at 

least one level lower than the lowest of the two levels. This restriction is 

necessary to prevent topological elements from penetrating faces and 

volumes without knowledge of the embedded graph representation struc- 

ture. 

5. Finiteness - Vertices are at finite positions in space, edges are finite in length, faces 

are finite in surface area, and enclosed regions are finite in volume. This 

includes the semianalytic requirement discussed by Requicha [Requicha 

80a], where surfaces must not have infinitely varying oscillations. The 

shapes allowable must be representable with a finite number of topological 

elements. 

6. Pseudographs - Generalized graphs, pseudographs, are allowed. This means that 

self loops and multigraphs are allowed. This allows curved edges without 

constraint on the geometry (other than the embedded graph constraint 

that edges must not intersect except at endpoints). 

7. Disconnected Graphs - Disconnected graphs are allowed. This allows multiply con- 

nected faces without the necessity for ‘‘artifact edge’ bridges between 

multiple contour boundaries belonging to the same face. It also allows 

direct representation of multiple shelled objects, such as an object with one 

or more voids in it. 

8. Labeled Graphs - All graph elements are labeled. Since all labeled elements are 

unique as a result, this allows non-geometric information to be associated 1 

with them. This has implications on the minimum number of element 

adjacency relationships required in the topological representation, since the |
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label of every element must be mentioned in the combination of all adja- 

cency relationships in the topological representation.



Chapter 16 

ADJACENCY RELATIONSHIPS 

This chapter describes the specific topological adjacency relationships found in the 

non-manifold domain specified in the previous chapter. The basic concepts behind 

the topological adjacency relationships have been described in Chapter 6. 

16.1. The Non-Manifold Topological Elements 

Since topological element adjacency relationships concern the relationships between 

individual topological elements, we must now define the elements more carefully 

before describing the adjacency relationships themselves. 

At least seven distinct element types, including six basic topological element types are 

involved in a non-manifold evaluated object based boundary topology representation. 

They can be seen as being related in a hierarchical fashion, where lower dimensional 

elements are used as boundaries of higher dimensional elements. 

The portions of the descriptions which differ from their manifold counterparts are 

italicized. 

A model is a single three-dimensional topological modeling space, consisting of one or 

more distinct (though perhaps adjacent) regions of space. A model is not strictly a 

topological element as such, but acts as a repository for all topological elements con- 

tained in a geometric model, allowing the naming and manipulation of multiple 

models by a geometric modeling system. 

A region is a volume of space. There is always at least one in a model. Only one 
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region in a model may have infinite extent; all others have a finite extent, and when 

more than one region exists in a model, all regions have a boundary. For example, a 

single solid would require two regions in the model, one for the inside of the object, 

and one for the outside (which has an infinite extent). 

A shell is an oriented boundary surface of a region. A single region may have more 

than one shell, as in the case of a solid object with a void contained within it. A 

region may have no shell only where all space exists as a single region, as in the ini- 

tial state where no modeling has been done, or after all components of a model have 

been deleted. A shell may consist of a connected set of faces which form a closed 

volume or may be an open set of adjacent faces, a wireframe, or a combination of these, or 

even a single point. 

A face is a bounded portion of a shell. It is orientable, though not oriented, as two region 

boundaries (shells) may use different sides of the same face. Thus only the use of a face by 

a shell is oriented. Strictly speaking, a face consists of the piece of surface it covers, 

but does not include its boundaries. 

A loop is a connected boundary of a single face. A face may have one or more loops, 

for example a polygon would require one loop and a face with a hole in it would 

require two loops. Loops normally consist of an alternating sequence of edges and 

vertices in a complete circuit, but may consist of only a single vertex. Loops are also 

orientable but not oriented, as they bound a face which may be used by up to two different 

shells. Thus, it is the use of a loop that is oriented. 

An edge is a portion of a loop boundary between two vertices. Topologically, an edge 

is a bounding curve segment which may serve as part of a loop boundary for one or 

more faces which meet at that edge. Every edge is bounded by a vertex at each end 

(possibly the same one). An edge is orientable, though not oriented; it is the use of 

an edge which is oriented. 

A vertex is simply a topologically unique point in space, that is, no two vertices may 

exist at the same geometric location (although the topology alone does not specify any
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exact geometric location beyond these constraints). Single vertices may also serve as 

boundaries of faces and as complete shell boundaries. 

Although not directly represented in the adjacency relationships as described here, at 

least four additional types of topological element adjacency uses associated with the 

face, loop, edge, and vertex elements may also be defined. In some representations 

they may be directly represented. 

A face-use is one of the two uses (sides) of a face. Face-uses, the use of a face by a shell, 

are oriented with respect to the face geometry. 

A loop-use is one of the uses of a loop associated with one of the two uses of a face. It is 

oriented with respect to the associated face-use. 

An edge-use is an oriented bounding curve segment on a loop-use of a face-use and 

represents the use of an edge by that loop-use, or if a wireframe edge, by endpoint vertices. 

Orientation is specified with respect to edge geometry. There may be many uses of a 

single edge in a model, but there will ahways be an even number of edge-uses (since each 

use by a face produces two edge-uses, one for each face side). A wireframe edge produces 

two edge-uses, one for each end of the edge. 

A vertex-use is a structure representing the adjacency use of a vertex by an edge as an 

endpoint, by a loop in the case of a single vertex loop, or by a shell in the case of a sin- 

gle vertex shell. 

16.2. Adjacency Relationships_in a Non-Manifold Model 

The topological information stored in a non-manifold boundary representation con- 

sists of the existence and adjacencies of the six basic topological elements. Queries 

and traversals of the topological representation are related to accessing this adjacency 

information. 

An adjacency relationship is the adjacency (in terms of physical proximity and order) of 
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a group of topological elements of one type (vertices, edges, loops, faces, shells, or 

regions) around some other specific single topological element. 

Thirty-six topological element adjacency relationships are possible in a non-manifold 

boundary representation, as outlined in Figure 16 — 1. 

Information related to specific adjacency relationships might be stored directly in a 

representation, but need not be; as long as information involving a sufficient set of 

adjacency relationships is available, information about all other adjacency relationships 

is derivable. 

An expanded example showing actual values of the non-manifold adjacency relation- 

ships for an object which is a non-manifold superset of the example in Figure 10 - 3 

is given in Figure 16 — 2. The figure shows a tetrahedron with a wire emanating 

from one vertex, a lamina face sharing one edge, and an additional single vertex 

Vivi VIE} ViL} Vi{F} Vst ViR} 

E{V} E{ [E}>} E{<L>} l E{< F>1} E{<S>} E{<R>} 

L{i<V>P { Li<E>P |L{ic<L>>}F L{FY L{SY LRYP 

FU< V> Fl<E> P F{L} Fc <F>> 1} F{SP FRP 

S{vi S{E} S{L} S{F} S{5} SRY 

R{V} R{E} R{L} R{F} ‘ RS} R{R} 

Figure 16 — 1. Adjacency Relationship Matrix of the Non-manifold Topological Elements 
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shell. Region r; is inside of the tetrahedron volume, which has shell s, ; everything 

outside the interior of the tetrahedron is adjacent to region r;. The diagram in the 

figure consists of a pictorial view of the non-manifold object, followed by a planar 

graph representation of the object in three parts, part a showing the tetrahedron, part 

b showing the lamina face with its single vertex loop, and part ¢ separately showing 

the wire edge and single vertex shell. These are followed by the adjacency relation- 

ships. For brevity, those adjacency relationships which have two orientations induc- 

ing identical adjacent groups in opposite order are only shown in one orientation. 

This includes E{< [E]> P, E{<L> P, E{< F> ¥, E{< $> ¥, and E{< R > P, where each 

end of the edge induces the opposite orientation implied by the outer unordered 

group brackets, and F{{< V> 1P, F{<E> P F{c<F>> W, Lk V> ¥ L<E> P, 

and L{< <L>> }, where the two sides of a face induce the opposite orientation 

implied by the outer unordered group brackets.
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Figure 16 ~ 2a. Actual adjacency relationships for a non-manifold object 
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vifF} = valf 1 fafsfs} va{S} = valsysod va{R } = vatrira} 
valF} = vatf 1 fafad valS} = valsisa} valR } = valrira} 
vs{F} = vsifs} vs{S}= vsisy) vsiR } = vsirg} 
velF} = vei} velS} = veisi} velR } = veiry} 
va{F} = vi{fst va{S}= volsy} vi{R } = vairy} 
vg{F} = vg{} ve{S} = vgiss} vgiR } = vgiry} 

E{vy E< [E}> 

er{V}= evivy e [E]> = ei<leqeslleseyl> 
ex{V}= exvy vy} e [E]> = eg< lesesllegeql> 
e3{V}= esfvivy} ex< [E]> - e3<(eqeqllesesl> 
eqfV'} = eqvavyl e< [E]> = eq< [eseglles eql> 

es{V} = estvyvs} es< [E]> = es< (egeqlieq eglley e3)> 
es{V}l= esfvaval ee< [E]> = eg<leqeslie; enl> 
er{V}= esfvsvs} < [E]> = eg<lesegl> 
eg{V} = eslvyvsi eg< [E]> = eg<(eqes)> 
eg{V'} = eofvivg} e9< [E]> = eg<> 

Figure 16-2b. Actual adjacency relationships for a non-manifold object 
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E<L> E< F> 
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ey< L> = eyclylyp e3< F> = ey fafsp 
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L<V> L< E> 

i< V> = licvyvgvyp W< E> = li<xegeges> 

< V> = lyevavyvp> < E> = lyceqeqep> 

i< V> = I3cvivyvs < E> = Iycegeses 

Iy V> = Licvyvavey < E> = lyceyeger> 

Is< V> = lscvyvsvy> Is< E> = lycegeqes> 

le< V> = lg<vp le< E> = lg<> 

L<<L>> L{FY 
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< <L>> = Ix<lhlp <lylp <lylp> LIFY = Lif) 
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Is< < L>> = lscclslily <l <l > Is{F} = s{f s} 
le< <L>> = lgc<>> 1{F} = lelf s} 

Figure 16-2c. Actual adjacency relationships for a non-manifold object 
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Figure 16-2d. Actual adjacency relationships for a non-manifold object 
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Figure 16-2e. Actual adjacency relationships for a non-manifold object 
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16.2.1. Adjacency Relationship Semantics 

The non-manifold domain is a more complex one than the manifold domain, and the 

semantics of the adjacency relationships reflect some of the complexity. 

As in the manifold domain, there are multiple interpretations for the semantics of 

some of the adjacency relationships. The definitions utilized in this thesis are 

described here. 

The adjacency relationships where the type of the reference element and the adjacent 

group are the same are particularly prone to multiple interpretations. The V {V} adja- 

cency relationship is defined here as the set of all vertices which are adjacent to the 

reference vertex by being at the other end of the edges specified by the V{E} adja- 

cency relationship. The E{< [E]*> ¥ adjacency relationship is defined as the set of 

clockwise and counterclockwise edges to the reference edge for each loop found radi- 

ally around the edge. The L {< < L> > } adjacency relationship is defined as the cyclic 

ordered list of radially adjacent loops sharing an edge with the reference loop for each 

edge in the cyclic list of edges in the.reference loop; the outermost brackets are for 

the two orientations the information can take based on which side of the face one 

views the relationships from. The F{{< < F> > }} adjacency relationship is defined as 

the cyclic ordered list of radially adjacent faces sharing an edge with the reference face 

for each edge in the cyclic list of edges in each loop of the reference face; the outer- 

most brackets are for the two orientations the information can take based on which 

side of the face one views the relationships from. The § {5} adjacency relationship is 

defined as the set of all sheils which share a face with the reference shell. The R {R } 

adjacency relationship is defined as the set of all regions which share a face with the 

reference region. 

The adjacency relationships where the edge is the reference element also are open to 

multiple interpretations. The E{< L > ¥ adjacency relationship is defined as the set of 

loops using the edge, with each use listed radially around the reference edge, with the 

same radial ordered group occurring twice, once in opposite order, once from the per-
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spective of each end of the edge. The E{< F> }* adjacency relationship is defined as 

the set of faces using the edge on a loop. boundary, with each use listed radially 

around the reference edge, with the same radial ordered group occurring twice, once 

in opposite order. The E{< §> ¥ adjacency relationship is defined as the set of shells 

using the edge on a face boundary, with each use listed radially around the reference 

edge, with the same radial ordered group occurring twice, once in opposite order. 

The E{< R> } adjacency relationship is defined as the set of regions using the edge 

on a shell boundary, with each use listed radially around the reference edge, with the 

same radial ordered group occurring twice, once in opposite order. A wireframe edge 

would therefore have two empty E{< F> } radial ordered adjacent groups but would 

have one member in each of its E{< §> ¥ and E{< R> ¥ radial ordered adjacent 

groups. 

The L {< V> } and L {< E> } adjacency relationships would have the expected meaning 

of representing the ordered lists of vertices and edges around a loop; the outermost 

brackets are for the two orientations the information can take based on which side of 

the face is used to view the relationships. 

The F{{< V> }} and F{{< E> }} adjacency relationships are similar to the L {< V> } and 

L{< E>} adjacency relationships above, except that an additional unordered list 

bracket pair encloses the innermost group to provide for the multiple loops that may 

be found in a face. 

The remaining adjacency relationships follow their expected definition in terms of 

their function as downward or upward hierarchical adjacency relationships. A more 

complete interpretation of the semantics of the adjacency relationships, specifically 

applied to the Radial Edge structure, can be found in the completeness proof in 

Chapter 18 and Appendix D. 

Correspondence is not discussed here in detail, but there are several characteristics of 

the non-manifold environment which allow correspondence between adjacency rela- 

tionships, including the two ends of an edge, the radial ordering of loops around an 

edge, the two sides of a face, and the loops in a face. These characteristics are
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utilized in the correspondence information kept in the Radial Edge structure dis- 

cussed in Chapters 17 and 18. 



Chapter 17 

TOPOLOGICAL DATA STRUCTURES 

This chapter discusses a specific data structure for the representation of an object 

based evaluated non-manifold boundary topology representation which explicitly 

stores adjacency relationship information. 

First, design issues for the non-manifold environment outlined in Chapter 15 are dis- 

cussed. Next, the Radial Edge data structure is described. The detection of volume 

enclosure, a condition maintained by operators manipulating the structure, is then 

discussed in relationship to the data structure. 

17.1. Design Issues in Non-Manifold Representations 

Many issues arise in the design of a representation to support non-manifold environ- 

ments, some similar to those found with manifold representations, and some unique 

to non-manifold representations. Specific resolutions to these issues are described in 

the following subsection discussing the actual data structures. 

One perspective on issues in non-manifold modeling can be seen from a comparison 

of non-manifold with manifold modeling environments. 

There are many differences between the manifold and non-manifold environments. 

The non-manifold environment, being able to model objects unrepresentable in mani- 

fold environments, is correspondingly more complex. The non-manifold domain in 

an intuitive sense has a higher level of representational dimension than that of a 

manifold domain, simply because a manifold domain restricts itself to surface junc- 

tures which are topologically two dimensional, while non-manifold domains support 

186
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more complex junctures. There are also some similarities, however. Many of the 

issues in manifold representation design exist in non-manifold representation design 

not only at the same dimensional level, but also appear in a similar fashion at a higher 

level of dimension, 

Several representation design issues of concern in a non-manifold environment are 

now discussed. 

17.1.1. Direct Representation of Adjacency Uses 

A key simplification principle found with manifold representations that equally applies 

in a non-manifold environment is that directly representing the use of topological 

representation structures (uses of the topological face, loop, edge, and vertex ele- 

ments) in the adjacency relationship information, rather than the topological elements 

themselves, simplifies accessing by eliminating the need for procedural decision mak- 

ing dul:ing traversals of the topology structures [Weiler 85a]. This is usually done at 3 

cost of at least some increase in storage requirements. 

Even simple operations such as traversal of the edges around a loop of a face can not 

use the edge identity as an indicator of where it is in the loop traversal since the same 

edge may be used twice in the loop (as in a strut edge). In fact, an edge identity with - 

a vertex identity is also not sufficient since self loops are allowed, and when non- 

manifold edges occur, even edge identity with orientation information is not sufficient 

since an edge may be used many times in both directions. When the uses of ele- 

ments are represented directly, however, these problems disappear since positioning 

in a list of adjacencies is uniquely defined. 

17.1.2. Non-Manifold Conditions Along an Edge 

A situation where more than two faces meet along a common edge is a major 

headache for manifold representation application developers since it can appear as a 
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result of the standard and the regularized Boolean operations, yet is not directly 

representable in manifold representations (see Figure 17 — 1). 

How this situation is handled is a key issue in the design of a non-manifold represen- 

tation, Representing non-manifold situations directly tends to simplify manipulation 

and modeling algorithms and remove special case considerations. 

Figure 17 - 1. Non-manifold conditions at a point and along an open curve 
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17.1.3. Non-Manifold Condition at a Vertex 

A similar problem for manifold representations is the situation where several distinct 

volumes or faces are connected only by a single vertex (see Figure 17 — 1), In some 

cases this can be represented while still using a manifold representation by decompos- 

ing the object by a process of duplicating vertices. This manifold solution has the 

undesirable characteristic of losing adjacency information (unless additional informa- 

tion is added, essentially creating a partial non-manifold representation as a special 

case). Again, these non-manifold situations are possible as a result of Boolean opera- 

tions, even when the input is manifold; correct implementations of these operators 

for manifold representations therefore must either decompose the output or give up. 

A non-manifold representation must preserve such adjacency information so that the 

information is available locally. Since the vertex is the only common structure 

between such adjacent structures, the vertex structure is the logical place to store 

such adjacency information. This also is a logical place to store connectivity informa- 

tion for wireframe edges. 

Note that in manifold representations an upward pointer from a vertex to higher 

dimensional element structure levels was optional; in a non-manifold representation it 

is logically mandatory. It is therefore necessary to consider whether it is also as 

necessary to isolate uses of a vertex as it was necessary to isolate uses of faces and 

edges. 

Another concept related to non-manifold vertices is separation surfaces, detailed later. 

17.1.4. Non-Manifold Wireframe Representation 

A wire edge is defined as a single edge, possibly a self loop or multiply connected 

edge, which has no adjacent face. Each end of the edge may or may not be attached 

to other edges. These adjacent edges may or may not also be wire edges. A 

wireframe is a collection of connected wire edges.
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With only a little extra care, a non-manifold representation can be designed to be 

flexible enough to equally accept wireframe, surface, or solid models, or any combi- 

nation of them at the same time. Non-manifold solid models, fully developed with 

interior partitions, have many complex adjacency relationships. 

Several desirable properties for a wireframe representation should be preserved. The 

representation structure should implicitly or explicitly keep track of what shell (what 

boundaries of what volumes) any given wire edge or shell vertex is part of. The adja- 

cencies between edges should be available, sorted by which end of the edge was adja- 

cent. The two vertices at each end of an edge should be available. 

17.1.5. Separation Surfaces 

Another situation to be considered is a complete surface formed by the juncture of 

faces around a vertex that effectively separates the space immediately around the ver- 

tex into two half-spaces, distinguishable from each other because the surfaces are 

orientable (see Figure 17 — 2). These surfaces are called separation surfaces, and may 

be composed of one or more faces as long as they together form a continuous mani- 

fold or lamina which creates the half-space division at the vertex. 

This means an edge attached to a vertex at the center of a separation surface could be 

intended to fall on one side or the other of the separation surface (see Figure 

17 - 2). 

At a single vertex there may exist many separation surfaces, which effectively form a 

tree of separation adjacency relationships between the surfaces. For example, in Fig- 

ure 17 — 3, the separation surface tree for the illustrated vertex has three branches at 

the top level, and one of the branches itself has two sub-branches. The resulting 

separation surface tree is shown in the figure symbolically as well as pictorially. This 

kind of information must be available in a non-manifold representation; there are 

many ways it may be represented. A purely topological approach might represent the 

separation surface adjacency tree directly; a hybrid approach might involve the use of
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Figure 17 - 2. A separation surface completely surrounds a vertex and divides 
the space around the vertex into two half spaces. 
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Figure 17 - 3. A nested tree of separation surfaces 

both topology and geometry to determine such information. 

if separation surface information is supported directly by the representation, topologi- 

cal elements may be inserted into the model with respect to their adjacencies to 

separation surfaces. This would have the effect of reducing operation ordering depen- 

dencies during model creation and manipulation. Keeping such information easily 

available in a representation is problematic, however, since the most convenient
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places to store such information change as the model is manipulated. Furthermore, 

the separation surface tree information must either be derived using geometry and 

topology together or must be produced by a somewhat complex interface protocol for 

any manipulation operators provided. 

Notice that a similar problem exists for manifold representations concerning where 

struts attached to a vertex should lie when a new edge is attached to a vertex. Some 

systems, simply put limitations on how and when such struts could be made. Other 

systems handle it by explicit designation of the adjacencies on the manifold (see 

Chapter 13). No such direct specification exists in three space, however, unless 

separation surfaces are an explicit part of the representation and the operators pro- 

vided use such specifications. 

17.2. A Description of the Radial Edge Data Structure 

17.2.1. Design Decisions 

Several decisions were made during design of the Radial Edge non-manifold data 

structure with respect to the design issues raised in the previous subsection and some 

of the practical constraints identified in the previous chapters. 

1. The top-down hierarchical relationships of the topological elements, from 
higher dimensional elements to lower dimensional elements, and the 
bottom-up hierarchical relationships of the topological elements, from 
lower dimensional elements to higher dimensional elements are 
directly represented in the data structures, as shown in Figure 17 - 4. 
The terms ‘‘up pointer” and “‘down pointer’ used in later data struc- 
ture descriptions refer to these relative positions in this hierarchy. 

2. The V{E} adjacency relationship consisting of the unordered list of edges 
incident to a vertex is represented in order to capture the adjacencies 
of separate volumes touching at a single non-manifold point, as well 
as to capture the edge adjacencies in a wireframe. Since the vertex is 
the only common structure between such adjacent structures in these 
situations, the vertex and vertex-use structures are the logical place to 
store such adjacency information. 

3. The E< L> adjacency relationship consistin of the ordered list of loops sur- 
rounding an edge is represented. This is required because the same 
volume may be adjacent to an edge from several directions at once; 
the radial face ordering around an edge is necessary to allow the
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model 

region 

face use «+—— face 

--»loop use <+—— loop 

---»edge use <—— edge 

L...l¥vertex use <+———= vertex 

Figure 17 - 4. Radial Edge structure relationships 

adjacencies of the volumes at the edge to be correctly represented. 
This a key feature of the Radial Edge data structure, giving rise to the 
name ‘“‘Radial Edge’’. 

4. No separation surface information is represented. It was felt intuitively that 
such information would be expensive to maintain under the effécts of 
typical modeling operations on such a representation, especially in 
view of the expected frequency of use of such information in normal 
modeling situations. 

5. The adjacency uses of the face, loop, edge, and vertex elements are directly 
represented. In particular, representing each face with two face-use 
(face side) structures and each edge with an edge-use structure for 
each use by each face-use are some of the other key ideas of the 
Radial Edge structure described here. 

6. Wireframe edges are represented by two edge-uses, one for each end of the 
edge. Connectivity to other edges is maintained through the vertex- 
use structures. 

In fact, it is not necessary to have any direct representation of the basic face, loop,
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edge, and vertex elements themselves; representations of their uses are sufficient to 

indicate their position in the model. It is convenient, however, from a system archi- 

tecture point of view if programmers using the operators to manipulate the data struc- 

tures deal with the more intuitive concept of topological elements rather than topolog- 

ical uses of elements as much as possible. Additionally, dealing only with basic ele- 

ments at the interface level helps insulate higher levels of a geometric modeling sys- 

tem from data structure dependencies. This is one of the few justifications for the 

representation of the face, loop, edge, and vertex elements directly in this representa- 

tion. It may also be desirable on the basis of high speed traversal of all faces, edges, 

and vertices in a model, although the overhead in the Radial Edge structure for these 

operations is not overwhelming except perhaps in the largest models. Geometry may 

also be stored in the face, edge, and vertex elements directly, but programming 

modularity, desire for multiple geometric representations, ease of manipulation, and 

the desire to represent variable and symbolic geometric dependencies and constraints 

make implementing a separate geometry representation more desirable. 

For parametric surface geometry representations, the edge-use approach of the Radial 

Edge structure provides a one-to-one correspondence of topological elements to 

oriented parametric space curve segment geometry elements. This is a particularly 

useful bookkeeping feature when curve geometries exist only as parametric space 

curves; otherwise procedural testing is necessary. This is discussed in Chapter 20. 

There are several secondary design issues which, while not as fundamental as those 

discussed previously in this chapter, are nevertheless important. These design issues 

mostly concern tradeoffs of data structure space for speed and/or simpler manipuia- 

tion algorithms. Examples include decisions regarding search vs. upward pointers, 

variable size structures vs. lists of fixed size structures, and doubly vs. singly linked 

lists. The basic strategy chosen here is to utilize explicit upward pointers to avoid 

necessity for search, to utilize fixed size structures, and to use doubly linked circular 

lists. These choices trade space for speed and simplicity of algorithms. Other choices 

are possible, but optimal choices would involve careful statistical analysis of actual 

usage patterns. This latter approach might yield overall better space and time
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performance, but is not foolproof, since usage patterns can change drastically based 

on even minor changes in heavily used application code. 

The main purpose of the shell and loop structures is to function as variable length list 

mechanisms which allow disconnected graph conditions within surfaces (the loop), 

and between surfaces as well as between other boundary structures (the shell). In the 

case of a shell, the highest dimension of the boundary elements may range from a 

surface (2D), an edge (1D), or a vertex(0OD). In a loop it may range from an edge to 

a vertex, Note that while the element-use structures also effectively provide a vari- 

able length list mechanism, their primary advantage is still in providing unique 

identification for each element usage to simplify later adjacency queries and traversals. 

17.2.2. Data Structures 

The data structures of the Radial Edge structure are described in the form of Pascal 

data structures in Figures 17 — 9 to 17 - 16. 

Figure 17 — 5 illustrates some of the adjacency relationships represented in the edge- 

use structure. Two adjacent faces are shown; the edge they share in this case gives 

rise to four edge-use structures, one by each of the two sides of each of the two 

faces, Any given edge-use structure keeps track not only of the eweu_mate_ptr edge- 

use structure found on the opposite side of the face, but also of the eueu_radial ptr 

edge-use structure on the face-use radially adjacent to the face-use of the givpn edge- 

use. In this way, the full radial ordering of faces about the edge can be maintained. 

Figure 17 - 6 depicts the eueu_radial_ptr and eueu_mate_ptr edge-use relationships in a 

cross-sectional view. 

Figure 17 —~ 7 depicts how edge-uses in a loop-use are connected for the representa- 

tion of the cyclic ordered list of edges around a loop. Figure 17 — 8 shows pointers 

for a wireframe vertex touched upon by several edges and illustrates how connectivity 

is maintained through common vertices.
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Figure 17 — 5. Radial Edge representation of two faces joining along a common 
edge showing how the four edge uses of the common edge (each side 
of each face uses the edge) are connected 
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Figure 17 - 6. Cross-section of three faces sharing a common edge in the Radial 

Edge representation 
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Figure 17 - 7. Plan view of a loop of edges in the Radial Edge structure 
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Figure 17 — 8. Radial Edge representation of a vertex and its uses by five in- 
cident edges. Vertex-use to edge-use pointers are required for 
representation of adjacencies of wire edges incident to a vertex. 
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As in the descriptions of manifold data structures, data objects refer to each other by 

the use of pointers. Similarly, the naming convention for the pointers in the data 

structures described is: 

from-element-type to-element-type ptr 

where the topological element types are symbolized by the letters r, s, f, I, e, v, fu, lu, 

eu, and vu for region, shell, face, loop, edge, vertex, face-use, loop-use, edge-use, 

and vertex-use, respectively, There is sometimes an additional name before the 

“ptr’’ suffix when there is more than one pointer of the given type combination. Cir- 

cular linked lists of lower dimension elements maintained by higher dimension ele- 

ments often use pointers embedded in the lower dimension elements. The pointers 

are usually named in the form: 

higher-dimension-type lower-dimension-type next 

It should be noted that the actual orientations of orientable elements are associated 

with the usage structures rather than basic element structures since it is the use of an 

element that forces an orientation. The orientation is meaningful primarily with 

regard to‘ geometry stored in the geometry attribute of the face and edge basic topo- 

logical elements. A consistent interpretation of orientation is therefore necessary for 

face normals and edge directions. 

The model structure simply maintains a down pointer to a list regions in the model, 

and a region structure maintains a list of shells bounding the region. The shell struc- 

ture maintains a down pointer to the highest dimensional element type which bounds 

the shell: a list of face-uses, a wire edge-use, or a single vertex-use. 

The face, loop, edge, and vertex records are merely convenient places to put attribute 

information such as geometry, and also assist by providing unique identities for basic 

topological elements if operators are based on basic elements rather than use ele- 

ments. They are not topologically necessary in the representation, however. 

The face-use structure represents the use of one side of a face by a shell. It main- 

tains a down pointer to an associated list of loop-use structures, as well as a pointer to 

the face-use of the other side of the face. 
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type 

{ topological element structures } 

model_ptr = “model; 
region_ptr = “region; 
shell_ptr = “shell; 
face_ptr = “face; 
loop_ptr = “loop; 
edge_ptr = “edge; 
vertex_ptr = “vertex; 

{ topological element adjacency usage structures } 
faceuse_ptr = “faceuse; 
loopuse_ptr = “loopuse; 
edgeuse_ptr = “edgeuse; 
vertexuse_ptr = “vertexuse; 

{ pointer type indicator values } 

ptr_type = (MODELptr, REGIONptr, SHELLptr, FACEptr, LOOPptr, EDGEptr, 
VERTEXptr, FACEUSEptr, LOOPUSEptr, EDGEUSEptr, YERTEXUSEptr); 

{ attribute/ geometry structures } 
model_attrib_ptr = “model_attrib; 
region_attrib_ptr = “region_attrib; 
shell_attrib_ptr = “shell attrib; 
face_attrib_ptr = “face_attrib; 
faceuse_attrib_ptr = “faceuse_attrib; 
loop_attrib_ptr = “loop_attrib; 
loopuse_attrib_ptr = “loopuse_attrib; 
edge_attrib_ptr = “edge_attrib; 
edgeuse_attrib_ptr = “edgeuse_attrib; 
vertex_attrib_ptr = “vertex_attrib; 
vertexuse_attrib_ptr = “vertexuse_attrib; 

{ usage vs. element orientation type } 
orientation_type = (SAMEorientation, OPPOSITEorientation, UNSPECIFIED orientation); 

{ note: general pointer variable naming convention is the concatenated string 
from-element to-element **_ptr”’ 

where the element types are m,r,5,f,l,e,v,fu,lu,eu, and vu. 
All ““next’,**last’’ pointers are for circular doubly linked lists. 

Figure 17 - 9. General types for Radial Edge structure in Pascal notation 
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var 
Models: model_ptr; { root of data structure; list of all models } 

type 

a) Pascal Declaration 

model = record 
m_next,m_last: model_ptr; { list of all active models } 
mr_ptr: region_ptr; { list of regions in modeling space } 
ma_ptr: model_attrib_ptr  { attribs } 
end; 

b) Storage allocation description 

m_next 

m_last 

mr_ptr 

ma_ptr 

a} Pascal Declaration 

region = record 
rm_ptr: model_ptr; { owning model } 
mr_next,mr_last: region_ptr;  { regions in model list of regions } 
rs_ptr: shell_ptr; { tist of shells in region} 
ra_ptr: region_attrib_ptr { attribs } 
end; 

b) Storage allocation description 

rm_ptr 

mr_next 

mr_last 

rs_ptr 

ra_ptr 

Figure 17 - 10. Types for Radial Edge basic topological elements in Pascal nota- 

tion 
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a) Pascal Declaration 

shell = record 

Sr_ptr: region_ptr; { owning region } 
rs_next,rs_last: shell_ptr; { shells in region’s list of shells } 
sa_ptr: shell_attrib_ptr; { attribs } 
case downptr: ptr_type of { mutually exclusive alternatives } 

FACEUSEptr: (sfu_ptr: faceuse_ptr); { list of face-uses in shell } 
EDGEUSEptr: (seu_ptr: edgeuse_ptr); { shell is wireframe } 
VERTEXUSEptr: {(svu_ptr: vertexuse_ptr) { shell is single vertex } 

end; 

b) Storage allocation description 

sr_ptr 

rs_next (same) (same} 

rs_last 

sa_ptr 

downptr 

sfu_ptr or seu_ptr or sVu_ptr 

a) Pascal Declaration 

face = record 
ffu_ptr: faceuse_ptr; { list of uses of this face - use fu mate field } 
fa_ptr: face_attrib_ptr { attribs including geometry } 
end; 

b) Storage allocation description 

ffu_ptr 

fa ptr 

Figure 17 - 11. Types for Radial Edge basic topological elements in Pascal nota- 

tion 
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a) Pascal Declaration 

loop = record 
Hu_ptr: loopuse_ptr;  { list of uses of this loop - use eu mate eulu fields } 
la_ptr: loop_attrib_ptr  { attribs } 
end; 

b) Storage allocation description 

flu_ptr 

la_ptr 

a} Pascal Declaration 

edge = record 

eeu_ptr: edgeuse_ptr;  { list of uses of this edge - use eu radial/ mate fields } 
ea ptr: edge_attrib_ptr { attribs including geometry } 
end; 

b) Storage allocation description 

eeu_ptr 
ea_ptr 

a) Pascal Declaration 

vertex = record 
vvu_ptr: vertexuse_ptr; { list of uses of this vertex - use vunext fields } 
va_ptr: vertex_attrib_ptr { attribs including geometry } 
end; 

b) Storage allocation description 

vvu_ptr 

va_ptr 

Figure 17 - 12. Types for Radial Edge basic topological elements in Pascal nota- 

tion 
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a) Pascal Declaration 

faceuse = record { will always be exactly two uses of face } 
fus_ptr: shell_ptr; { owning shell } 
sfu_next,sfu_last: faceuse_ptr; { fu’s in shell’s list of fu’s } 
fufu_mate_ptr: faceuse_ptr; { opposite side of face } 
fulu_ptr: loopuse_ptr; { list of loops in face-use } 
orientation: orientationtype; { compared to that of face geom definition } 
fuf ptr: face_ptr; { face definition and attributes } 
fua_ptr: faceuse_attrib_ptr { attribs } 
end; 

b) Storage allocation description 

fus_ptr 

sfu_next 

sfu_last 

fufu_mate_ptr 

fulu_ptr 

orientation { 

fuf ptr 

fua_ptr 

Figure 17 - 13. Types for Radial Edge adjacency usage topological elements in 

Pascal notation 
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a} Pascal Declaration 

loopuse = record 
lufu_ptr: faceuse_ptr; { owning face-use } 
fulu_next,fulu_last: loopuse_ptr; {lu’s in fu’s list of lu’s } 
lulu_mate_ptr: loopuse_ptr; { loopuse on other side of face } 
lul_ptr: loop_ptr; { loop definition and attributes } 
lua_ptr: loopuse_attrib_ptr; { attribs } 
case downptr: ptr_type of { mutually exclusive alternatives } 

EDGEUSEptr: (lueu_ptr: edgeuse_ptr); {list of eu’s in lu } 
VERTEXUSEptr:(luvu_ptr: vertexuse_ptr) { loop is one vertex oaly } 
end; 

b) Storage allocation description 

lufu_ptr 

fulu_next 

fulu_last {same) 

luly_mate_ptr 

lul_ptr 

fua ptr 

downptr 

lueu_ptr or luvu_ptr 

Figure 17 — 14. Types for Radial Edge basic topological elements in Pascal nota- 

tion 
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a} Pascal Declaration 

edgeuse = record 
euvu_ptr: vertexuse_ptr; { starting vu of eu in this orientation } 

eueu_mate_ptr: edgeuse_ptr;  { eu on other fu of face or end of wire } 
eue_ptr: edge_ptr; { edge definition and attributes } 
eua_ptr: edgeuse_attrib_ptr; { parametric space geom } 
case upptr: ptr_type of { mutually exclusive alternatives } 

SHELLptr: ( 
eus_ptrishell_ptr { owning shell } 

) 
LOOPUSEptr: ( 

{ cw/cew eu’s in lu’s ordered eu list } 
lueu_cw_ptr,Juen_ccw_ptr: edgeuse_ptr; 
eueu_radial_ptr: edgeuse_ptr; { eu on radially adjacent fu } 
orientation: orientationtype; { compared to geom } 
eulu_ptr: loopuse_ptr { owning loop } 

) 
end; 

b) Storage allocation description 

euvu_ptr 
eueu_mate ptr - 

eue_ptr (same) 

eua ptr 
upptr 

lueu_cw_ptr or eus_ptr 
lueu_ccw_ptr 

eueu_radial_ptr 

orientation 
eulu_ptr 

Figure 17 — 15. Types for Radial Edge basic topological elements in Pascal nota- 

tion 
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a} Pascal Declaration 

vertexuse = record 

vu_next,vu_last: vertexuse_ptr; { list of all vu’s of vertex'} 
Vuv_ptr: vertex_ptr; 
vua_ptr: vertexuse_attrib_ptr; 
case upptr: ptr_type of 

SHELLptr:(vus_ptr: shell_ptr); 
LOOPUSEptr: (vulu_ptr: loopuse_ptr); { loop consists of only this vu } 
EDGEUSEptr: (vueu_ptr: edgeuse_ptr){ eu causing this vu } 

end; 

b) Storage allocation description 

vu_next 

vu_last 

vuv_ptr 

vua_ptr 

upptr 

(same) 

vus_ptr or vulu_ptr or 

{ vertex definition and attributes } 

{ parametric space geom & attribs } 
{ mutually exclusive alternatives } 

{no fu’s or eu’s on shell } 

(same) 

vueu_ptr 

Figure 17 - 16. Types for Radial Edge adjacency usage topological elements in 

Pascal notation 

The loop-use structure also maintains a pointer to the equivalent loop-use structure 

on the other side of the face. It has a down pointer either to a list of connected 

edge-use structures or to the single vertex-use in the case of a single vertex loop. 

The edge-use structure has two configurations. A wireframe edge is represented by 

two edge-use structures, one for each end of the edge, and each maintains a direct 

pointer to the shell it bounds as well as to the other edge-use. If the edge-use 

bounds a face, it also maintains pointers to allow forward and reverse traversal of the 

loop-use it is associated with. A downpointer to a vertex-use is also maintained; the 
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vertex-use at the other end of the edge-use is found from the corresponding field of 

the mate edge-use. The radial and mate pointers which give ordered access to the 

edge-uses associated with faces which radially use the edge is a very important aspect 

of the Radial Edge structure, 

The vertex-use structure maintains an up pointer to the lowest dimensional element 

directly using it: an edge-use in the case of a wire or loop-use edge, a loop-use in the 

case of a single vertex loop, or a shell in the case of a single vertex shell. 

17.2.3. Geometry and Other Attributes 

Geometry information is not directly described here since many forms of geometric 

surface, curve, and vertex coordinate representations are possible, and their definition 

is not necessary to understand the adjacency topology structures. 

Typically, a vertex would have coordinate geometry or procedural coordinate descrip- 

tions associated with it. Edges would usually either directly store or refer to curve 

information', and faces would maintain or refer to a description of the geometric sur- 

face geometry. This geometry would be directly associated with the basic topological 

face, edge, and vertex structures. Models, shells, and sometimes faces can have spa- 

tial extent information such as bounding boxes for the efficiency of applications. 

Geometry information as it relates to edge-uses and vertex-uses in a system using 

parametric surface geometry formulations is described in Chapter 20. 

Orientation information, as found in the face-use and edge-use structures are binary 

values which indicate whether the orientation required by the structure agrees or 

disagrees with the orientation specified by geometry attributes. Orientation informa- 

tion is not strictly related to the adjacency topology information but is included in 

these structure definitions because they are necessary to specify orientations with the 

non-manifold topology operators described in Chapter 19. They are included for no 

other reason.
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In most implementations the geometry implementation can be layered on top of the 

topology implementation so that the topology and geometry packages can be imple- 

mented and maintained separately. 

Many other kinds of attribute can be associated with the various elements. In 

mechanical engineering applications, volumes, densities, and other mass properties 

may be attributes of region and other element types. Color, translucency, and surface 

finish are other common properties. 

17.2.4. Variations in Data Structures 

The many variations possible are primarily related to speed vs. storage issues. Algo- 

rithmic complexity is also an important factor affecting the implementors’ ability to 

write and maintain applications. The usual relationship is that reducing storage 

requirements will increase processing time and algorithmic complexity. 

Doubly linked lists are not required for virtually any of the lists maintained in the 

Radial Edge structure, although search would be required to replace the lost func- 

tionality for those lists which are ordered. Deletion is usually slower in singly linked 

lists, however. The optimization trick here is in statistically determining the lists for 

which search is relatively inexpensive in a given application. 

Some of the upward pointers can be eliminated without great hardship; again a statist- 

ical profile of the applications using the representation would be useful in making 

these decisions. 

Face, loop, edge, and vertex structures are not required. Even operators based on 

specifying basic topological elements can be implemented without them if unique 

naming mechanisms are provided. 

In applications requiring heavy use of wireframe elements, storage may be saved by 

representing wire edges in a single edge-use structure which has pointers to both 

vertex-use structures at each end of the edge. This does mean that the manipulation
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operators must perform procedural checking for wire edges as a special case, however. 

Variable length structures could also be investigated to reduce overhead from loop 

and shell structures, and some of the use structures. As can be seen in the algo- 

rithmic complexity comparison of the four manifold data structures in Appendix B, 

however, there can be drastic complexity costs involved. 

17.3. Detecting Volume Closure by Face Additions 

A great many new situations arise in a non-manifold environment which do not 

directly exist in standard manifold environments, simply because the domain is much 

larger and is correspondingly more complex. Yet there are also correspondences 

between non-manifold and manifold environments, often similar to correspondences 

between problems in three dimensions versus problems in two dimensions. 

An example is the problem of determining when a new volume has been enclosed as 

a result of adding a new face to an existing structure in a non-manifold environment, 

This is a basic task which must be performed repeatedly during modeling operations, 

The same problem does not directly exist in the manifold environment since all face 

operations take place on an existing manifold, and any new volumes must be expli- 

citly created by creating a new manifold. However, a corresponding but simpler prob- 

lem that exists in the manifold environment is a new face being created by the addi- 

tion of an edge between two existing points. 

In a manifold environment, connecting an edge between two points may close off a 

new face, but only if there is already some other connection in the graph structure 

between the two endpoints. The only way to discover such situations is through the 

equivalent of a potentially global search around the edges adjacent to the surface 

starting on one side of the new edge. If one eventually reaches the other side of the 

edge from which one started, then a new face has not been enclosed. Such algorithms 

are automatically carried out in manifold modeling systems by operators such as the 

Euler operators.



213 

In a similar fashion, determination of the enclosure of a new volume in a non- 

manifold environment should also be made by an automated algorithm in order to 

maintain the integrity of the representation, since the representation must always 

know what volumes exist and where their boundaries are. It is not reasonable to 

expect applications to provide such information since the information is essentially 

available in the modeling structure itself, and applications should not be concerned 

with intimate details of the representation system. 

As in the manifold environment problem of connecting an edge between two points, 

some form of search is necessary in order to determine when a new region has been 

enclosed by the addition of a face in a non-manifold environment. Similarly, the 

search is essentially a potentially global search of the face-uses adjacent to the original 

volume in which the face addition operation is being performed. To determine 

whether a potential new volume is enclosed by the addition of the new face, one 

must traverse all face-uses adjacent to the original volume to be sure that the poten- 

tial new volume is not open to the original volume at some location. If a new 

volume actually has been enclosed, then the search restricts itseif only to the face 

sides (uses) directly adjacent to the new volume. The basic algorithm relies on the 

principle that if one starts out on one of the sides (face-uses) of the new face and 

traverses all face sides (face-uses) adjacent to it by volume (and recursively, adjacent 

to each of those), and eventually the other side of the face from which one started is 

reached, then a new volume has not been formed. If the traversal is complete but did 

not include the other side of the new face, a new volume has been formed. 

The ease with which this basic idea can be implemented is primarily determined by 

the ease with which information for traversal can be obtained from the data struc- 

tures. The Radial Edge structure is optimized for obtaining such adjacency informa- 

tion, however, and the algorithm for determining volume enclosure is correspond- 

ingly simple. 

The algorithm can be described in terms of the two procedures presented here, 

Record structure access is given in Pascal notation.



214 

{ traverse all face-uses (face sides) adjacent by common volume 
to the chosen original face-use (face side) } 

traverse(fu): 
1. mark the face-use fu that you are currently on. 
2. trave:fe all edge-uses eu of all loop-uses of the face-use fu. For each pointer to 

edge-use eu: 
a)gnewfu « eu”.eueu_radial ptr*.eulu_ptr*.lufu_ptr 
b) if newfu is not marked, then traverseé(newfu) 

{ determine enclosure of new volume after face addition of newf } 
enclosure{newf): 

1. traversef(newf‘ ffu ptr) 
2. if ( newt" ffu_ptr" .Ffufu_mate_ptr is marked ) 

then return FALSE { no enclosure } 
else return TRUE { enclosure found } 

Note that this specialized traversal effectively ignores all wire edges and any faces 

lying at the end of these wires. This is because any change in the status of a region 

due to face creation cannot be propagated through an infinitely thin wire (through a 

0-dimensional boundary point at its endpoint); it must occur due to a change in acces- 

sibility involving faces adjacent through a l-dimensional boundary element (a curve) 

to the one just created.



Chapter 18 

TOPOLOGICAL SUFFICIENCY 

There are three main issues regarding the topological sufficiency of non-manifold 

boundary topology representations which store adjacency relationships. 

First, what is the theoretical minimal amount of topological information required to 

reconstruct a non-manifold topology for the specified domain ? 

Second, what is the practical minimal amount of topological information required to 

reconstruct a non-manifold topology for the specified domain ? In other words, what 

is the minimal topological information required to be stored in an implementation of 

a geometric modeling system ? 

Third, are the data structures to be used, in this case the Radial Edge structure, 

sufficient ? 

This chapter outlines some aspects of these issues. 

The first issue is still an open research question. This chapter does not prove 

minimal theoretical topological adjacency relationship information but does conjecture 

which adjacency relationship information is particularly critical to non-manifold topol- 

ogy representations. 

The second issue, as discussed here, is straightforward given the solution to the first, 

using the same techniques established for obtaining a practical minimum sufficient set 

of adjacency relationships as used for manifold representations. 

Finaily, proof of completeness of the Radial Edge structure is then discussed. 

218
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18.1. Minimal Theoretical Sufficiency for Non-Manifold Environments 

Identification of a minimal sufficient set of adjacency relationships and a formal proof 

of their sufficiency remains an open problem at this time, A rigorous mathematical 

basis for minimal sufficiency of non-manifold boundary topology representations, and 

operators which manipulate them, has not yet been developed. 

Several characteristics of the non-manifold adjacency relationships related to 

sufficiency can be noted on an informal basis, however. 

The adjacency relationships which seem to be most convenient in non-manifold 

modeling representations are the downward and upward hierarchical diagonal adja-- 

cency relationships. Examining the relationship between these two sets of adjacency 

relationships is instructive with regard to exploring sufficiency. 

The downward hierarchical diagonal adjacency relationships from E{V}to R {S} would 

normally be expected to fall among the commonly useful relationships because they 

directly indicate the hierarchical relationships between topological elements of various 

dimensionality, 

All of the upward hierarchical diagonal adjacency relationships can easily be derived 

from their counterpart downward hierarchical adjacency relationships (where E{V} is 

the counterpart to V{E}, for example), except for the E{< L > } adjacency relationship 

which seems to have substantially different information from its counterpart L {< E> } 

adjacency relationship. 

The E{< L>} adjacency relationship, indicates the radial ordering of loops using an 

edge, and therefore (with the other hierarchical adjacency relationships) the radial 

ordering of all higher dimensional elements about the reference edge. This would 

therefore appear to be required in order to maintain the adjacency between faces 

unambiguously. 

Certainly for a practical system requiring a labeled graph, a set of five adjacency rela- 

tionships spanning all the element types (such as the downward hierarchical diagonal
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adjacency relationships) would be required. 

This set is not minimal if labels are not important, however, as in the theoretical case 

being considered here. S{F}, the faces around a shell, could be derived because of 

the cofinectivity between faces offered by the E{< L> } adjacency relationship, assum- 

ing that L {F} or F{L} was available. R {S} cannot be derived from the other down- 

ward hierarchical diagonal adjacency relationships, since, for example, a single vertex 

shell could be located in virtually any region. R {V} could be useful as a more power- 

ful alternative in this regard since it does not depend on shell labels. 

Other information which must be derivable includes similar situations where direct 

edge-to-edge connectivity is not available, such as the regions associated with single 

vertex shells and wireframes, and the faces or loops associated with single vertices 

forming loops. 

18.2. Practical Sufficiency for Non-Manifold Environments 

As in the case of manifold modeling representations, a practical non-manifold imple- 

mentation would not only include information related to the sufficient set of adja- 

cency relationships, but would also include information related to additional adjacency 

relationships so that information associating all element types is available. This ties 

the representation together; all elements are uniquety labeled and non-topological data 

may then be unambiguously associated with the topological model. Thus boundary 

graph based geometric modeling systems normally require information equivalent to 

at least (n—1) adjacency relationships (where n is the number of basic topological ele- 

ment types) to associate all element types together into a cohesive whole. In this case 

n=6, so at least five adjacency relatiohships would be required as a practical minimum 

sufficiency requirement. 

From the previous discussion on minimal sufficiency, it might be conjectured that a 

set of adjacency relationships equivalent to the downward hierarchical diagonal adja- 

cency relationships and E {< L > } adjacency relationship would be a practical minimum
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sufficient set (shown surrounded by boxes in Table 16 - 1), as long as additional 

information about the region associations of wireframe edges and single vertex shells, 

and face associations of single vertex loops are also maintained. 

The next subsection discusses how the Radial Edge structure maintains this informa- 

tion, 

18.3. Sufficiency of the Radial Edge Structure 

18.3.1. Adjacency Relationships in the Radial Edge Structure 

The adjacency relationship matrix containing the thirty-six non-manifold topological 

element adjacency relationships is given in tables 18 — 1 and 18 - 2, and provides a 

more detailed description of the adjacency relationships as found in the Radial Edge 

structure. 

The major difference between this adjacency relationship matrix and the general one 

shown in table 16 — 1 is that the correspondences are being shown, making some of 

the unordered groups ordered. One other difference is that the radial ordering of the 

interior group of the LL and FF adjacency relationships are represented by ordered 

pairs consisting of those elements before and after the given element in the radial 

ordered list under consideration. 

The upward and downward hierarchical diagonal adjacency relationships, which are all 

directly represented in the Radial Edge structure (as wiil be shown shortly), are boxed 

in the tables. In addition, six other adjacency relationships are also represented 

directly under the special conditions of a single vertex shell (V{S}and S{V}), a single 

vertex loop (V{L} and L (< V>]), and a wireframe portion of a shell (E[< §> ] and 

S{ED. 

Note that linear ordered lists are used in a number of adjacent groups where the



219 

Table 18 — 1. Left Half of Adjacency Relationship Matrix for the Radial Edge 
Structure 

reference adjacent group ele- 

element ment type 

type 

vertices edges loops 

vertex Viv]VeEl VIE] VL) 

edge E[V}? E[< [E]E<L> 15 JEV] E[< L> JEVN 

loop Li< Vs L<E> )PsH L{< E> i Li< L] L<E> sy 

face Fll< V> ))FE8H Fll< E> ]]¥I5H F{L] 

shell S{V} S{EY S{L} 

region R{¥V} R{E} R{L} 
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Table 18 - 2. Right Half of Adjacency Relationship Matrix for the Radial Edge 

Structure 

reference adjacent group ele- 

element ment type 

type 

faces shells regions 

vertex ViF} V{s} V{R} 

edge El{< F> [E<L> !}!E[Vll Ef< S> [E<L> l]lE[V]l E[{<R> IE<L> l]!E[VH 

loop L{FY L{s]¥sH LR 1¥FEH 

face F([< [F)*> |FEpFIST FIST F[R]FBI 

shell S{F} S{S} SRY 

region R{F} R{S} R{R} 

general description of the non-manifold adjacency relationships indicated unordered 

adjacent groups. This indicates situations where correspondence information is avail- 

able from the Radial Edge structure; the ordering between corresponding adjacency 

relationships with the same reference element is in correspondence. Further, the 

adjacency relationships which are in correspondence with a directly represented adja- 

cency relationship have the cardinality of their adjacent group specified as the cardi- 

nality of the adjacency relationship originating the correspondence.
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18.3.2. Completeness of the Radial Edge Structure 

It is necessary to prove two aspects of a topological data structure to prove that it is 

sufficient. First, it must be proven complete, meaning that all adjacency relationships 

are derivable from the data existing in the data structure. Second, it must be proven 

unambiguous, meaning that there is a one-to-one correspondence between the topolog- 

ical representation and the full topological adjacency relationship information. This 

means that a unique set of data in the data structure will result in a unique set of full 

adjacency information. Note that we are not talking about a canonical form for 

representation of a given shape but rather a unique representation for a given set of 

full topological adjacency relationship information. 

Proving unambiguity for a specific data structure is likely as difficult as finding the 

minimal sufficient adjacency relationships for the non-manifold environment. Since 

this information has not yet been found, this section will concentrate on proving 

completeness of the Radial Edge structure rather than proving full sufficiency. This 

provides some (but not total) assurance of its sufficiency., Therefore, while it is con- 

jectured that the Radial Edge structure is sufficient, it is not proven here. 

Proving completeness, that all adjacency relationships are derivable from the data 

existing in the Radial Edge data structure in the specified non-manifold environment, 

involves thirty-six separate derivations, one for each adjacency relationship. 

In general, given the upward hierarchical diagonal adjacency relationships, the upward 

hierarchical relationships above the upward hierarchical diagonal may be derived from 

their neighboring adjacency relationships, where 

Ao coumn = I (A row,cotumn~1 > Acotumn—1,column ) 

Similarly, given the downward hierarchical diagonal adjacency relationships the down- 

ward hierarchical relationships below the downward hierarchical diagonal may also be 

derived from their neighboring adjacency refationships: 

Ao cotimn = ( Arowcotamns 1 » Acotumns 1,cotumn ) 
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Roughly speaking, this means that an adjacency relationship AC can be obtained from 

AB and BC adjacency relationships. An example of this derivation in adjacency rela- 

tionship terminology is the following, where L [< V> 1? is derived from L {< E> }* and 

E[V]? information for loops consisting of more than a single vertex: 

““iterate over reference element type”’ 
L;,ie1l.n 

create adjacency relationship Ly< V> with empty < V> adjacent group 

“initialize status variable” 

v e~(LiI< E> 1)V 
“iterate over adjacent group” 

LiI< E> jly, jelan 
I viag= (Lil< E> ;1p{V] 

then vgg (L [< E> ;1) ([V], 
else vy (Li[< E> ;1) {V], 

append v, to L;< V> adjacent group 

output Li< V> 

Derivation of the main diagonal is a less regular process in terms of the positions of 

the required adjacency relationships in the matrix. 

There are several choices of notation that can be used in showing how the adjacency 

relationship information is derived, however. 

While the derivation process can be described in adjacency relationship notation as 

shown, in this case it does not accurately reflect the derivation process that would 

actually be used with the Radial Edge structure. The Radial Edge structure contains 

enough correspondence information that determination of which vertex is associated 

with the traversal of each edge in L [< E> 1* is explicit and need not be derived with 

conditionals, as implied in the algorithm above. This is because the individual com- 

ponents in the adjacency relationship terminology refers to entire topological elements 

rather than the uses of the topological elements. The Radial Edge structure 

represents these uses directly, so the actual process to generate adjacency relation- 

ships is often simpler. 

A programming notation using accessing and traversal operations similar to the ones 

to be described in Chapter 19 but tailored specifically to the Radial Edge structure can
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also be used to describe the derivation algorithms in a way that corresponds more 

closely with the information actually present in the Radial Edge structure. For exam- 

ple, the equivalent function to the above conversion algorithm in a programming 

notation would be: 

foreach_loop_in_model(l,m,statusl) 

create adjacency relationship I< V> with empty < V> adjacent group 
foreach_edgeuse_in_loopuse(eu,!" .llu_ptr,status2) 

append eu” .euvu_ptr’ .vuv_ptr to i< V> 
output I< V> 

end {foreach} 

Complete algorithms for the derivation in both cases are actually more complex than 

the versions presented above since they must account for single vertex loops and the 

fact that two different orders of the adjacent group are possible based on orientation. 

A complete version of the conversion algorithm is given in Appendix D. 

The proof of completeness of the Radial Edge structure is demonstrated by showing 

that all thirty-six non-manifold adjacency relationships can be derived. 

The detailed algorithms proving completeness are contained in Appendix D, First, it 

is shown that all ten of the upward and downward hierarchical diagonal adjacency 

relationships are directly available from the Radial Edge structure. Second, the 

remaining twenty upward and downward hierarchical adjacency relationships are 

derived from the existing adjacency relationship information. Lastly, the final six 

adjacency relationships on the main diagonal of the adjacency relationship matrix are 

derived. 

Since all of the adjacency relationships can be derived from information present in the 

Radial Edge structure, it is complete. 

Traversal as well as other routines are defined in relationship to the Radial Edge 

structure are used in the Algorithms and are defined in Appendix C, 



Chapter 19 

NON-MANIFOLD OPERATORS 

Operators to build, modify, and traverse non-manifold boundary graph representa- 

tions, which also insulate higher levels of modeling functionality from specifics and 

complexities of the data structure, are a necessity for a well structured implementa- 

tion of a non-manifold modeling system. 

While the possibility of non-manifold boundary graph operators have been conjec- 

tured [Requiché & Voelcker 831, no work has been published in this area to date. 

This chapter outlir.les a set of basic construction operators developed for building and 

modifying non-manifold geometric modeling boundary graph topology r'epresenta; 

tions. This particular set of operators was designed for their primitive functionality, 

allowing other more complex operators to be built using them, for their convenience 

in the construction process, and for their conceptual compatibility with existing mani- 

fold operators, the Euler operators. The external interface to these operators is 

independent of the actual underlying data structures used; for interface simplicity they 

refer to topological elements rather than topological adjacency uses whenever possi- 

ble. 

19.1. The Non-Manifold Topology Operators 

A key feature of the operators described is that they impose little restriction on the 

order in which they can be applied during the construction or manipulation of a 

model. Some sets of operators can provide reduced complexity by restrictions on the 

application order; this has the unfortunate side effect that knowledge of such restric- 
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tions must be embedded in higher level applications based on the operators. This is 

regarded as undesirable and therefore such restrictions are minimized. 

The non-manifold topology operators can be classified by two characteristics. 

First, some of the operators described here are specialized to handle either manifold 

or non-manifold situations, because in some cases substantially different kinds of 

specifications are required to unambiguously construct a model, The separate mani- 

fold versions of the operators incidentally provide compatibility with existing higher 

level geometric modeling functions originally designed for manifold situations using 

the Euler operators, although some additional information is required because of the 

non-manifold environment. When no difference in specification is required, general 

operators are provided which will handle both manifold and non-manifold situations. 

Second, the operators can also be classified as to whether they are functionally con- 

structive O destructive in terms of the number elements existing in the model after 

application of the operators. Several other operators which can be easily implemented 

as an application of a series of other constructive and/or déstructive operators are 

classified as compound operators although, as will be described, low level implementa- 

tions can offer some advantages in continuity of the identity of adjacent elements, 

Some operations, such as deleting an edge, require different actions based on the 

situation in which they are applied. When these situations do not require additional 

specification from the user of the operators, a general operator is provided to handle 

all subcases. These subcases are shown in Table 19 — 1 with their associated opera- 

tor, although they are not directly specified during use. 

The names of the operators utilize 2 naming convention similar to the Euler opera- 

tors, as described in Chapter 13, describing the effect of each operator on the 

numbers of topological elements in the boundary graph. The names consist of the 

letters M and K (standing for “‘Make’’ or *‘create’’ and “*Kill” or ‘‘delete’’) each of 

which is followed an underscore and by one or more of the letters M,R,S8 F L,E, 

and V, symbolizing the element types model, region, shell, face, loop, edge, and ver-
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tex, respectively. The underscore distinguishes the non-manifold operator names 

from the traditional Euler operator names. In some cases, strictly manifold version of 

the operators exist, in which case they are preceded by a capital M to indicate they are 

manifold operators. Major operator names are capitalized, and subcases which can be 

automatically detected are written in lower case. Thus mekl stands for ‘‘make edge, 

kill loop”’, which is an automatically distinguished subcase of MM _E. 

Table 19 — 2 outlines the changes in the numbers of topological elements as a result 

of application of each of the operators. In some cases the number of elements 

involved is variable; these are indicated by subscripted variables in the table. 

Table 19 — 3 shows the complementary relationship between specific constructive and 

destructive operators. 

19.1.1, - Non-Manifold Positioning Specification 

As in the manifold Euler operators, positioning of elements must be specified com- 

pletely to avoid ambiguity in the semantics of the non-manifold topology manipula- 

tion operators. The non-manifold environment is much more complex, however, and 

more sophisticated positioning information is required. 

One possible non-manifold counterpart to the manifold direction-edge-vertex position- 

ing specification is the non-manifold f orientation-face-edge-e_orientation positioning 

specification. This specification technique is useful in some situations for specifying 

how the edge of a face should be glued into the radial ordering of faces around 

another edge: the given edge of the face can be glued to the target edge on the 

f_orientation side of face face about the target edge edge. Note, however, that an 

e_orientation is also required to specify which part of the face should be the reference 

for the positioning when the face uses the edge twice in a manifold manner, as in the 

case of a cylindrical face which meets itself along that edge. 

In general, however, even this is insufficient if the face specified is a non-manifold



Table 19 - 1. Topology Representation Construction Operators 

constructive 

destructive 

compound 

general non-manifold manifold 

M_MR M_EV MM _EV 
M_SV M_E MM _E 

me mefl 
meks mekl 

M _RSFL M_F 

mfl 
mflrs 

KV KF 
kvfle kfirs 
kve kAl 
kvl kflms 
kvims 
kvs 
kvrsfl 
kvsfle 
kvrsfle 

KE 
ke 
kems 
keml 
kefl 
keflms 
KM 
GV 
gvksv 
gvkv 

G E 
geke 
gekfle 
gekev 
geksev 

G_F 
gtk sflev 

gfiflev 
ESPLIT 
ESQUEEZE 
esqeezekey 

esqeezeke 
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Table 19 — 2. Operator Effect on Numbers of Topological Elements 

operator changes in number of topological elements 

Models Regions Shells Faces Loops Edges Vertices 

M_MR +1 +1 
M_SV T+l +1 
M_RSFL +1 +1 +1 +1 
KV 
kvfle ~ns ~ny -n, -1 
kve -n, -1 
kvl —n; -1 

kvims +ng -n -1 
kvs -1 -1 
kyrsfl -1 -1 -1 -1 -1 
kvsfle -1 -1 -1 -1 -1 
kvrsfle -n, -n,  —np -m -n, -1 

K E 
ke -1 
kems +1 -1 
kem! +1 -1 
kefl -1 -1 -1 
keflms +n -1 -1 -1 
KM -1 -a, - A —ng - -n, -n, 
GV 
gvksv -1 -1 
gvky -1 

G E . . 
geke -1 
gekfle -1 -1 -1 
gekev -1 —2o0r-1 
geksev -1 -1 -2 

GF 
gfksflev -1 -1 -1 —n, — Ryns 
gfkfley -1 -1 ~Nops — Ryns 

ESPLIT +1 +1 
ESQUEEZE -1 -1 
esqueezekev -1 -1 
esqueezeke -1 

M_EV +1 +1 
M_E 
me +1 
meks -1 +1 

M_F 
mfl +1 +1 

mflrs +1 +1 +1 +1 
K F 
kflrs -1 -1 -1 —ny 
kfl -1 —n; 
kflms +1 -1 -n 

MM_EV +1 +1 
MM_E 

mefl F1 1 41 
mekl -1 +1 
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Table 19 - 3. Complementary Relationships Between Construction Operators 

constructive  destructive 

M_MR KM 

M_SV K_V (kvs) 

M_RSFL K_F (kflrs) 

M _EV ESQUEEZE (esqueezekev) 

MM_EV ESQUEEZE (esqueezekev) 

ESPLIT ESQUEEZE (esqueezekev) 

M_E K E 

me ke 

meks kems 

MM_E K E 

mefl kefl 

mekl keml 

M_F K F 

mfl kAl 

mflrs kflrs 

face which uses the edge more than once with the same orientation. The only unam- 

biguous specification to handle this situation is to directly utilize edge uses or their 

equivalents in the specification (such as a position in an adjacent group of an adja- 

cency relationship). Edge uses can be used to specify precisely where along the face 

boundary the glue is supposed to take place. 

The need for this more detailed specification arises with the G_E, G_F, and M_F 

operators when the non-manifold portions of non-manifold faces are involved. 

Thus at least two versions of interface specifications for the non-manifold topology 

operators can be specified. One version, useful in a more limited adjacent environ- 

ment including some but not all non-manifold conditions, utilizes orientations with 

respect to adjacent basic topological elements. These operators recognize and complain 

if asked to handle situations where an ambiguity could occur. The other directly util- 

izes topological element uses for specification applicable to all non-manifold conditions.



230 

The specifications given here are primarily of the basic topological element variety, 

although the glue operations are specified in the element use form, and both forms of 

the M _F operator are given. 

19.1.2. A Specification of the Non-Manifold Operators 

Specific functional descriptions of the individual operators follow. The interface to 

each operator is first described in a Pascal style, listing its input parameters (optional 

parameters are italicized; if not specified they should be nil valued pointers or 

unspecified valued orientations), followed by its set of output parameters specified as 

var (call-by-reference) parameters. This calling sequence description is then followed 

by a detailed description of its functionality and the various subcases handled by the 

operator. References to topological element types in the calling sequence descriptions 

refer to pointers to the elements rather than the elements themselves. 

The operator specifications given are independent of any specific underlying data 

structure, within the assumption that separation surface information [Weiler 86a] is 

not utilized, 

Each operator is constrained to meet additional practical criteria. Each returns a value 

indicating whether the function was completed successfully, or if not, the reason for 

failure. An operator may not modify the data structures unless no errors will occur 

and it has sufficient storage to successfully complete the operation. Thus each opera- 

tor may be regarded as an atomic operation, and the data structure will be consistent 

both before and after the operator is executed. 

Definition of terms used in the operator specifications which have not already been 

defined are now given. An orientation may refer to face orientations, meaning a 

specific side of the face, or may refer to edge orientations, meaning a specific direc- 

tion from one end to the other. An orientation specification may have values of same, 

opposite, or unspecified, and refers to agreement or disagreement with the geometric 

orientation specified for the face or edge. Closing off a region with a new face means
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that the creation of the face has divided a region into two distinct new regions; that 

is, it is not possible to connect a point inside one new region with a point inside the 

other without penetrating a face, edge, or vertex. The same concept applies in two 

dimensions when closing off a face. 

The operator specifications are followed by diagrams in the same order illustrating 

their function in Figures 19 — 1, through 19— 5. 

19.1.3. General Operators 

M_MR(var model_ptr: newm; var region_ptr: newr) 

“Make Model, Region’’ creates a new model newm containing a new region 

newr. 

M_SV(region_ptr: r; var shell_ptr: news; var vertex_ptr: newv) 

“Make Shell, Vertex” creates a new shell news in region r, consisting of the 

single vertex newv. 

M_RSFL(vertex_ptr: v; region_ptr: r; 

var region_ptr: newr; var shell_ptr: news; var face_ptr: newf; 

var loop_ptr: newl) 

“Make Region, Shell, Face, Loop” creates a new region newr inside region 

r, with a shell news which consists of the single face newf, which has the 

single loop newl consisting of the existing single vertex v. The operator 

can be thought of as creating a spherical surface containing region newr 

which touches upon vertex v in region r. 

K_V(vertex_ptr: v) 

“Kill Vertex” deletes the vertex v and any edges which touch upon it, 

deleting loops, faces, shells, and regions as necessary. X_V will not delete 

a vertex when deletion of the vertex (and/or edges incident to it) would 

cause the creation of a non-manifold face. In this case an error will result
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and no action will be performed. There are more subcases than the ones 

listed below involving combinations of the described graph conditions (for 

example, one can always add a single wire edge which is not a self loop to 

the situations described below for which the operator has an “¢” in its 

name, and the result will also create a single vertex shell), and the situa- 

tions handled can actually be more complex than is described below (for 

example, one can always add self loop wire edges to the situations 

L1 
described below for which the operator has an ‘‘¢”’ in its name and the 

result is that those edges will also be deleted). 

kvfle: “kill vertex, d;"aces, loops, edges” occurs when the vertex lies on a 
surface and has one or more incident manifold edges which 
se}i)arate different faces. In this case the edges are deleted, 
deleting a face and a loop for each edge segaratmg two faces. 

kve: "kill vertex, edge’’ occurs when the vertex has incident manifold 
isthmus or strut, or wireframe edges whose deletion does not 
result in a disconnected graph. 

kvl: "kill vertex, loop” occurs when the vertex has no incident edges 
and is a single vertex loop vertex on one or more faces which 
have other boundaries. If there is more than one face, they all 
must have one or more common boundaries other than the 
vertex. 

kvims: “kill vertex, loop, make shell” occurs when the vertex has no 
incident edges and is a single vertex loop vertex on more than 
one face, all of which whicfi have other boundaries, but at least 
two of which have no other common connection to each other. 
In this case the faces become separated and additional shells are 
enerated. (not shown in diagram) 

kvs: “*kill vertex, shell” occurs when the vertex has no incident edges 
and is a single vertex shell. If it was the only vertex in the 
moge}, only a single region will remain in the essentially empty 
model. 

kvrsfl: ““kill vertex, shell, face, loop’”’ occurs when the vertex has no 
incident edges and is a single vertex loop vertex on a face 
which has no other boundary. If it was the only vertex in the 
moge%, only a single region will remain in the essentially empty 
model. 

kvsfle: "“kill vertex, shell, face, loop, edge’’ occurs when the vertex is an 
endpoint of a single self loop edge on a lamina face which has 
no other boundaries. If it was the only vertex in the model, 
only a single region will remain in the essentially empty model. 

kvrsfle: “kill vertex, region, shell, face, loop, edge” occurs when the ver- 
tex is an endpoint of one or more self loop edges on two or 
more faces which have no other boundaries. If it was the only 
vertex in the model, only a single region will remain in the 
essentially empty model. Xnot shown in diagram) 

K_E(edge_ptr: e; vertex_ptr: v; face_ptr: fsurvivor; 

var loop_ptr: newl; var shell_ptr: news) 

“Kill Edge” deletes the edge e. K_E will not delete an edge when deletion
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of the edge would cause the creation of a non-manifold face; this condition 

is always true of non-manifold edges where an edge is used three or more 

times a single face. In this case an error will result and no action will be 

performed 

ke: “kill edge” occurs when the specified edge is a wireframe edge that 

kems: 

keml: 

kefl: * 

is not the only connectivity path between its two vertices. 
“kill edge make shell’ occurs when the specified edge is a 

wireframe edge which is the only path of connectivity between 
its two vertices, If specified, the vertex v is the vertex with the 
original shell; the other vertex of the deleted edge is part of the 
new sheil. 
“'kill edge make loop” occurs when the specified manifold edge 
lies in a face and is an ‘‘isthmus’’ or ‘‘strut” edge, that is, it 
occurs twice in the loop of the face. 
‘kill edge, face, loop” occurs in two cases. The first is when the 
specified manifold edge lies between two different faces. In this 
case, the face specified by fsurvivor is not deleted, The deleted 
face has its loop appropriately merged with the surviving face’s 
loop, and any other loops of the deleted face become part of 
the surviving face. The second case is when a lamina edge is 
deleted, causing the face and loop using it to be deleted. 

keflms: “kill edge, face, loop, make shell’ occurs when the edge is a 

K_M(model_ptr: 

lamina edge boundary of a face which has multiple loops which 
are not otherwise connected except through the face. The face 
and its loops are destroyed when the edge is deleted, and the 
elements connected to each former loop become part of their 
own separate shell, 

m) 

“Kill Model” deletes the model m and all of its constituent topological ele- 

ments. 

G_V(vertexuse_ptr: vul, vu2) 

“Glue Vertex”” merges the vertices of vul and vu2 together, preserving the 

adjacencies of elements, The vertex of vul is the surviving vertex; the 

vertex of vu2 is deleted. Both vu/ and vu2 must be adjacent to the same 

region or an error will result and no action will be performed. 

gvksv: 

gvkv: 

‘‘glue vertex, kill shell, vertex’ occurs when the two specified 
vertices are not connected by any path (not located on the same 
shell). The surviving shell is the shell of vertex 
‘‘glue vertex, kill vertex” occurs when the two specified vertices 
a;le”a)xlready connected by some path (located on the same 
shell). 

G_E(edgeuse_ptr: eul,eu2) 

“Glue Edge” merges the edge of eul together with the edge of eu2, 

preserving the adjacencies of elements. The edge of eul is the surviving



234 

edge; the edge of eu2 and any of its vertices which are not shared with the 

edge of eul are deleted. The orientations with which to glue the edges 

together are specified by the edge-use input parameters themselves; they 

are glued together in the specified orientation. Both eu/ and eu2 must be 

adjacent to the same region or an error will result and no action will be 

performed. Note that if the edges of eul and eu2 share any vertices, the 

acceptable orientations for glue operations are already fixed; if they are 

improperly specified, an error will result and no action will be performed. 

geke: ‘‘glue edge, kill edge’” occurs when the two edges already share 
the same vertices, 

gekfle: “‘glue edge, kill faces, loops, edge’’ occurs when the two edges 
share the same two vertices and both edges form the loop 
boundary of one or more faces, then the merging of the two 
edges eliminates any of these faces and loops. 

gekev: ‘‘glue edge, kill edge, vertex” occurs when the two edges share 
one vertex. 

geksev: “‘glue edge, kill shell, edge, vertex’’ occurs when the two edges 
are not connected by any {)ath (are not on the same shell). The 
surviving shell is the shell of edge e/ in the region common to 
the two edges. 

G_F(faceuse_ptr: ful; edgeuse_ptr: eul; faceuse_ptr: fu2; edgeuse_ptr: eu2) 

“Glue Faces” merges the single loop faces of ful and fu2 together, preserv- 

ing the adjacencies of elements. The face-use input parameters specify 

which side of each face to glue together. eul and eu2 specify exactly how 

and in what direction the two loop boundaries match up; the loops are 

glued together with the edge-uses in opposite orientation. The face of ful 

is the surviving face; the face of fu2 and its loop, and edges and vertices 

not shared with the face of ful, are deleted. The face sides specified by 

both ful and fu2 must be adjacent to the same region and must each have 

one only loop with the same number of edges with self loop, isthmus, and 

strut edges in an identical order in both loops or an error will result and 

no action will be performed. Note that if the faces of ful and fu2 share 

any edges or two or more vertices the acceptable orientations for glue 

operations may already be fixed; if they are improperly specified, an error 

will result and no action will be performed. The manifold glue operation 

often found in implementations of the Euler operators can be emulated by
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performing an additional K_F after the G_F to remove the surviving face 

of ful. 

gfksflev: ‘‘glue face, kill shell, face, loop, edges, vertices’ occurs when 
the specified faces are not connected by any path gare not on 
the same shell). The surviving shell 'is the shell using the 
orientf] side of f1. 

gfkflev: ‘‘glue face, kill face, loop, edges, vertices’ occurs when the 
sge(fiified faces are connected by some path (are on the same 
shell). 

gfksflv: “‘glue face, kill face, loop, edges, vertices”” occurs when the 
specified faces have a single loop consisting of one vertex and 
bound single face shells which are adjacent to the same region. 
The surviving shell is the shell of fI. znot shown in diagram) 

ESPLIT(edge_ptr: e; vertex_ptr: v; var edge_ptr: newe; var vertex_ptr: newv) 

“Edge Split” splits the specified edge e into two connected edges, ¢ and 

newe. A new vertex, newv, is created between these two edges. The 

optional parameter v, if specified, designates which vertex of the edge e 

will be found on the new edge. For manifold situations the effect of this 

operator could be simulated by application of the X_E operator followed by 

MM_EV and MM _E operators, but unlike ESPLIT, edge e would be 

entirely replaced rather than modified in place and, by side effect, a face 

could be deleted and replaced with a new one, perhaps shifting ownership 

of interior loops. In non-manifold situations where the edge is used three 

or more times by one or more faces, X_E will not allow deletion of the 

edge since non-manifold faces would be created, so ESPLIT is the only 

alternative, 

ESQUEEZE(edge_ptr: e; vertex_ptr: v; var vertex_ptr: vsurvivor) 

T “Edge Squeeze squeezes’” the ends of the specified edge ¢ together, 

deleting the edge and a vertex while preserving adjacencies. The optional 

parameter v, if specified, designates which vertex of the edge e will sur- | 

vive; in any case, the surviving vertex is indicated by the vsurvivor return : 

parameter. For manifold situations the effect of this operator could be i 

simulated by application of the X_E operator followed by the G_V opera- | 

tor, but unlike ESQUEEZE, by side effect a face could be deleted and | 

replaced with a new one, perhaps shifting ownership of interior loops. |



236 

esqueezekev: "‘esqueeze, kill edge, vertex’’ occurs when the specified 
edge is not a self loop edge. 

esqueezeke: “‘esqueeze, kill edge” occurs when the specified edge is a 
self loop edge. If the edge forms the boundary of one or more 
faces, the races remain but with that boundary reduced to the 
single vertex vsurvivor. 

19.1.4. Non-Manifold Operators 

M_EV(vertex_ptr: v; region_ptr: r; var edge_ptr: newe; var vertex_ptr: newv) 

“Make Edge, Vertex"” creates a new wire edge newe which connects vertex v 

with a new vertex newv. The new edge and vertex will exist in region r. v 

must be adjacent to region r or an error will result and no action will be 

performed. 

M_E(vertex_ptr: v1,v2; region_ptr: r; var edge_ptr: newe) 

“Make Edge” creates a new wire edge, newe, between the specified vertices 

vl and v2. The new edge will exist in region r. v/ and v2 must be adja- 

cent to region r or an error will result and no action will be performed. 

me: ‘‘make edge’”’ occurs when the two specified vertices are alrea{dy 
connected by some path (are on the same sheil). 

meks: ““make edge, kill shell” occurs when the two specified vertices 

e wreising shil 13 ine shell taing vy, "t O the same shelbs 
M_F(edgelist:Aedges; facelist: faces; f orientlist: f orients; e_orientlist: e_orients; 

var face_ptrinewf; var loop_ptr: newl; 

var region_ptr: newr; var shell_ptr: news) 

“Make Face” creates a new face newf with its single loop new! bounded by 

the single circuit of edges as specified in edges. The list of edges specified 

by edges must form a true circuit or an error will result and no action will 

be performed. Specification lists faces, f orients, and e_orients are of the 

same length as edges and are used to specify the radial positioning of the 

new face whenever the edge specified is already a manifold edge or one of 

a few forms of non-manifold edge. The new face will be attached to the 

edge specified in edges so that it lies to the side of the face specified by 

f_orients from the part of the face using the edge in the orientation
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specified by e_orients. Note that this is sufficient for some but not all cases 

where the edge is non-manifold, and is not a sufficient specification for 

creating faces forming non-manifold surfaces. In these cases the U M_F 

version of the operator should be used. Individual specifications in the 

specification lists are optional whenever the specific edges in edges are 

wireframe and/or lamina edges. In this case #il and unspecified orientations 

are placed in the proper position in the face and face orientation lists. If 

all edges meet these criteria, the entire specification lists themselves are 

optional. The specifications given must meet the connectivity constraints 

of the existing graph. Otherwise, an error will result and no action will be 

“performed. 

mfl: “‘make face, loop” occurs when the new face will not close off cne 
portion of the region it is in from the rest of the region. 

mflrs: “make face, loop, region ,shell’ occurs when the new face does 
close off one portion of the region it is in from the rest of the 
region. In this case the new region, newr, and shell, news, lie to 
the specified orientation side of the face of the first face 
specified in facelist. 

U_M_F(edgeuselist: edgeuses; e_orientlist: e_orients; 

var face_ptr:newf; var loop_ptr: newl; 

var region_ptr: newr; var shell_ptr: news) 

“Element Use Make Face” is the full non-manifold version of ‘“‘Make 

Face’’ utilizing the element use input specification. It creates a new face 

newf with its single loop newl bounded by the single circuit of edges as 

specified in edgeuses. The single specification list edgeuses specifies not 

only the edges to use, but also states that the new face will lie between any 

face owning the specified edgeuse and the face found radially opposite to 

the specified edgeuse. The optional input specification list e_orients is used 

to specify which orientation of an edge to use in cases of self loop edges. 

Similar restrictions to and subcases of M_F apply to U_M _F, except that it 

handles all non-manifold situations. Note that this element use version of 

the M_F operator is only required in situations involving edges used more 

than once in a single orientation by a single face, and for creating faces 

which themselves form non-manifold surfaces.
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K_F(face_ptr: f; orientationtype: orient) 

“Kill Face” deletes the face f and all loops associated with it. It does not 

delete any edges or vertices. There are actually more subcases than 

described here. 

kflrs: “’kill face, loop, region, shell” occurs when the specified face has 
different regions on each side. In this case, deletion of the face 
brings together the two regions. If specified, the surviving 
region is the region lying to the orient side of the face. All 
loops associated with the face are also deleted. 

kfl: “%kill face, loop” occurs when the specified face has the same 
ge 1ondon both sides. All loops associated with the face are also 
eleted. 

kflms: “‘kill face, loop, make shell’ occurs when the specified face has 
the same region on both sides, has one or more loops consist- 
ing entirely of lamina edges. All loops associated with the face 
are also deleted, but an additional shell is generated for each 
loop which had no connection to the boundaries of the other 
loops except through the face. 

19.1.5. Manifold Operators 

MM _EV(vertex_ptr: v; edge_ptr: e; dir_type: dir; { CW or CCW } 

face_ptr: f; orientationtype: orient; 

var edge_ptr: newe; var vertex_ptr: newv) 

"“Manifold M ake Edge, Vertex” creates a manifold edge and a vertex. The 

new edge newe starts at existing vertex v and ends at the new vertex newv. 

The edge and vertex are created in the face £ If optional placement is 

specified, newe, will be positioned in direction dir from edge e about vertex 

v, as seen when looking towards the orient side of face £ Vertex v, and if 

specified, edge e must be on the boundary of face f or an error will result 

and no action will be performed. 

MM_E(vertex_ptr: v1; edge_ptr: el; dir_type dirl; { CW or CCW } 

vertex_ptr: v2; edge ptr: e2; dir_type dir2; 

face_ptr: f; orientationtype: orient; 

var edge_ptr: newe; var face_ptr: newf; var loop_ptr: newl) 

“Manifold Make Edge” creates an edge between the existing vertices v/ 

and v2. The edge is created in the face f If optional placement is
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specified, the new edge, newe, will be direction dirl about vertex v/ from 

edge el, and direction dir2 about v2 from e2, as seen when looking towards 

the orient side of face f. Vertices v/ and v2, and if specified, edges e/ and 

e2 must be on the boundary of face f or an error will result and no action 

will be performed. Note that the meksfl case of the Euler operators is not 

relevant in the non-manifold environment. 

mefl: “make edge, face, loop” occurs when the new edge will close off 
one portion of the face it is on from the rest of the face. In 
this case, the new face, newf, and loop, newl will lie to the dirl 
side of newe about vl, as seen when looking towards the orient 
side of face f. ] 

mekl: “‘make edge, kill loop” occurs when the new edge will not close 
off one portion of the face it is on from the rest of the face, In 
this case, the vertices v/ and v2 were on different loops of the 
same face, but afterwards will be located on the same loop. 
The surviving loop is the loop associated with vi. 

19.1.6. Other Operators 

Several other operators, not described in detail here, are also useful but do not mani- 

pulate the graph structure in the same way as the other operators described above. 

Examples are move operations, such as SMOVE, to move shells into different regions 

and models, and LMOVE, to move loops into different faces adjacent to the same 

region. Copy operations are also useful, such as SCOPY, to copy shells and place 

them into different regions and models, and MCOPY, to copy entire models. 

19.2. Sufficient Set of Construction Operators 

While many operators can be designed to promote efficiency or convenience for given 

applications, one interesting issue is to determine a minimal set of operators which 

can define any model in the representation. There can be many such minimal sets of 

operators, since many different operators can be designed which have overlapping 

functionality. These operators may incrementally push construction of a model 

towards a given specification in different sized steps, with eventually the same result.
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Figure 19 — 1. Action of the non-manifold topology operators 
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Figure 19 - 2. Action of the non-manifold topology operators 
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Figure 19 - 3. Action of the non-manifold topology operators 
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Figure 19 - 4. Action of the non-manifold topology operators 
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Figure 19 - 5. Action of the non-manifold topology operators 
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The set of operators shown in Figure 19 ~ 6 is one such minimal set. It was chosen 

for simplicity of the functionality of the operators as well as a minimal number of 

operators. While any possible model may be constructed with them, it is not a partic- 

ularly convenient set to manipulate existing models (without additional operators). 

To construct any model with this set of operators from some existing specification of 

the final boundary model, the following algorithm may be used: 

1. 
2. 
3. 

4. 

Do aM_MR to create the model and initial region. 
Do a M_SV for every vertex to be in the finished model. 
Do a M_E between appropriate vertices for every edge to be in the 

finished model. 
Do a M_E to connect together loops which share the same face. This 

includes ‘“*hole’’ loops in faces and vertices which will be a single 
loop vertex in the finished model. Thus all edges and vertices shar- 
ing a common face are connected, and a face with n loops (where 
a2 2) in the finished model requires n—1 M_E operations to be per- 
formed. Call these additional edges loop edges. 

. Do a M_F for every face in the finished model (excepting faces with a 
single vertex as the sole boundary), being sure to appropriately 
include loop edges into the boundary descriptions. 

. Do a M_E to create a self loop edge for every vertex which will be the 
sole boundary of a face in the finished model, making sure they will 
be created in the appropriate regions. Call these additional edges 
face edges. 

- Do two M_F’s for each self loop edge in the face edge list, creating the 
new regions. 

. Do a K_E to eliminate each loop edge (causing a keml! to be performed) 
and face edge (causing a kefl to be performed). 

While this algorithm is also not particularly efficient, it is conjectured to be a 

M 
M_S <

X
 

M 
M 
K SR

 
N
 

Figure 19 - 6. A minimal sufficient set of operators to construct any model 
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minimally sufficient set for the job for the following reasons. First, M_MR and M_SV 

are required to start any model. Second, the only useful alternative besides M_E for 

creating edges is M_EV, but in that case M_E would still be required to close a circuit 

of edges. Third, the only useful alternative besides M_F for creating faces, and in 

particular lamina faces, is M_RSFL combined with K_F, but that alternative uses two 

operators instead of one. Fourth, K_FE is required to create disconnected graphs in a 

manifold surface and, with this set of operators, to create faces with only a single ver- 

tex loop for a face boundary. 

For efficiency and convenience, a practical modeling system would offer more than 

this minimal set, however. Adding more operators to the minimal set described 

removes inconvenient restrictions on the order of operations necessary to construct 

and modify objects. A reasonable order of usefulness for adding more operators to 

this minimal set might be first M_EV to complete basic wireframe construction capa- 

bilities, and then M_RSFL, MM _EV, and MM_E for convenience in manifold model- 

ing situations, followed by the others for more specialized situations and destructive 

operators for convenience in modification. 

19.3. Examples of Use of the Non-Manifold Operators 

A short example of applying the non-manifold topology operators to build the object 

shown in Figure 16 — 2 is now given, 

For brevity, a list notation is used to describe the edge lists for the M_F operator. 

The face orientation initially chosen for the manifold operations, shown here as ous- 

side is arbitrary but must be used consistently.
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"start the model" 
M _MR(m,rl); 

"“create the tetrahedron’ 
M_SV(rl,slvi); 
M_RSFL(vl,rl,r2,52,f1,11); ““create face f "’ 
MM _EV(vl,nilunspecified fl el ,vd); 
MM _EV(vd,el CCW fl,outside,ed,v2); 
MM _E(vl,el CCW ,v2,e4,CCW fl,0rient,e3,£2,12); “close face f 4" 
MM _EV(v2,e3,CCW fl,outside,e5,v3); 
M E(v3,e5,CW vl,e3,CW fl,outside,e2 f3,13); “close face f4" 
MM _E(v3,e5,.CW ,v4,e4,CCW f1,outside,e6 f4,14); “close face f 4" 

“create the lamina face™ 
M_EV(v3.rl,e7v5); 

M_E(v5,v2,rl,e8); i 
M_F(< e5.e8.e7> < f3.nil.nil> < outside,unspecified,unspecified> , 

< unspecified,unspecified,unspecified> f5,15,r_dummy,s_dummy); 

“create the single vertex loop' 
MM _EV(v5,68,CCW f5,0utside,el0,v7); 
K_E(el0,nil,nill6,5_dummy); 

“‘create the wire" 
M_EV(vl.ri,e9,v6); 

““create the single vertex shell 
M_SV(rl,s3,v8); 

19.4. Specification of the Access Operators 

Operators to access data must be specified as carefully as the manipulation operators 

in order to maintain the major advantage of being able to layer application code on 

top of the topology implementation in a manner independent of the actual data struc- 

tures utilized. In the past, efficiency constraints have prevented access operator 

specifications being made for manifold edge based boundary representations, but the 

wide availability of macro processors for a variety of languages largely nullifies this 

concern, 

The topological adjacency information stored in any non-manifold model consists of 

the existence and adjacencies of the six topological element types. Queries and 

traversals are related to accessing this adjacency information. 
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Queries are single accesses to adjacency relationship information to determine a single 

element of the adjacent group of a specified element, which perhaps also meets some 

additional set of characteristics. When the adjacency relationship is ordered, the addi- 

tional characteristic specified might be that the adjacent group element being sought 

directly follows or precedes a specified adjacent group element in the ordering, 

Traversals are repeated queries to determine all members in an adjacent group of the 

adjacency relationship, even if none are originally known. Traversals may therefore 

be constructed by repeated queries, as long as termination and status information is 

available. 

As an example of the need for status information during traversal, in a manifold 

topology situation involving strut edges (manifold edges which have the same face on 

either side), a traversal to find all edges around a loop could not simply terminate on 

encountering a given edge a second time, since it might be used either once or twice 

in the loop; some other criteria is required (usually an edge and a vertex is kept for 

status if self loops are disallowed, or a marking scheme is used). In a non-manifold 

environment a similar situation exists in the radial traversal of faces around an edge; 

a face is not sufficient status information since a face may be bounded by the edge 

multiple times. In this case a specific edge use is required for non-ambiguity in cases 

involving faces which would be non-manifold if their boundaries were included, such 

as the éxample in Figure 19 — 7 where the same face meets itself three times along an 

edge. 

If the adjacent group of the adjacency relationship is ordered, then the traversal 

accesses are also ordered. 

Following is a specification of access and traversal operators, which are independent 

of the underlying data structure, and for simplicity, many of which are independent of 

the concept of uses of topological elements. As seen with the M_F, G_F, and G_E 

operators, the element use concept is a natural and necessary one in some of the 

more complex non-manifold cases. For this reason, additional traversal operations 

which utilize the notion of element uses are also included.
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Figure 19 - 7. A non-manifold face using an edge three times 

For uniformity of syntax, all of the traversal and relevant access operators include 

status variable parameters, even though they are not required in some implementa- 

tions of some operators. 

19.4.1. Query Operators 

Single queries to adjacency relationship information can be classified according to 

whether the requested information involves downward or upward hierarchical adja- 

cency relationships. Repeated queries can form the basis for full traversals. 
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19.4.1.1. Downward Hierarchical Accesses 

E(V) 
get_vertex of edge(var vertex_ptr: v; edge_ptr: e) . 

L I§et_other_vertex_of_edge(vau' vertex_ptr: v; vertex_ptr: v_existing; edge_ptr: ) 
< E> 

get_edge_in loop(var edge_ptr: e; loop_ptr: 1; var status_type: status) 
get _next_edge around_loop(var edge_ptr: e; var status_type: status) 

FIL get last edge ‘around _Toop(var edge_ptr: e; var status_type: status) 

} 
get_loop_in_face(var loop _|13tr: I; face ptr: f; var status_type: status) 
get nex{_loop_in_face(var loop_ptr: [} var status_type: status) 

get_face in_shell(var face_ptr: f; shell ptr:s; var status_type: status) 
RIS get nexf_face in_shell(var face_ptr: f; var status_type: status) 

{St 
get_shell_in_region(var shell_ptr: s; region_ptr: r; var status_type: status) 
get “next _shell_in_region(var shell_ptr:'s; var status_type: status) 

19.4.1.2. Upward Hierarchical Accesses 

V{E} 
get_edge using vertex(var edge_ptr: e; vertex_ptr: v; var status_type: status) 

g I%et_next_edge_using_vertex(var edge_ptr: e; var status_type: status) 
< L> 

get_loop_using_edge(var loop_ptr: I; edge_ptr: e; var status_type: status) 
get next_loop_around_edge(var loop_ptr: I; var status_type: status) 

L{F}get:last_]'oop_around_edge(var loop_ptr: I; var status_type: status) 

F{S}get_face_using_loop(var face_ptr: f; loop_ptr: I; var status_type: status) 

get_shell _using_face(var shell_ptr: s; face_ptr: f; var status_type: status) 

get_region_using_shell(var region_ptr: r; shell_ptr: s; var status_type: status) 

19.4.2, Traversal Operators 

Traversal operators also need status variables for the same reasons as the query 

operators. 

Traversals can be implemented in common procedural languages such as Ada, C, 

Modula, or Pascal in at least two ways. The first involves explicitly utilizing the native 

control structures of the language along with the query operators previously given to 

produce the traversal. The second technique utilizes macros to provide syntactically 

new traversal control structures which are simpler to use than the explicit technique.
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Examples of each technique are shown below. 

Pascal version 

var loop_ptr: ; 
edge_ptr: e; 
status_type: status; 

et _edge_in_loop(e,l,status); 
\%/hfle (e<> NFL) do begin 

'get next_edge_in_loop(e,status) 
end; 

macro version 

var  loop_ptr: l; 
edge_ptr: e; 
status_type: status; 

foreach_edge_in_loop(e,l,status) 

énd_foreach; 

The traversal operators are given in four groups, utilizing the macro style specification 

shown above, but the output parameters are marked as Pascal var parameters. First, 

global traversals involve enumerating all topological elements of a given type, regard- 

less of their positioning in the topology. Second, downward hierarchical traversals 

enumerate all elements in the lower dimension adjacent group of a reference element 

of higher dimension, such as the enumeration of all faces in a shell, S{F}. Third, 

upward hierarchical traversals enumerate all elements in the higher dimension adjacent 

group of a reference element of lower dimension, such as the enumeration of all 

edges around a vertex, V{E}. Fourth, element use traversals, relevant to systems 

implementing the element use concepts such as those of the Radial Edge structure, 

enumerate all uses of a specific element. Implementations of many of these traversals 

for the Radial Edge structure can be found in Appendix C, 

19.4.2.1. Global Traversals 

foreach_region_in_model(var reFion_ptr: r; model: m; var status_type: status) foreach”shell_in_model(var she 1_ptri's; modek: m; var status_type: status) 
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foreach_face_in_model(var face_ptr: f; model: m; var status_type: status) 
foreach loop_in_model(var loop_ptr: I; model: m; var status_type: status) 
foreach_edge_in_model(var edge_ptr: ¢; model: m; var status_type: status) 
foreach”vertex_in_model(var vertex_ptr: v; model: m; var status_type: status) 

19.4.2.2. Downward Hierarchical Traversals 

R{S} 
foreach_region_in_model(var region_ptr: r; model: m; var status_type: status) 

foreach_shell_in_region(var shell_ptr: s; region_ptr: r; var status_type: status) 

foreach_face_in_shell(var face_ptr: f; shell_ptr:s; var status_type: status) 

foreach_loop_in_face(var loop_ptr: I; face_ptr: f; var status_type: status) 

Le l%‘(?reach_edge_in_loop(var edge_ptr: e; loop_ptr: I; var status_type: status) 

foreach_vertex_in_edge(var vertex_ptr: v; edge_ptr: e; var status_type: status) 

19.4.2.3. Upward Hierarchical Traversals 

;iEI}f(;reach_edge_using_vertex(var edge_ptr: e; vertex_ptr: v; var status_type: status) 

L{F}foreach_loop_using_edge(var loop_ptr: {; edge_ptr: e; var status_type: status) 

FiS }foreach_face_using_loop(var face_ptr: f; loop_ptr: I; var status_type: status) 

foreach_shell_using_face(var shell_ptr: s; face_ptr: f; var status_type: status) 

foreach_region_using_shell(var region_ptr: r; shell_ptr: s; var status_type: status) 

19.4.2.4. Element Use Traversals 

foreach_faceuse_in_face(var faceuse_ptr: fu; face_ptr: f; var status_type: status) 
foreach_loopuse_in_loop(var loopuse_ptr: lu; loop_ptr: [; var status_type: status) 
foreach_edgeuse_in_edge(var edgeusé_ptr: eu; edge_ptr: e; var status_type: status) 
foreach_vertexusSe_in_vertex(var vertéxuse_ptr: vuj vertex_ptr: v; 

var status_type: status) 

19.5. Building on Low Level Non-Manifold Operators 

Much like the manifold Euler operators, the non-manifold operators can be used as a 

low level base upon which to build more complex higher level modeling operators, 

while insulating those new operators from the details and complexities of the actual
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data structures utilized. 

The same considerations apply in designing higher level non-manifold operators 

except that the domain is far more flexible than the manifold environment. 

An example of how a geometric modeling system can be built using a layered 

approach is shown in Figure 19 - 8. 

Application 
Level Design Analysis Manufacture (N/C etc.) 

Assemblies 

Modeling CSG 
Level 

Sweeps Meshing 
Parametric 
Primitives 

Topology Geometry 
Operators Operators 

Representation 

Level Topology Geometry 
Representation Representation 

Figure 19 - 8. A layered approach to building a geometric modeling system 
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The goal is to have each layer build on. top of lower layers, providing an increasing 

level of functionality with each new layer. The interface between each layer should 

be well specified and as independent of implementation details as possible. The same 

independence should be true for separate modules within each layer, although gen- 

erally this is more difficult to achieve. The benefit of this approach is that such 

modularization, as applied to any system implementation, makes it cheaper and easier 

to build and maintain the system. 

Figure 19 — 8 shows such ideas applied to a boundary based geometric modeling sys- 

tem. The lowest level, the representation level contains the basic representation func- 

tionality to describe the topology and geometry of the geometric shape. It is possible 

to interface to both topology and geometry representations through a set of interface 

operators, which are best designed to hide the implementation details of the actual 

representation as much as possible, The non-manifold topology operators are an 

example of such interface operators for a topology representation. The level directly 

above the representation level, the modeling level, provides the generic geometric 

shape manipulation facilities commonly found in current geometric modeling Systems. 

Even within this layer some functions build on top of others. For example, CSG 

(Constructive Solid Geometry) operators utilize shapes created through parametric 

primitive and. other functions. At the highest level, the application level, specific appli- 

cation implementations build on top of the generic modeling functionality provided by 

the modeling level. 

A few additional issues concerning non-manifold topology representations and typical 

geometric modeling operations are also worthy of note. 

A particular problem which has caused a great deal of complexity in implementations 

of the Boolean set operations for boundary implementations utilizing a manifold 

representational base is how to maintain the manifold state of each of the operands 

while still keeping track of how and where they intersect. A non-manifold implemen- 

tation can directly intersect the objects in the same representational space and then 

prune away the undesired portions of the result, greatly simplifying the process. 

/
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Propagation of intersection information to adjacent elements would be automatically 

performed by the low level operators. 

A closed form version of the Boolean set operations is feasible in the non-manifold 

environment. For applications desiring regularized set operations [Requicha & 

Voelcker 77], a regularizing function can be applied to the non-regular output. Con- 

struction of a regularizing function for the Radial Edge structure in particular is a sim- 

ple task. 

Similarly, construction of a function to keep only manifold parts of a model, if any, is 

a simple task when the Radial Edge structure is the representational base.
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Chapter 20 

THE INTERFACE BETWEEN TOPOLOGY AND GEOMETRY 

This thesis concentrates on the use of topological information as a framework for 

geometric modeling representations, and therefore it treats topological issues in detail. 

Nevertheless, boundary representation geometric modeling systems must combine 

both topological and geometric information together to form a complete and cohesive 

representation of the shape of a three-dimensional model. 

In the context of the types of geometric modeling systems of interest in this thesis, 

topology refers to the explicit storage of topological boundary adjacency relationship 

information, and geometry refers to the geometric surface, curve, and point 

definitions. 

In general, geometric surface representations which are restricted to planar surfaces, 

and therefore restricted to straight line edges, have some extremely convenient pro- 

perties; one of the most important is that curves of intersection between planar sur- 

faces are also straight lines. In most curved surface representations, in general, inter- 

sections between surfaces create higher order intersection curves than those originally 

in the model. This causes a great deal of complexity in curved surface geometry sys- 

tems. Nonetheless, there is a great need for curved surface representations which has 

stimulated much research in this area. 

The intention of this chapter is to briefly point out a few of the requirements and 

problems in coordinating topology and curved surface geometry that currently appear 

to be neither trivial nor well understood. Additionatly, the natural correspondence 

between parametric space description of parametric curved surface intersections and 

the direct representation of the uses of topological edge and vertex elements in 

257 



258 

adjacency topology representations is briefly discussed. 

20.1. Problems in Coordinating Topological and Geometric Information 

Combining explicit topology with geometry can help in the geometric modeling pro- 

cess, but it does not solve all geometric problems, since the topology is not indepen- 

dent information but is a reflection of the geometric information. In fact, ‘‘evaluat- 

ing’”’ a boundary representation from a procedural representation (such as CSG) is 

often a difficult, complex geometric task. 

In general, for a representation involving an object based evaluated boundary model 

which explicitly stores topological adjacency information, geometric modeling opera- 

tors creating and manipulating models in a complete modeling system must: 

s determine the topology (topological boundary descriptions) of the result 

e determine the geometry (geometric surface descriptions) of the result 

e ensure that the geometry corresponds unambiguously to the topology 

There does not currently appear to be a best ordering to these tasks, and sometimes 

they are most conveniently accomplished simultaneously. 

One set of difficulties encountered in guaranteeing the correspondence between topol- 

ogy and geometry stems from surface intersection operations, where curves of inter- 

section with singular points can occur at self intersections and cusps {Farouki 86] (see 

Figure 20 - 1). The surface intersection problem is a difficult one and current solu- 

tions are not necessarily trivial or robust processes. To maintain the topological 

domain restriction of non-intersection, the intersection curve, once found, must be 

segmented at all self-intersections. Once this has been done, the curve geometry seg- 

ments of the original intersection curve geometry must then be appropriately associ- 

ated with corresponding topology edges. This means that some geometric technique . 

must be provided that uniquely specifies which of the various curve geometry seg- 

ments and their orientations should be used at any given point on the topology boun-
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Figure 20 — 1. Example of a self-intersecting curve of intersection 

dary graph. 

The next two subsections discuss this last problem with respect to implicit and 

parametric surface geometry formulations. 

20.1.1. Implicit Formulations 

For implicit geometric surface representations in particular, geometrically 

differentiating the various geometric curve segments and uniquely identifying them so 

they can be associated with corresponding topology can be non-trivial [Hoffman & 

Hoperoft 86]. Two solutions to this problem have been proposed: 

1. When referring to a specific curve segment, refer to the original curve geometry 

and a point on the interior of the curve segment to indicate which segment
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is intended. Since all seif-intersections have already been identified and 

therefore differentiated from the interiors of all new edge segments by the 

segmentation process, this uniquely identifies the proper segment 

[Requicha 80] (see Figure 20 - 2a). 

2. Refer to the original curve geometry, a curve segment endpoint, and a tangent 

from that endpoint to indicate which curve segment is intended out of the 

several incident to the specified point [Hoffman & Hopcroft 86] (see Fig- 

ure 20 - 2b). 

The first method will work all of the time, but does not appear to be a convenient 

formulation and can be computationally intensive. The second method is computa- 

tionally more convenient, but is admittedly not guaranteed to work all of the time, as 

Figure 20 - 2. Techniques to uniquely identify implicit geometry curve segments 
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in the case of cusps at the curve segment endpoint, where higher order derivative 

information is required to distinguish the segments. 

From a practical standpoint, unless the interior points are carefully selected, even the 

first method presented can fail to give unique results in some situations due to 

numerical precision problems (see Figure 20 — 3). 

Determining the theoretical minimal information required to differentiate between the 

curve segments in an implicit geometric representation is an important part of under- 

standing the problem. In the final analysis, however, it is the computational conveni- 

ence of a differentiation technique that will be most important in determining the use- 

fulness of a specific geometric surface representation in a topological framework based 

ip, 

‘\f)_ 

,Q, 

ip, 

Figure 20 - 3. Curve segment specification prone to numerical precision prob- 
lems 
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geometric modeling representation. 

20.1.2. Parametric Formulations 

There appear to be more options available to address the differentiation problem for 

parametric geometric representations, since the three-dimensional surface boundary 

curve segments can be described as separate formulations of two dimensional 

geometric curves in parametric space. In this way curve segments can be associated 

with unique geometry, which happens to be in parametric space. Naturally, accuracy 

problems can also occur in differentiating geometry in parametric space. 

20.2. Representation of Intersection Curves with Parametric Geometry 

There are often no analytic formulations for intersections of parametric surfaces; the 

most accurate representation of the curve of intersection remains a description of the 

intersection in the parametric spaces of both geometric surface definitions. 

A problem with many current manifold boundary topology representations is that try- 

ing to maintain correspondence between the topology and geometry is difficult if one 

has only one place (a single topology edge record) to associate all curve geometry 

related to each of the originating intersecting parametric surfaces. In this case, a pro- 

cedural determination of which curve geometry (including curve orientation) from 

which surface parameter space is associated with each use of the topelogical edge 

must be made -whenever the geometry is referenced through the topology. The 

edge-use structure approach of the F-E data structure (Section 12.6) solves this prob- 

lem in that the use of each edge is associated with each surface (in fact, with a specific 

orientation of the edge bounding that specific surface), and this is therefore the 

appropriate place to store a specific reference to the parametric geometry information 

(see Figure 20 - 4). 

It is also possible to maintain exact correspondence between non-manifold topologies
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edge-uses 

f 2 f2 

edge of intersection 

VL 
" parametric 

space 

Figure 20 - 4. Correspondence between parametric geometry and edge uses in a 
manifold environment 

and parametric geometry in a similar fashion by utilizing the edge-use structures of 

the Radial Edge non-manifold topology [Farouki & Weiler 86]. The difference of the 

non-manifold environment from a manifold environment is that both sides of each 

surface must be considered rather than just the one side necessary for manifold topo- 

logies. Therefore each use of the edge by a surface has two orientations. The Radial 

Edge structure has an edge-use structure for each of the orientations of the edge for 

each surface using the edge. Thus there is a unique place to put references to each 

parametric space description of the curve segments because there is a one-to-one 

correspondence of the topology with the geometry (see Figure 20 - 5), 
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edge-uses 

edge of intersection (cross-section view) 
parametric u 
space 

Figure 20 — 5. Correspondence between parametric geometry and edge uses in a 

non-manifold environment 

Again, numerical accuracy problems can arise in parametric space as easily as in 

geometric space, but these should be detected and resolved in parametric space when 

surface and intersection calculations are made,



SECTION V 

CONCLUSION 



Chapter 21 

CONCLUSION 

This thesis has provided a detailed look at the topological aspects of geometric model- 

ing boundary representations, from both a theoretical and practical viewpoint. 

This chapter notes what I believe are the new and original contributions of this work 

to the geometric modeling field, as well as some related areas for future exploration. 

21.1, Contributions 

Probably the three most significant contributions of this thesis are the development of 

a theoretical foundation for manifold topology boundary modeling representations, 

the development of the non-manifold Radial Edge topology structure, and the 

development of the non-manifold topology operators. 

Some general contributions include: 

s renewed emphasis on the use of topology as a framework for modeling sys- 

tem design with stress on the consideration of both theoretical and prac- 

tical concerns. 

e development of a new geometric modeling representation classification sys- 

tem. 

e development of a new comprehensive adjacency relationship terminology 

applicable in manifold and non-manifold domains which describes essen- 

tial characteristics of topological adjacency relationships necessary for 

discussions of topological sufficiency. 
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Some contributions specifically related to- manifold solid modeling are: 

¢ development of a theoretical basis for object based evaluated manifold topol- 

ogy boundary modeling by establishing the theoretical minimal and prac- 

tical minimal sufficient topological information. 

¢ proof that the winged edge structure can be considered sufficient under the 

specified curved surface domain but requires additional complex pro- 

cedures and storage space to be properly implemented. 

¢ development of three new data structures for manifold solid modeling and 

proof of their topological sufficiency. 

Contributions specifically related to non-manifold geometric modeling are: 

* a new emphasis on non-manifold geometric modeling as a viable boundary 

modeling representation, with particular emphasis on its primary benefits 

of allowing a unified representation of wireframe, surface, and solid 

modeling forms simultaneously in the same environment, while increas- 

ing the representable range beyond what is achievable in any of the pre- 

vious modeling forms. ‘ - 

* development of the first non-manifold geometric boundary modeling adja- 

cency topology representation and proof of its completeness. 

¢ development of the first non-manifold boundary topology modeling opera- 

tors. 

Contributions related to coordinating topological and geometric information in a 

modeling system are: 

s discussion of how the direct representation of uses of topological edge and 

vertex elements in adjacency topology representations provide a natural 

and complete basis for coordinating multiple parametric descriptions of 

the same edge in situations like the intersection of multiple parametric 

surfaces, 
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21.2. Areas for Future Development 

There is always room for further development and exploration of a topic. There are 

still several major issues in the geometric modeling field, including some important 

ones relating to adjacency topology boundary representations. Below are several open 

problems which are strongly related to the work described in this thesis. 

Related to adjacency topology representations: 

determination of the theoretical minimal information for non-manifold topo- 

logical sufficiency. This is the most cutstanding unsolved problem in 

non-manifold geometric modeling representations as they are defined 

here. A solution to this problem can lead to a better understanding of 

non-manifold representations and could lead to new data structures. 

Proof of sufficiency of the Radial Edge structure and the non-manifold 

topology operators are linked to this open problem. 

proof of sufficiency of the Radial Edge structure. Since completeness has 

been shown here, once theoretical sufficiency has been shown it should 

be a simple matter to prove sufficiency. 

proof of sufficiency of the non-manifold topology operators and determina- 

tion of minimal sufficient sets of operators to cover the entire represen- 

tational space. 

further study of the concept of element uses in adjacencies and of correspon- 

dence may yield a deeper understanding of some of the topological issues 

in both manifold and non-manifold domains. 

Related to general geometric modeling issues: 

determination of techniques to obtain topologically consistent answers in sur- 

face to surface intersections, including across surface junctures. Tech- 

niques to determine the qualitative topological characteristics of 

geometric surface intersections without requiring absolute accuracy in 

calculations would go a long way toward this goal. 

geometric accuracy will be a long standing issue for geometric modeling.
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Among others, a major problem is the use of approximate number 

representation schemes without closed form arithmetic operations while 

still having the expectation of consistent results. This and other major 

unsolved geometric calculation accuracy problems will continue to haunt 

the computing field until ameliorating approaches are codified or true 

solutions are developed. 

¢ more formal analysis of the modeling problem needs to be done. There are 

still gaps between formal mathematical theory and current geometric 

modeling and computing technology that need to be bridged. The 

geometric modeling area is an interdisciplinary one, where practitioners 

from several fields must work together. Bridging the gaps between 

these fields is complicated more by the different needs and interests his- 

torically developed in these fields than by the different terminologies 

developed. More inter-field cross-fertilization and multi-disciplinary 

research teams will be required to improve in this area. 



LITERATURE CITED



LITERATURE CITED 

[Agoston 76] Agoston, M., Algebraic Topology, Marcel Dekker, NY 1976. 

[Arnold 62] Arnold, B., [nuitive Concepts in Elementary Topology, Prentice-Hall, 

Englewood Cliffs, 1962, 

[Baer et al 79] Baer, A., Eastman, C., and Henrion, M., “Geometric Modelling: a 

Survey,” CAD, Vol. 11, No. 5, September, 1979, pg. 253-272 . 

[Baumgart 72] Baumgart, B., “Winged-edge Polyhedron Representation,”” Stanford 

Artificial Intelligence Report No. CS-320, October 1972. 

[Baumgart 74] Baumgart, B.,, “GEOMED — a Geometric Editor,”” Stanford 

‘ Artificial Intelligence Laboratory, AIM-232, May, 1974. 

[Baumgart 75] Baumgart, B, ‘A Polyhedron Representation for Computer 

Vision,”” Proceedings of the National Computer Conference, 

197s. 

[Braid et al 78] Braid, I, Hillyard, R., and Stroud, L, “‘Stepwise Construction of 

Polyhedron in Geometric Modelling,” CAD Group Document 

No. 100, University of Cambridge Computer Laboratory, 

October 1978. 

[Braid 791 Braid, 1., ‘“‘Notes on a Geometric Modeller,” CAD Group Document 

No. 101, University of Cambridge Computer Laboratory, June 

1979, 

[Eastman & Henrion 77] Eastman, C., and Henrion, M., “GLIDE: A Language for 

Design Information Systems,”” Computer Graphics, Vol. 11, 

No. 2, July 1977, pg. 24-33. 

271 



[Eastman & Thornton 79] Eastman, C., and Thornton, R., ‘‘A Report on the 

GLIDE2 Language Definition,”” CAD Group, Institute of Phy- 

sical Planning, Carnegie-Mellon University, March 1979. 

[Eastman & Weiler 79] Eastman, C., and Weiler, K., ““Geometric Modeling Using 

the Euler Operators,”” Conference on Computer Graphics in 

CAD/CAM Systems, May 1979, pg. 248-259. 

[Edmonds 60] Edmonds, J., ‘A Combinatorial Representation for Polyhedral Sur- 

faces,”” American Mathematical Socieiy Notices, Vol. 7, 

October 1960, pg. 646. 

{Farouki 86} Farouki, R., A Characterization of Parametric Surface Sections,”’ 

Computer Vision, Graphics, and Image Processing, February, 

1986. 

[Farouki & Weiler 86} Farouki, R., and Weiler, K., ““Proposal: A Boundary 

Modeler Utilizing Non-Manifold Topology and Analytic 

Trimmed Surface Geometry,”” CAD Branch, GE Corporate 

Research and Development, Internal Document. 

[Graver & Watkins 77] Graver, J., and Watkins, M., Combinatorics with Emphasis on 

the Theory of Graphs, Springer-Verlag, N.Y., 1977, 

[Hanrahan 82] Hanrahan, P., ‘‘Creating Volume Models from Edge-Vertex 

Graphs,’” Computer Graphics, Vol. 16, No. 3, July, 1982, pg. 

77-84. 

[Harary 72] Harary, F., Graph Theory, Addison-Wesley, Reading, MA., 1972. 

{Hoffman & Hopcroft 861 Hoffman, C., and Hopcroft, J., ““Geometric Ambiguities 

in Boundary Representations,”” TR 86-725, Department of 

Computer Science, Cornell University, January 1986. 

[Mantyla 81] Mantyla, M., ‘‘Methodological Background of the Geometric Work-



273 

bench,” Report-HTKK-TKO-B30, Laboratory of Information 

Processing Science, Helsinki University of Technology, 1981. 

[Mantyla 84] Mantyla, M., “A Note on the Modeling Space of Euler Operators,”’ 

Computer Vision, Graphics and Image Processing, 26, 1984, pg. 

45-60. 

[Mantyla & Sulonen 82] Mantyla, M., and Sulonen, R., “GWB: A Solid Modeler 

with the Euler Operators,” IEEE Computer Graphics, Vol. 2, 

No. 7, Sept. 1982, pg. 17-31. 

{Markowsky & Wesley 80] Markowsky, G., and Wesley, M., “Fleshing Out 

Wireframes,”” IBM Journal of Research and Development, Vol. 

24, No. 5, Sept. 1980, pg. 582-597. 

{Nordhaus 72] Nordhaus, E.,, “On the Girth and Genus of a Graph,” Graph 

Theory and Applications, Lecture Notes in Mathematics, 

Springer-Verlag, 1972, pg. 207-214. 

[Requicha 77] Requicha, A., “Mathematical Models of Rigid Solid Objects,”” Pro- 

duction Automation Project Tech. Memo 28, Univ. Rochester, 

Nov. 1977. 

[Requicha 80a] Requicha, A., ‘“‘Representations of Rigid Solids - Theory, Methods, 

and Systems,” ACM Computing Surveys, Vol. 12, No. 4,1980, 

[Requicha 80b] Requicha, A, “‘Representations of Rigid Solid Objects,” in Com- 

puter Aided Design, Lecture Notes in Computer Science, No. 89, 

Encarnacao, J., (Ed.), Springer Verlag, New York, 1980, pg. 2- 

78. 

[Requicha & Tilove 78] Requicha, A., and Tilove, R., ““Mathematical Foundations 

of CSG: General Topology of Regular Closed Sets,” Production 

Automation Project Tech. Memo 27, Univ. Rochester, Mar. 

1978, 



274 

{Requicha & Voelcker 77] Requicha, A., and Voelcker, H. *‘Constructive Solid 

Geometry,”’ Production Automation Project Tech. Memo 25, 

Univ. Rochester, Nov. 1977. 

{Requicha & Voelcker 83] Requicha, A., and Voelcker, H. ‘‘Solid Modeling: 

Current Status and Research Directions,” IEEE Computer 

Graphics and Applications, Vol. 3. No. 7, October, 1983. 

[Stoker 74] Stoker, D. ‘‘CRIPL-Edge Data Structure,”’ unpublished, Carnegie- 

Mellon Univ., May 1974, 

{Weiler 83] Weiler, K. ‘‘Adjacency Relationships in Boundary Graph Based Solid 

Models,”” June 1983, General Electric internal report (to be 

submitted for publication). 

[Weiler 84] Weiler, K. ““Topology as a Framework for Solid Modeling,”’ Proceed- 

ings, Graphics Interface ’'84, Ottawa, Ontario, May 1984 

(extended abstract). 

{Weiler 85a] Weiler, K. ‘‘Edge Based Data Structures for Solid Modeling in 

Curved-Surface Environments,’”’ IEEE Computer Graphics and 

Applications, Vol. 5. No. 1, January, 1985. 

[Weiler 85b] Weiler, K. ‘‘The Radial Edge Structure: a Topological Representation 

for Non-Manifold Geometric Modeling,”’ January, 1985, Gen- 

eral Electric internal report (to be submitted for publication). 

[Weiler 85c] Weiler, K. ‘‘Boundary Graph Operators for Non-Manifold Geometric 

Modeling Representations,”” October, 1985, General Electric 

internal report (to be submitted for publication). 

[White 73] White, A., Graphs, Groups, and Surfaces, Mathematical Studies 8, North 

Holland, Amsterdam, 1973. 

[Whitney 32] Whitney, H., ‘“‘Congruent Graphs and the Connectivity of Graphs,”’



275 

American Journal of Mathematics, No. 54, 1932, pg. 150-168. 

[Woo 84 ] Woo, T., “A Combinatorial Analysis of Boundary Data Structure 

- Schema,” Dept. of Industrial & Operations Engineering, Tech. 

Report 84-12, Univ. of Michigan, Apr. 1984. 

[Young 63] Young, J., “Minimal Imbeddings and the Genus of a Graph,’” Journal 

of Mathematics and Mechanics, Vol 12, No. 2, 1963, pg. 303- 

31s. 



APPENDICES



APPENDIX A 



Appendix A 

TOPOLOGICAL SUFFICIENCY UNDER CONSTRAINTS 

This appendix considers topological sufficiency for manifold topologies with more res- 

tricted domains than the one described in Section IL 

1. Sufficiency Under Constraints 

It is interesting to consider a domain slightly different than that initially specified in 

Chapter 9 in Section II to discover if more convenient or simpler representations or 

input forms exist for special situations. Under certain constraints even unordered 

adjacency relationships can be used to form complete topology models for connected 

topologies. This is equivalent to finding transforms which convert data from the form 

of unordered element adjacency relationships into data in the form of ordered ele- 

ment adjacency relationships (which are sufficient to describe polyhedron topologies) 

but which can operate only if certain constraints are met. Finding such constraints is 

useful for situations which benefit from minimal input or partial information, such as 

in interactive CAD input of solid models of mechanical parts using topological tech- 

niques. Determining all of the constraints which apply to a given situation is vital, 

however, to ensure the correctness and unambiguity of the resulting model. 

The discussion here only deals with purely topological techniques, leaving out hybrid 

approaches such as [Markowsky & Wesley 80] which utilize geometric as well as topo- 

logical information. In the absence of topological information other than simple con- 

nectivity, it is obvious that additional information is necessary for handling discon- 

nected graphs. However, the purely topological discussion provided here may also 

provide a basis for other hybrid techniques which utilize other information sources 
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only as absolutely necessary. 

2. Disallowing Multigraphs and Self Loops 

As mentioned in Chapter 11, The V< V> and V< F> element adjacency relation- 

ships, while in general individually insufficient for unambiguously representing the 

topologies of polyhedra, are sufficient if multigraphs and self loops are disallowed 

from the boundary graph representations (see Figure 11 - 13), This constraint is 

equivalent to requiring that the adjacent groups of the E{V} element adjacency rela- 

tionship uniquely specify their reference edge element. These restrictions are by 

definition satisfied for systems which model only planar faced polyhedra and disallow 

curved surfaces; this constraint is therefore an interesting one for planar faced 

polyhedra representation systems, 

Note that the ability of the adjacent groups of E{V'} to uniquely identify its edge refer- 

ence element does not imply the sufficiency of E{V} to represent polyhedral topolo- 

gies. Ordering information necessary for sufficiency is still absent, 

Requiring the identity of an edge to be uniquely identifiable from its endpoints is 

equivalent to disallowing multigraphs and self loops. Under these constraints V< V> 

information is equivalent to V< E> information, and F< V> information is 

equivalent to F< E> information. V< E> and F< E> were already proven to be 

sufficient under all of the conditions identified in Chapter 9. The proofs follow. 

Theorem A-1: When an edge is constrained to be uniquely identifiable from its E{V} 

adjacent group information, then the V< V> adjacency relationship is 

sufficient to unambiguously represent the adjacency topologies of curved 

surface polyhedra, 

proof: Using the endpoints of an edge to uniquely identify an edge, a simple algorithm 

can be constructed to label the edges of the embedded graph from the 

V< V> information by first constructing the E{V} relationship from 

V< V>. Once this has been done, it is a simple matter to construct the 
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V< E> information for each vertex v; by placing in order in a new v;< £> 

adjacent group the edges identified by the unordered pair {»; v;< V> ;} for 

jel.lvi< V> |. The identity of the edge can be found by searching the 

E {V} relationship for an adjacent group matching the {v; v;< V> ;} infor- 

mation since only one edge will have the matching group. When ait 

members of the adjacent groups of the V< V> information for all of the 

vertices have been used in this way, then the V< E> information for the 

embedded graph has been produced. By the Edmonds theorem, this is 

sufficient to unambiguously represent the topologies of polyhedra. 

Theorem A-2: When an edge is constrained to be uniquely identifiable from its E{V} 

adjacent group information, then the F< V> adjacency relationship is 

sufficient to unambiguously represent the adjacency topologies of curved 

surface polyhedra, 

proof: Similar to the proof directly above, an algorithm can be constructed to first 

label the edges of the embedded graph from the F< V> information alone 

by labeling an edge for every two consecutive vertices {fi<V>; 

fi< V> ;) in the cyclic lists of vertices of the adjacent groups of the 

F< V> relationship. Using this technique one would first create the E{V} 

relationship. Once the edges have been labeled in this way, using the 

E{V} information, F< V> can be easily converted into the F< E> rela- 

tionship which by Theorem 11-2 is sufficient. 

3. Unique E{F} Adjacent Groups 

The V< F> and F< F> element adjacency relationships, normally individually 

insufficient for the representation of polyhedral topologies under the constraints 

identified in Chapter 9, become sufficient if they are additionally constrained so that 

the E {F} adjacency relationship of the boundary graph can be guaranteed to uniquely 

identify the reference edge.
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Theorem A-3: When an edge is uniquely identifiable from its E{F} adjacent group, 

then the V< F> adjacency relationship is sufficient to unambiguously 

represent the adjacency topologies of curved surface polyhedra, 

proof: Since the identity of an edge is constrained to be uniquely identifiable from its 

two adjacent faces, a simple algorithm can be constructed to label the 

edges of the embedded graph from the V< F> information by construct- 

ing the E{F} relationship from V< F>. Once this has been done, it is a 

simple matter to construct the V< E> information for each vertex v; by 

placing in order in a new v;< E> adjacent group the edges identified by the 

unordered face pair {v< F> ; v;< F> j+1} found in the cyclic ordered adja- 

cent group of the V< F> information for v;. The identity of the edge can 

be found by searching the E {F} relationship for an adjacent group match- 

ing the {< F>; v< F> ;,} information since only one edge will have the 

matching group. When all members of the adjacent groups of the V< F> 

information for all of the vertices have been used in this way, then the 

V< E> information for the embedded graph has been produced. By the 

Edmonds theorem, this is sufficient to unambiguously represent the topo- 

logies of polyhedra. 

Theorem A-4: When an edge is uniquely identifiable from its E{F} adjacent group, 

then the F< F> adjacency relatibnship (FF definition A) is sufficient to 

unambiguously represent the adjacency topologies of curved surface 

polyhedra. 

proof: Similar to the proof directly above, since the unordered set of two faces adja- 

cent to an edge are constrained to uniquely determine the identity of that 

edge, an algorithm can be constructed to label the edges of the embedded 

graph from the F< F> information alone by labeling an edge for every set 

{fi fi< F>;}, iel.a,j<l.n, consisting of the reference face fi and each 

adjacent face f; in the cyclic list of faces in the adjacent group of the 

fi< F> j relationship. Using this technique one would create the E{F}rela- 

tionship. Once the edges have been labeled in this way, using the E{F} 
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information, F< F> can be easily converted into the F< E> relationship 

which by Theorem 11-2 is sufficient. 

The uniqueness of the E{F} information of an edge might be enforceable by addi- 

tional connectivity constraints, but this would limit the representational range of the 

modeling technique considerably, as 2-connected objects are not unusual in modeling 

applications (see Figure A — 1), Thus constraints to guarantee the uniqueness of the 

E{F} information of an edge are less likely to be as workable in actual modeling sys- 

tems as constraints to guarantee the uniqueness of the E{V } information of an edge, 

since unique E {V } information can be at least artificially maintained more easily than 

unique E {F} information without reducing representational range. 

4, Sufficiency with Connectivity Information 

Simple connectivity information, which is equivalent to the information in an 

unmapped graph (and some of the unordered element adjacency relationships), is 

normally not sufficient to derive unique mappings. Under certain conditions, how- 

ever, sufficiency can be achieved. 

4.1. The Three-connected and Planar Constraint for Graphs 

The V{V} unordered element adjacency relationship and other members of its 

equivalence class (such as E{V}) are essentially just the connectivity information that 

is normally associated with unmapped graphs. A unique mapping of a graph to the 

surface of a sphere (note that the mapping information corresponds to the ordering 

information not present in ¥V {V'}) can be derived from V {V } under the following con- 

straints: 

e the graph is not a pseudograph (no multiple edges or seif loops) 

e the graph is three-connected 

e the graph is planar
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Discovery of this relationship is attributed to Whitney {Whitney 32]. Under the con- 

straints of being three-connected and not a pseudograph, there is only one embedding 

which can be constructed from the connectivity information without violating the 

planar constraint, thus providing a method of constructing the embedding. Note that 

three-connected here refers to vertex connectivity and not edge connectivity or vertex 

degree. This has been confused by some practitioners developing solid input algo- 

rithms. An algorithm which can find the unique mapping of a constrained graph from 

its connectivity information alone, or report that the graph is nonplanar or less than 

three connected has been described in {Hanrahan 82]. 

A few remarks are in order on the applicability towards solid modeling input of map- 

ping techniques based solely on these constraints, The planarity constraint, while not 

desirable, is a concept that is readily understood by users developing solid models 

since it is a characteristic basic to the user concept of the shape of a solid. The con- 

nectivity constraint, however, restricts the class of solids that can be input ‘by this 

technique in ways that are not always intuitively obvious to the user. Figure A - 1 

shows an example of one such solid which would not be immediately perceived by 

many as violating the connectivity restriction. 

Every two-connected subgraph in a graph has two possible mappings to a surface. 

The ambiguity caused by the two-connected subgraph in Figure A ~ 1 can usually be 

resolved by using geometric information normally available from the input, but dis- 

cussion of such techniques is outside the scope of this appendix. 

4.2, Removing Constraints 

There are undoubtedly other restricted classes of graphs for which unique mappings 

can be derived from connectivity information alone. More interesting, however, 

would be the relaxation of the constraints, and the development of a practical general 

algorithm to derive valid mappings for any class of polyhedra boundary graphs, 

Relaxing the connectivity constraint alone allows ambiguity to occur on exactly how a 
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Figure A-1. An object and its 2-connected boundary graph 

graph can be mapped to a surface. As seen previously, a two-connected subgraph of 

a graph can be mapped two different ways. A one-connected sfibgraph can be mapped 

in at most n—1 ways if n is the degree of the vertex at which the subgraph makes its 

connection. While these ambiguities cannot be resolved by purely topological tech- 

niques, the different mappings can be enumerated easily once the vertices which 

attach such subgraphs are known. Other techniques may then be used to select from 

the alternatives. 

Relaxing the planarity (genus) constraint is a little less straightforward. As soon as 

the genus of the object being represented is unconstrained or unknown, two new
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complications come into play. 

First, the same graph may be mappable onto surfaces of different genus. Second, 

even within each genus there may be several alternative mappings. The exhaustive 

way of determining the desired genus and embedding of a graph is to start enumerat- 

ing the alternate mappings until a valid mapping has been selected (by non-topological 

techniques) or all embeddings have been enumerated. The Edmonds embedding 

technique can be used to enumerate all embeddings for a given graph by performing 

permutations on the order in the adjacent groups of constructed V< E> information. 

The embeddings with the maximum number of faces will have the minimum genus, 

and those with the minimum number of faces will have the maximum genus [Young 

63]. Direct calculation of the lower and upper bound of the genus of graphs can be 

performed for some types of graphs from the graph characteristics (see [Nordhaus 

721), but in general these quantities are not easy to determine.. It also does not 

appear to be well understood how to enumerate all of the possible embeddings within 

a given genus. The only cases in which the genus of a graph are known to be unique 

(the maximum genus equals the minimum genus) represent a small subset of the 

possible planar graphs [Nordhaus 72]. 

Possible relationships between the connectivity and unique mappings of non-planar 

graphs are also not well understood. Simply increasing the connectivity constraint in 

direct proportion to the increase in genus does not necessarily ensure a unique map- 

ping. An example is the well known hypercube (Figure A - 2), in this case an object 

of genus one and connectivity of four which has three equally valid yet distinct map- . 

pings. 

Relaxing the non-pseudograph constraint also causes problems when trying to deter- 

mine graph embeddings. For example, there is no topological way to determine 

which of the several faces adjacent to a vertex should contain a self loop attached to 

that vertex given connectivity information alone (Figure A — 3). Determining the 

order of multiple edges between two vertices gives rise to similar problems. In this 

case it is reasonably easy to enumerate the possibilities however,
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Figure A-2. The hypercube 
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Figure 3, Self loop located at a vertex shared by several faces 

Any system capable of defining unrestricted polyhedron definitions from connectivity 

information would need the capability of enumerating the topologically possible map- 

pings, and allow choices between mappings based on non-topological information. 

Efficient systems would try to eliminate having to examine all of the alternatives by 

using heuristics based on knowledge of their probabilistic distribution functions of 
likely alternatives and the operating context of the application. 
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Appendix B 

STORAGE AND ACCESSING EFFICIENCY COMPARISONS 

This appendix compares the four manifold edge based data structures of Chapter 12 

in terms of storage requirements, accessing efficiency, and algorithmic complexity. 

A comprehensive and complete comparison of alternative data structures ultimately 

involves extensive data gathering and statistical analysis over a wide variety of user 

applications. Even then issues will remain regarding the comparative optimality of 

each implementation and each application of the various alternatives. 

Even if the circumstances of comparison are as equivalent as possible for all represen- 

tations, questions arise as to defining the *‘typical’’ applications, since optimal choices 

invelve careful statistical analysis of actual usage patterns. This approach can yield 

overall better space and time performance, but is not foolproof, since usage patterns 

can change drastically based even on minor changes in heavily used application code. 

At best, it’s a tricky business. 

The analysis here does not intend to be complete or rigorous in the sense described 

above, but does attempt to reflect some approximate measure of the time and space 

requirements and the complexity of access algorithms necessary to exercise the func- 

tionality of the data structures presented in a large model environment over the 

domain for which they are intended to provide information. 

With these caveats, we proceed. 
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1. Space Requirements for the Manifold Data Structures 

The number of pointers required for complete edge adjacency information in each of 

the four data structures is shown in Table B — 1. In general, the V-E and F-E struc- 

tures are slightly larger than the W-E and modified W-E structures due to the need 

for additional pointers to coordinate their split edge structures. 

A comparison of the space requirements for the full topological data structure of 

prismatic and approximated spherical polyhedral objects is shown in Table B - 2, 

Assumptions made to allow comparison include that pointers are 32 bits in length and 

that an eight-bit byte is the minimum size storage unit. Sizes of face (17 bytes) and 

vertex (4 bytes) records were derived from the support record structures defined ear- 

lier in Chapter 12, No geometry or other attributes were assumed except that 

pointers to such attributes are included. These choices have a tendency to maximize 

the apparent difference between the alternative structures because geometry and other 

attributes are not included; the numbers presented are therefore worst case 

differences. In a more realistic situation additional information storaée (such as face, 

edge, and vertex geometry) would reduce the percentage of space attributable to 

differences in the edge structures presented. 

Table B-1. Representation Storage Requirements per Edge 

Representation | Number of Pointer Fields 

W-E 9 

modified W-E 9 

V-E 12 

V-E 12 
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Table B-2. Typical Storage Requirements for Some Solid Objects 

Object Type faces  edges verts total size total size % 
in bytes in bytes increase 
W-E and V-E or F-E 

modified W-E 

prism 

4 sided 6 12 8 622 754 21.22 
4000 sided 4002 12000 8000 592030 724030 22.30 
approximated 
sphere 

64 quad facets 32 56 26 5972 7292 22.10 
64k quad facets | 32768 . 65280 32514 6475548 7914524 2222 

The additional single bit side fields of the modified W-E structure are not considered 

here since it is a small amount of space compared to full pointer values. The extra 

marker bit fields for the regular W-E structure in curved surface environments are 

also not included, biasing the comparison slightly in its favor. Space for these fields 

are necessary in the W-E structure either explicitly in the edge structure or implicitly 

in the state of the accessing procedures used (such as state information present in 

recursion stacks). When present explicitly, these marker fields make the storage costs 

of the W-E and modified W-E structure exactly equivalent. 

In general, for the types of objects considered, the V-E and F-E structures required 

about 20% more storage than the W-E and modified W-E structures. 

As can be seen from the size requirements, none of the structures provides a 

minimal size representation for the objects considered compared to many procedural 

or other conceptualizations of the objects. In general, the four representation struc- 

tures are not intended as minimal size storage formats but are intended to provide 

quick access to adjacent elements during the manipulation and creation of the solid 

model of an object. An equally important feature of all the representations presented 

is their ability to maintain their validity without requiring a change of representational 

form regardless of the number of manipulations made to the model. 
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2. Time Requirements 

An issue that arises when comparing timing performance of alternative data structures 

over a minimal set of functions is the selection of which functions are representative 

of actual use and have value as predictors for performance in actual applications. Two 

criteria were used in selecting the functions for this performance evaluation: 

o The operations should be as primitive as possible in the sense that all the 

information from the data structure can be reasonably extracted by one 

or more applications of these functions. 

e The operations must not be at too low a level (involved in extended 

sequence of field manipulations, for example, as would be required in an 

actual implementation of the Euler operators) or their value in com- 

parison will be lost since they would be dealing with situations unique to 

each data structure. 

The functions chosen as meeting these criteria and still providing some insight into 

the alternative data structures are the functions to obtain the element adjacency rela- 

tionships of the embedded graph from the data structures. This choice ensures usage 

of all information available over the domain of the structures while still remaining at 

a level reasonably close to, but independent of, the data structures themselves. A 

similar approach is utilized in {Woo 84}. 

At least three criteria are relevant in determining overall time requirements. First, 

the number of accesses to fields of the data structure records can be considered. 

Second, the number of record accesses necessary can be considered for database 

implementations which access data a record at a time. Third, processing time, or 

overall instruction counts can be considered. 

The number of field accesses necessary to obtain an adjacency relationship from each 

data structure is one of the most important criteria in virtual memory environments 

because any I/O overhead due to page faults is related to field rather than record 

accesses as records are never accessed directly as single units. A field access is the 

reading of a particular field of a particular topological element data structure, such as
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obtaining the pointer value of the ee_cw_ptr field of an edge structure record. The 

number of field accesses can be an important predictor of the time to obtain the 

information from the data structure because the access of field information from a 

record in a computer implementation requires access to main memory at best (usually 

considerably slower than access to internal registers on today’s sequential machines), 

and can cause a page fault in virtual memory systems at worst, producing considerable 

I/0 overhead. While an exact prediction would also be based on field sizes, page 

sizes, memory available, and the amount of the representation already in memory, 

the number of field accesses can still be considered a reasonable approximate measure 

of speed in this respect. 

Record access costs are particularly relevant in database implementations where each 

topological element data structure is stored as a separate database record, and the 

entire record must be retrieved individually before any field access is permitted. In 

this case the cost of retrieving a record is high, involving disk accesses, while the cost 

of accesses to fields of a retrieved record are by comparison low and therefore less 

significant. 

Processing time can probably be considered the least important though not 

insignificant factor in evaluating overall timing costs since the time penalty for a few 

additional instructions is relatively small compared to the possible delays from record 

or field accesses due to I/O overhead. 

3. Accessing Efficiency Comparison of the Manifold Data Structures 

The accessing costs in terms of the number of field accesses required to generate the 

elements of the adjacent group of the nine adjacency relationships with respect to a 

given reference element are summarized in Table B — 3. 

The record accessing costs for each of the four data structures are shown in Table 

B-4. 

The W-E and modified W-E structures are superior with respect to record access 
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Table B-3. Summary of Field Accessing Costs for Deriving Adjacency Relation- 
ships 

Adjacency Representation 

Relationship 

modified 
W-E W-E V-E F-E 

21 V< V> 

V< E> 

V< B> 

E(V] 

E[[E]{E]] 
E{F] 
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F< F> B
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! would be 3 if chose to use other vertex in edge end representation. 
2 would be 3 if chose to use other face in edge side representation. 

- 

requirements, As seen in Table B — 4, the W-E structure and modified W-E struc- 

ture accessing procedures require only one record access per adjacency relationship 

access. For six out of the nine adjacency relationship accesses, the split edge struc- 

tures of the V-E and F-E structure accessing procedures cause two record accesses to 

be made. Superiority in terms of database record accesses, however, may not be as 

important in virtual memory implementations. 

In terms of overall field accessing costs, the modified W-E structure is superior to the 

W-E structure, even in planar surface environments. The V-E and F-E structures, 

however, offer equal or better performance than the modified W-E structure for adja- 

cency relationship accesses where the edge is not the reference element. Efficiency in 

adjacency relationship accesses where the edge is not the reference element is often 

more important in practice since the field accessing costs given in Table B - 3 must
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Table B-4. Summary of Record Accessing Costs for Deriving Adjacency Rela- 
tionships 

Adjacency Representation 
Relationship 

modified 

W-E W-E V-E F-E 
V< V> 

V< E> 

V< F> 
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be multiplied by the number of elements found during traversal of the adjacent group 

to obtain the total adjacency relationship field access costs. 

Also of note is the symmetry of the field and record accessing costs of the V-E and 

F-E structures. Overall, the two structures have essentially identical accessing costs 

with the V-E structure biased for more efficient access of adjacency relationships 

using the vertex as the reference element, and the F-E structure biased for more 

efficient access of adjacency relationships using the face as the reference element. 

Both perform equally in obtaining adjacency relationships using the edge as the refer- 

ence element, 

4. Accessing Algorithm Complexity of the Manifold Data Structures 

The complexity of the algorithms necessary to manipulate the data structures is some- 

times a more important evaluation criteria for implementations than speed. Reduc- 

tion of the resources for code creation and maintenance, as well as greater reliability,



296 

hinges on the simplicity of the manipulation algorithms. 

The accessing procedures used for determining the number of field and record 

accesses necessary as well as for comparing complexity are given in detail in Figure 

B - 1. The figure has six sections. The first section describes the actual query to be 

answered by each adjacency relationship access procedure through operations on the 

data structures presented. The second section describes initial conditions assumed to 

be in effect by the accessing procedures, including initialization of local variables, and 

loop termination conditions. The third through sixth sections describe the actual 

accessing procedures for the W-E, modified W-E, V-E, and F-E structures respec- 

tively. 

The procedures utilize the edge data structures as described in Chapter 9, “‘Manifold 

Data Structures’’. Where necessary, the accessing procedures presented perform 

extra assignments to reduce the number of field accesses necessary, utilizing tem- 

porary variables. The procedures listed in Figure B — 1 can be used to examine the 

number of temporary variable assignments performed to obtain these numbers. 

Since adjacent groups of elements in ordered adjacency relationships are usually circu- 

lar lists of elements, the accessing procedures to find an adjacent element as shown in 

Figure B - 1 are required to perform all setup necessary to continue the operation of 

finding the following element in the circular list. Thus each accessing procedure given 

is essentially the body of a loop to enumerate all elements in the adjacent group of 

the adjacency relationship. This ensures that the total accessing cost is uniformly dis- 

tributed over all accesses and is included in the comparisons. The field and record 

access counts given are for each iteration of the loop, that is for each individual 

member of the adjacent group found during the adjacency relationship access. For 

record access counts, it is assumed that the last record accessed by the immediately 

preceding iteration is available. The initial and terminating loop conditions are 

described in Figure B — 1b. 

As seen in the accessing procedures of Figure B ~ lc, the W-E structure involves the 

most complex accessing strategy necessitated by its representation of the edge
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adjacencies in a single unified structure. The W-E structure needs to continually 

determine which edge side or end was intended every time an edge pointer appears in 

a fleld used to find an adjacent element, In the planar polyhedral environment imple- 

mentation described in Figure B ~ lc, this is done by carrying along a vertex as well 

as edge pointer during traversals of adjacent groups, using the vertex pointer informa- 

tion to determine which side is indicated. Note the effect of this particular scheme on 

the field accessing costs of the F< F> relationship (see Table B — 3). In most imple- 

mentations of the W-E structure this determination involves either carrying along 

additional information as done in the procedures presented, or by using marker bit 

fields; both techniques require additional processing during traversals. Note that the 

accessing procedures described for the W-E structure are only valid for planar 

polyhedral environments; curved surface environments require more complex access- 

ing procedures and/or additional marker field space, and usually a larger number of 

field accesses as demonstrated in the proof of sufficiency of the W-E structure. 

The modified W-E structure avoids the accessing algorithm complexity of the W-E 

structure by the use of explicit side fields. The extra fields do require extra field 

accesses to process, however, and the resulting algorithms, while much simpler than 

for the W-E structure, especially in curved surface environments, are still more com- 

plex than those of the V-E and F-E structures. 

The algorithms of the V-E and F-E structures are nearly identical in a symmetrical 

fashion, though the actual semantics of each vary.



298 

v< V> - find the clockwise ordered circular list of vertices surrounding v 

v< E> - find the clockwise ordered circular list of edges surrounding v 

v< F> - find the clockwise ordered circular list of faces surrounding v 

¢{V] - find the two vertices of ¢ (ordered access) 

e{[E][E]] - find the edges adjacent to e which precede and follow ¢ in the F< E> adjacent 
groups of the two faces adjacent to e (ordered access) 

e[F] - find the two faces adjacent to ¢ (ordered access) 

f< V> - find the ordered circular list of vertices surrounding f, where the area of f is 
found to the right when traversing the sequence of vertices 

f< E> - find the ordered circular list of edges surrounding f, where the area of f is found 
to the right when traversing the sequence of edges 

f< F> - find the ordered circular list of faces surrounding f, where the area of f is found to 
the right when traversing the sequence of faces 

Note: Adjacent group circular lists with the vertex as the reference element type are clockwise 
ordered as viewed from just above the surface and just outside the volume of the solid body looking 
towards the surface. 

Figure B-1a: Adjacency Relationship Queries 
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v V> ,v< E> ,v< F> 

W-E: given vertex structure v=vfirst and edge structure e= efirst for which 
e .ev_pir[i}=vor e .ev_pir(2)= v (vfirst, efirst is used to detect end of 
loop) 

modified W-E: given vertex structure v= vfirst, edge structure e= efirst, and side 
indicator k= Afirst for which e .ev_pir(hl=v (efirst, hfirst is used to 
detect end of loop) 

V-E,F-E: given vertex structure v and edge half structure e= efirst such that 
e .ee_mate ptr .ev_pir=v (efirst is used to detect end of loop) 

e{V5elE][E]),e(F] 
W-E: given edge structure e¢ and vertex structure v to determine ordering such 

that e .ev_ptr{l]l=vore.ev pir2l=v 
modified W-E: given edge structure ¢ and side indicator 4 to determine ordering 

such that e .ev ptr(hl=v 
V-E,F-E: given edge half structure ¢ selected to determine ordering 

f<V> f<E> f<F> 
W-E: given face structure f and an edge structure e= efirst such that 

e.ef pr(ll=f or e.ef pr[2]=f, select v=vfirst such that 
v=vert[n] (vfirst, efirst is used to detect end of loop) 

modified W-E: given face structure f, edge structure e= efirst, and side indicator 
h= hfirst such that e .ef prr(flip(h)]=f, where flip(h) gives opposite 
side ag h (efirst, hfirst is used to detect end of loop) 

V-E,F-E: given face structure f and edge half structure e= efirst such that 
e .ee_mate_ptr .ef pir=f (efirst is used to detect end of loop) 

Figure B-1b: Initial Conditions for Queries 
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V< V> - three field accesses / one record access 
if (v= e ev_ptr{l]) 

then half < 1; otherhalf ¢ 2 
else half ¢ 2; otherhalf ¢« 1 

adjacentv ¢ e".ev_ptrotherhalf] 

¢ ¢ ¢".ee_cocw_ptr[half] 

V< E> - two field accesses / one record access 

if (v= e ev_ptr[1]) 
then half ¢ 1 
else half ¢ 2 

¢ ¢ e".ee_ccw_pirfhalf] 

V< F> - three field accesses / one record access 
if (v=e¢*ev_ptr[1]) 

then half ¢« 1 
else half « 2 

f ¢ e".ef ptr[half] 

e ¢ ¢".ee_ccw_ptr(half] 

E[V] - three field accesses / one record access 
if (v= e .ev_ptr{l]) 

then half < 1; otherhalf < 2 
else half < 2; otherhalf ¢ 1 

vl ¢~ e"ev_ptr{half] 

v2 < e".ev_ptr{otherhalf] 

E{[E](E]] - five field accesses / one record access 
if (v= e¢".ev_ptr{i]) 

then half ¢« 1; otherhalf ¢« 2 

else half & 2; otherhalf « 1 

el ¢ e".ce_ccw_ptr[otherhalf] 
€2 ¢ ¢ .ee_cw_ptr(half] 

e3 ¢ ¢".ee_ccw_ptr(half] 
¢4 ¢ ¢ .ee_cw_ptrotherhalf] 

E{F] - three field accesses / one record access 

if {(v= e ev_ptr{l]) 
then half ¢ 1; otherhalf ¢ 2 
else half ¢~ 2; otherhalf < 1 

fl ¢ e".ef_ptr{half] 

f2 - ¢".ef_ptr{otherhalf} 

F< V> - three field accesses / one record access 
if (v = e .ev_ptr[1]) 

then half ¢ 1; otherhalf « 2 

else half « 2; otherhalf « 1 

v ¢ ¢".ev_ptr{otherhalf] 

¢ ¢ ¢".ee_cw_ptr(half] 

F< E> - three field accesses / one record access 
if (v= e ev_ptr{l]) 

then half < 1; otherhalf « 2 

else half - 2; otherhalf ¢« 1 
v ¢ ¢"ev_ptr{otherhalf] 
e ¢ ¢".ee_cw_pir(half] 

F< F> - four field accesses / one record access 
if (v = e ev_ptr[1]) 

then half ¢~ 1; otherhalf < 2 

else half « 2; otherhalf « 1 

f < ¢".ef_ptrihalf] 
v ¢ ¢".ev_ptr[otherhalf] 

¢ ¢ ¢ .ee_cw_ptr(half] 

Figure B-1c: W-E Structure Adjacency Relationship Accessing Procedures (for 
connected graph planar polyhedral environments only) 
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V< V> - three field accesses / one record access 
adjacentv ¢~ e".ev_ptr{flip(h)} {where flip(n) gives opposite of n} 
olde ¢ 
¢ ¢ ¢".ee_cow_ptrfh] 
h ¢ olde™.ee_cow_halffh] 

V< E> - two field accesses / one record access 
olde ¢~ ¢ 
e ¢ e"ee_cew_ptr{h]) 
h ¢ olde™.ee_ccw_half(h] 

V< F> - three field accesses / one record access 
f « e".ef_ptr[h] 

olde ¢« ¢ 
e ¢« ¢"ee_ccw_ptrfh] 

h ¢« olde”.ee_ccw_halffh] 

E[V] - two field accesses / one record access 
vl & e"ev_ptr[h] 
v2 < ¢".ev_ptr{flip(h)] 

E{[E]{E]] - four field accesses / one record access 
el < e".ee_cow_ptr{flip(h)] 

€2 < e".ee_cw_ptrfh] 
€3 ¢ e".ee_cow_ptr[h] 
ed ¢ e .ee_cw_ptr(flip(h)] 

E[F] - two field accesses / one record access 

fl ¢ e".ef_ptr{h) 
2 ¢« e”ef_ptr{flip(h)] 

F< V> - three field accesses / one record access 
v ¢~ e"ev_ptr{h} 

olde ¢<— ¢ 

¢ ¢ e".ee_cw_ptr[h] 
h ¢ olde”.ee_cw_half[h} 

F< E> - two field accesses / one record access 

olde ¢— ¢ 

e < e".ee_cw_ptr(h) 
h ¢ olde”.ee_cw_half{h] 

F< F> - three field accesses / one record access 

f € e".ef_ptrfh] 
olde ¢« ¢ 
e ¢ ¢ .ee_cw _ptr(h] 

h ¢ olde®.ee_cw_half(h} 

Figure B-1d: Modified W-E Structure Adjacency Relationship Accessing Pro- 
cedures (for all connected graph environments) 
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V< V> - two field accesses / one record access 
e ¢ ¢ .ee_cw_ptr 
v e ev pir 

V< E> - one field access / one record access 
e < e’ee_cw_pir 

V< F> - two field accesses / one record access 
e ¢ etee_cw_pir 
f ¢ e*ef_ptr 

E{V] - three field accesses / two record accesses 
vi - e"ev_ptr 
v2 ¢~ ¢".ee_mate_ptr'.ev_ptr 

E{{EI{E]] - five field accesses / two record accesses 
el ¢« e".ee_cw_ptr 
€2 ¢ e".ee_cow_pir 
etemp ¢ ¢".ee_mate_ptr 
€3 ¢ etemp”.ce_cw_ptr 
¢4 ¢« etemp”.ee_ccw_pir 

E{F] - three field accesses / two record accesses 

fl ¢~ e"ef ptr 
2 ¢ ¢".ec_mate_ptr*.ef_ptr 

F< V> - three field accesses / two record accesses 
€ ¢ e".ee_cow_pir'.ce_mate pir 
v ¢ ¢"ev_ptr 

F< E> - two field accesses / two record accesses 
e ¢« ¢".ee_ccw_ptri.ee_mate_ptr 

- three field accesses / two record accesscs 
€ ¢ ¢".ee_ccw_ptrt.ee_mate_ptr 
f ¢ e ef ptr 

F< F> 

Figure B-1e: V-E Structure Adjacency Relationship Accessing Procedures 
(all connected graph environments) 
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V< V> - three field accesses / two record accesses 
¢ ¢ e".ee_mate_pir'.ee_ccw_pir 
vV ¢ e"ev_ptr 

- two field accesses / two record accesses 
e ¢ e".ee_mate_ptr'.ee_cow_ptr 

V< E> 

V< F> - three field accesses / two record accesses 
€ ¢ ¢".ce_male_ptr'.ee_cow_ptr 
f e e ef ptr 

E[V] - three field accesses / two record accesses 
vl ¢ e ev_ptr 
v2 ¢~ e".ee_mate_ptr.ev_pir 

Ef[E}{E]] - five field accesses / two record accesses 

etemp < e".¢e_mate_ptr 
el ¢ etemp”.ee_ccw_ptr 
€2 ¢ e".ee_cw_ptr 
€3 ¢ ¢ .ce_cow_pir 
€4 ¢ etemp”.ce_cw_ptr 

E[F] - three ficld accesses / two record accesses 
fl e e"ef ptr 
f2 ¢~ e".ec_mate_ptr.ef _ptr 

F< V> - two field accesses / one record access 
e ¢ e"ee_cw_pir 
vV e e ev pir 

F< E> - one field access / one record access 

e ¢ e’ee_cw_ptr 

F< F> - two field accesses / one record access 
¢ ¢ e .ee_cw_pir 
f ¢ e"ef ptr 

Figure B-1f: F-E Structure Adjacency Relationship Accessing Procedures (all 
connected graph environments) 



Appendix C 

TRAVERSALS OF THE RADIAL EDGE STRUCTURE 

Detailed definitions of several traversal functions for the Radial Edge structure are 

now described to provide a better understanding of the semantics of the Radial Edge 

structure and to provide support for the the adjacency relationship derivation algo- 

rithms presented in Appendix D. 

The traversal algorithms are interdependent and freely make use of other traversal 

algorithms. For simplicity of description, they are assumed to be non-destructive 

traversals where the actions performed against each element do not change the topol- 

ogy of the model. Destructive traversals are also possible. 

Four types of traversals are described: general traversals which visit each element in 

the model, global traversals which visit every element of a given type in a model, 

downward hierarchical traversals which visit all lower dimensional elements adjacent to 

a specific higher dimensional element type, and use-component traversals which visit all 

use elements related to a specific basic topological element,. 

The traversal algorithms are described in three forms. The first form is basically a 

description of loop control mechanisms which identify actions required for loop ini- 

tialization, the increment after the loop body is performed, and the continuance test 

to be performed after the increment is done. The second form defines the traversal 

in terms of other traversals. The third form is that used by the general traversal, 

which assigns the body of the loop to a procedure which is called during traversal as a 

visit operation on each applicable element. 

It is simple to transform traversals involving element uses, such as those of the 
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downward hierarchical traversal, into basic element traversals by accessing the 

relevant upward hierarchical pointers available in each of the use element structures 

in the Radial Edge structure. 

The general traversal mechanism presented, while simplified and unoptimized, does 

allow traversal of all components of the entire model. The Radial Edge structure has 

hierarchical groups of circular linked lists of the elements for just about everything 

except wireframes, For traversal of wireframes a marking scheme is used to assist 

heuristic search of all connected edge and vertex components of each wireframe sub- 

graph in the model. In the traversal description, a marking scheme is also used with 

face and loop element types to indicate when a topological element has been visited. 

Minor modifications to the general traversal algorithms presented allow the correct 

traversal of elements such as shells and faces rather than the entire model as well as 

traversal of element uses.



1. Generalized Traversal 

traverse_model(m) 
pre_visit_model(m) . 

foreach_region_in_model(r,m,status) 
traverse_region(r) 

post_visit_model(m) 

traverse_region(r) 
pre_visit_region{r) 
foreach_shell_in_region(s,r,status) 
traverse_shell(s) 

post_visit_region(r) 

traverse_shell(s) 

pre_visit_shell(s) 
case s".downptr of 
FACEUSEptr: 
foreach_faceuse_in_shell(fu,s,status) 
traverse_faceuse(fu) 

EDGEUSEptr: 
traverse_wire(s".seu_ptr*.euvu_ptr) 

VERTEXUSEptr: 
visit_vertex(s".svu_ptr" .vuv_ptr} 

end {case} 
post_visit_shell( s) 

traverse_faceuse(fu) 

if (face_is_not_marked(fu".fuf_ptr)) then begin 
mark_face(fu”.fuf_ptr) 
pre_visit_face(fu".fuf ptr) 
foreach_loopuse_in_faceuse(lu,fu,statusl) 

traverse_loopuse(lu) 
post_visit_face(fu” fuf ptr) 
end {then} 
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traverse_loopuse(lu) 

if (loop_is_not_marked(iu".lul_ptr)) then begin 
mark_loop(lu*.lul_ptr) 
pre_visit_loop(lw* .lul_ptr) 
case lu*.downptr of 
EDGEUSEptr: 
foreach_edgeuse_in_loopuse(eu,lu,status) 

if (edge_is_not_marked(eu".eue_ptr)) 
then begin 

mark_edge(eu”.eue_ptr) 
visit_edge(eu”.eue_ptr) 
traverse_wire(eu".euvu_ptr) 
end {then} 

VERTEXUSEptr: 
traverse_wire(lu”Juvu_ptr) 

end {case} 
post_visit_loop( 1w .lul_ptr) 
end {then} 

traverse_wire(vu) 
if (vertex_is_not_marked(vu".vuv_ptr)) 

then begin 
mark_vertex(vu®.vuv_ptr) 
visit_vertex(vu".vuv_ptr} 

foreach_vertexuse_in_vertex(vu,vu".vuv_ptr, 

status) 

if vu*.upptr = EDGEUSEptr then 
if vu*.vueu_ptr.upptr = SHELLptr then 
if (edge_is_not_marked(vu“.vueu_ptr". 

«cue_ptr)) then begin 

mark_edge(vu.vueu_ptr-.eue_ptr) 
visit_edge{vu".vueu_ptr" .eue_ptr} 
traverse_wire(vu_vueu_ptr~, 

eueu_mate_ptr.euvu_ptr) 
end {then} 

end {then}



2. Global Model Traversals 

foreach_region_in_model(r, m,status) 
loop inifialization: t ¢« m".mr_ptr 
bottom of loop increment: r ¢ r*.mrnext 
bottom of loop test: untilr = m".mr_ptr 

foreach_shell_in_meodel(s,m,status) 
foreach_region_in_model(r, m,status) 

foreach_shell in_region(s,r,status) 
execute loop body 

foreach_face_in_model(f, m,status) 
pre_visit_face < loop body 
traverse_model(m) 
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foreach_loop_in_model(},m,status) 
foreach face_in_model(f,m,status) 

foreach_loopuse_in_faceuse(lu,f*.ffu_ptr,status) 
1 ¢ lu.lui_ptr 
execute loop body 

foreach_edge_In_model(e, m,status) 
visit_edge(e) < loop body 
traverse_model(m) 

foreach_vertex_in_model(v,m,status) 
visit_vertex(v) < loop body 
traverse_model(m) 

3. Downward Hierarchical Traversals 

foreach_shell_in_region(s,r,status) 
loop initialization: s ¢— t*.rs_ptr 
bottom of loop increment: s « s".rs_next 
bottom of loop test: until s = r*xs_ptr 

foreach_faceuse_in_shell(fu,s,status) 

loop initialization: fu < s".sfu_ptr 
bottom of loop increment: fu < fu*sfu_next 
bottom of loop test: unlil fu = s*.sfu_ptr 

foreach_loopuse_in_faceuse(lu,fu,status) 

loop initialization: u < fu*.fulu_ptr 
bottom of loop increment: u < " fulu_next 
bottom of loop test: until lu = fu".fulu_ptr 

foreach_edgeuse_in_toopuse(eu,lu,status) 

loop initialization: 
if not (lu*.downptr = EDGEUSEptr) 
then skip loop 
else eu ¢ lu".lueu_ptr 

bottom of loop increment: eu ¢ eu”.eueu_cw _ptr 
bottom of loop test: until eu = lu* lueu_ptr 

foreach_vertexuse_fn_edgeuse(vu,eu,status) 
loop initialization: vu « eu".euvu_ptr 
bottom of loop increment: 

VU ¢~ eu”.eucu_mate_pir-.euvu_ptr 

bottom of loop test: 
untif va = vu ¢~ eu”.euvu_pir 

4. Radial Edge Use-Component Traversals 

foreach_faceuse_in_face(fu,f,status) 

*“will always produce two iterations’ 
loop initialization: fu < f*.ffu_ptr 
bottom of loop incremen: 

fu ¢~ fu*.fufu_mate_ptr 
bottom of loop test: until fu = f*.ffu_ptr 

foreach_loopuse_in_loop(lu,l,status) 
“will always produce two iterations” 

loop initialization: lu « 1" \lu_ptr 
bottom of loop increment: 

lu ¢ lu".lulu_mate_ptr 
bottom of loop test: until lu = 1" Ju_ptr 

foreach_edgeuse_in_edge(eu,e,status) 
loop initialization: 

eu ¢~ ¢e"eeu pir 
i1 

bottom of loop increment: 
if odd(i) 

then eu ¢ eu”.cueu_mate_ptr 
else eu ¢ eu”.eueu_radial_ptr 

i—i+ 1 
boitom of loop test: until eu = e".eeu_ptr 

foreach_vertexuse_!n__ver!ex(vu,v,status) 
loop initialization: vu ¢ v*.vvu_ptr 
bottom of loop increment: vu vu.vuvu_next 
bottom of loop test: until vu = vi.vvu_ptr
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Appendix D 

COMPLETENESS OF THE RADIAL EDGE STRUCTURE 

This appendix describes the algorithms for defivation of the thirty-six non-manifold 

adjacency relationships from the Radial Edge structure in a Pascal-like programming 

notation consistent with the Radial Edge data structure descriptions in Chapter 17. 

The sequence of derivation algorithms show how all adjacency information can be 

obtained from the Radial Edge data structure non-manifold geometric modeling 

representation. 

First several additional functions utilized in the derivation algorithms are described. 

The derivation algorithms themselves are then described. The derivation algorithms 

also utilize the traversal algorithms of Appendix C. 

Further discussion of the derivation process can be found in Chapter 18. 

It should be noted that the oppositely oriented adjacent groups of E{< [E]> b 

E{<L>} E{xF>}, E{<§>}, and E{< R>} adjacency relationships are not shown 

here for brevity. 
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1. Additional Functions 

A few additional functions are used to simplify the descriptions of the derivation of 

the non-manifold adjacency relationships from the Radial Edge structure information: 

add element to adjacency relationship unordered adjacent groulp . 
adds element to the adjacent group if it does not already exist in the set. 

append element to adjacency relationship ordered adjacent group 
places element at the end of the ordered adjacent group list so that the 
order of entry is preserved. Duplicates are allowed. 

odd(integer) 
returns TRUE if the input integer is an odd number, and FALSE if it is an 
even number.
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2. Algorithms to Derive the Adjacency Relationships 

2.1. Upward Hierarchical Diagonal Adjacency Relationships 

VIE] 
foreach_verlex_in_model(v,m,slatusl) begin 

create adjacency relationship v{E] 
with empty adjacent group 

foreach_vertexuse_in_vertex(vu,v,status2) 
if vu".upptr = EDGEUSEptr 
then append vu".vueuptr*.eue_ptr to v[E]} 

output v{E} 

end {foreach} 

E<L> 
foreach_edge_in_model(e,m,statusl) begin 
create adjacency relationship e< L> 

with empty adjacent group 
ie1 
foreach_edgeuse_in_edge(eu,e,status2) 

if eu”.upptr = LOOPUSEptr then begin 
"'this skips over the donble facesides"' 

if (0dd(i)) append eu”.eulu_ptr*. 
Iul_ptr to e< L> 

fe—i+ 1 
end {then} . 

output e< L> 
end {foreach} 

L{F} 
foreach_loop_in_model(l,m,status!) begin 
create adjacency relationship I[F] 

with empty adjacent group 
append I".Itu_ptr*.lufu_pte.fuf_ptr to I[F] 
output I[F] 
end {foreach} 

FiST1? 
foreach_face_in_model(f,m,status1) begin 
create adjacency relationship f[S} 

with empty adjacent group 
foreach_faceuse_in_face(fu,f,status2) 
append fu”.fus_ptr to f[S] 

output f{S} 

end {foreach} 

SIRT 
foreach_shell_in_model(s,m,status!) begin 
create adjacency relationship s{R] 

with empty adjacent group 
append s*.sr_ptr to s[R] 

output s[R} 
end {foreach} 

2.2, Downward Hierarchical Diagonal Adjacency Relationships 

E(V? 
foreach_edge in_model(e,m,statusl) begin 
create adjacency relationship e{V] 

with empty adjacent group 
foreach_vertexuse_in_edgeuse(vu,e*.ceu_ptr,status) 
append e*.eeu_ptr*.euvu_ptr.vuv_pir to e[V] 

output ¢{V] 

end {foreach} 

L{<E> ]!F[SH 

foreach_loop_in_model(},m,statusl) begin 
create adjacency relationship [} 

with empty adjacent group 
foreach_loopuse_in_loop(lu,l,status2) begin 
create an empty adjacent group < E> 
if lu".downptr = EDGEUSEp!r then 
foreach_edgeuse_in_loopuse(eu,lu,status3) 

append eu”.eue_pir to < E> 
append current < E> to {[} 

end {foreach} 

output If< E> ) 

end {foreach} 

FIL] 
foreach_face_in_model(f,m,statusl) begin 
create adjacency relationship f[L] 

with empty adjacent group 
foreach_loopuse_in_faceuse(lu,f*.ffu_ptr,status2) 

appead Iu*.lui ptr to f[L} 
output f{L] 
end {foreach} 

S{F} 
foreach_shell_in_model(s,m,statusi) begin 
create adjacency relationship s{F} 

with empty adjacent group 
foreach_faceuse_in_shell(fu,s,status2) 
add fu”.fuf ptr to s{F} 

output s{F} 
end {foreach} 



R{S} 
foreach_region_in_model(r,m,status1) begin 
create adjacency relationship r{S} 

with empty adjacent group 
foreach_shell_in_region(s,r,status2) 
add s to r{S} 

output r{S} 
end {foreach} 
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2.3. Upward Hierarchical Adjacency Relationships 

VIL} 
foreach_vertex_in_model(v,m,status!) begin 
create adjacency relationship v{L} 

with empty adjacent group 
foreach_vertexuse_in_vertex(vu,v,status2) 
case vu .upptr of 
EDGEUSEptr: 

if vu*.vueu_ptr*.upptr = LOOPUSEptr 
then add vu’.vueu_pir*.eulu_ptr", 

tui_ptrto v{L} 
LOOPUSEptr: 
add vu”.vul_pirto v{L} 

end {case} 
output v{L} 
end {foreach} 

V{F} 
foreach_vertex_in_model(v,m,statusl) begin 
create adjacency relationship v{F} 

with empty adjacent group 
foreach_vertexuse_in_vertex(vu,v,status2) 

case vu’.upptr of 
EDGEUSEptr: 

if vu*.vueu_ptr*.upptr = LOOPUSEptr 
then add vu®.vueu_ptr*.eulu_ptr, 

tufu_ptr*.fuf ptr to v{F} 
LOOPUSEptr: 
add vu®.vul_ptr*.lufu_ptr*.fuf ptr to v{F} 

end_case 
output v{F} 
end {foreach} 

Vi{s} 
foreach_vertex_in_model(v,m,statusl) begin 
create adjacency relationship v{S} 

with empty adjacent group 
foreach_vertexuse_in_vertex(vu,v,status2) 
cas 

E 

L 

e vu".upptr of 
DGEUSEptr: 
if vu*.vueu_ptr*.upptr = SHELLptr 
then add vu*.vueu_ptri.eus ptr to v{S} 
else add vu”.vueu_ptr.eulu_ptr", 

lufu_ptr®.fus_ptr to v{S} 
OOPUSEptr: 
add vu".vul_ptr*.lufu_ptr~.fus_ptr to v{S} 

SHELLptr: 
add vu“.vus_ptr to v{S} 

end_case 
outp 
end 

ut v{S} 
{foreach} 

ViR} 
foreach_vertex_in_model(v,m,statusl) begin 
create adjacency relationship v{R} 

with empty adjacent group 
foreach_vertexuse_in_vertex(vu,v,status2) 

cas: 
E 

e vu".uppir of 
DGEUSEptr: 
if vu*.vueu_ptr.upptr = SHELLptr 
then add vu“.vueu_ptrt.eus_ptr".sr_ptr to v{R} 
else add vu®.vueu_ptr.eulu_ptr .Jufu_ptr". 

fus_ptr*.sr_ptr to v{R} 
LOOPUSEDptr: 

S 
add vu”.vul_ptr*.Jufu_ptr*.fus_ptr*.sr_ptr to v{R} 
HELLptr: 
add vu”.vus_ptr".sr_ptr to v{R} 

end_case 
output v{R} 
end {foreach}



E< F> B<L>] 
foreach_edge_in_model(e,m,status1) begin 
create adjaceacy relationship e< F> 

with empty adjacent group 
i1 
foreach_edgeuse_in_edge(eu,e,status2) 

if eu”.upptr = SHELLptr then begin 
"‘this skips over the double facesides” 

if ( 0odd(i)) append eu”.eulu_ptr. 
lufu_ptr".fuf_ptrto e< F> - 

ie-i+ 1 
end {then} 

output e< F> 
end {foreach} 

E< §> B<L>] 
foreach_edge_in_model(e,m,status!) begin 
create adjacency relationship e< S> 

with empty adjacent group 

ie1 

foreach_edgeuse _in_edge(eu,e,status2) 
if eu”.upptr = SHELLptr 
then append eu”.cus_ptr to e< S> 
eise begin 

“‘this skips over the double facesides’ 
if ( 0dd(i)) append eu”.eulu_ptr*, 

lufu_ptr*.fus_ptr to e< S> 
ie-i+ 1 
end {eise} 

output e< S> 

end {foreach} 

E<R> E<t>1 
foreach_edge_in_model(e,m,statusl) begin 
create adjacency relationship e< R> 

with empty adjacent group 
ie-1 
foreach_edgeuse_in_edge(eu,e,status2) 

if eu".upptr = SHELLptr 
then append eu”.cus_ptr".sr_ptr to e< R> 
else begin 

*‘this skips over the double facesides' 
if ( 0dd(i)) append eu*.culu_ptr~. 

lufu_ptr®.fus_ptr*.sr_ptr 10 e< R> 
Pe—i+ ! 
end {else} 

output e< R> 

end {foreach} 
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L{S1FisN 

foreach_loop_in_model(i,m,statusl) begin 
create adjacency relationship 1[S] 

with empty adjacent group 
foreach_loopuse_in_loop(lu,l,status2) 
append lu*lufu_pir*.fus_ptr to I[S] 

output i(S] 
end {foreach} 

LR ]!F[S]I 

foreach_loop_in_modei(],m,status1) begin 
create adjacency relationship 1[R] 

with empty adjacent group 
foreach_loopuse_in_loop(lu,l,status2) 
append lu*.Iufu_ptr*.fus_ptr".sr_ptr to [[R] 

output {R} 
end {foreach} 

FiR ]tF[SH 

foreach_face_in_model(f,m,statusl) begin 
create adjacency relationship f{R] 

with empty adjacent group 
foreach_faceuse_in_face(fu,f,status2) 
append fu”.fus_ptr'.sr_ptr to f[R] 

output f[R] 
end {foreach} 



2.4. Downward Hierarchical Adjacency Relationships 

Li<V> < E> l]W{Sll 

foreach_loop_in_model(], m,statusl) begin 
create adjacency relationship If} 

with empty adjacent group 
foreach_loopuse_in_loop(lu,},status2) begin 
create an empty adjacent group < V> 
case lu".downptr of 
EDGEUSEptr: 
foreach_edgeuse_in_loopuse(eu,lu,status3) 
append eu”.euvu_ptr'.vuv_pir to < V> 

VERTEXUSEptr: 
append lu".luvu_ptr'.vuv_ptrto < V> 

end {case} 
append current < V> to if] 
end {foreach} 

output I[< V> |} 

end {foreach} 

Fll< V> ]]IF[SII 

foreach_face_in_model(f,m,statusl) 
create adjacency relationship f{] 

with empty adjacent group 
foreach_faceuse_in_face(fu,f,status2) begin 
create empty adjacent group (] 
foreach_loopuse_in_faceuse(lu,fu,status3) begin 
create an empty adjacent group < V> 
case lu”.downptr of 
EDGEUSEptr: 
foreach_edgeuse_in_loopuse(eu,lu,statusd) 
append eu”.euvu_ptr'.vuv_ptrto < V> 

VERTEXUSEptr: 
append lu".luvu_ptr*.vuv_ptr to < V> 

end {case}- 
appead current < V> to [} 
end {foreach} 

append current [< V> ] to f{] 

eund {foreach} 
output f[{< V> 1] 
ead {foreach} 

Fll< E> DIF[S]I 

foreach_face_in_model(f, m,status!) 
create adjacency relationship £{] 

with empty adjacent group 
foreach_faceuse_in_face(fu,f,status2) begin’ 
create empty adjacent group [} 
foreach_loopuse_in_faceuse(lu,fu,status3) begin 
create an empty adjacent group < E> 
case lu*.downptr of 
EDGEUSEptr: 
foreach_edgeuse_in_loopuse(eu, lu,statusd) 
append eu”.eue_ptrto < E> 

VERTEXUSEptr: 
do nothing 

end {case} 
append current < E> to [} 

end {foreach} 
append current [< E> | to f[) 
end {foreach} 

output fi[< E> }] 
end {foreach} 

SV} 
foreach_shell in_model{s,m,status1) begin 
create adjacency relationship s{V} 

with empty adjacent group 
foreach_vertex_in_model(v,m,status2) 
foreach_vertexuse_in_vertex(vu,v,status3) 
case vu”,upptr of 
EDGEUSEptr: 

if vu®.vueu_ptri.upptr = SHELLptr 
then begin 

if vu®,vueu_ptr*.eus_ptr = s then 
add vu®.vuv_ptr to s{V} 

end {then} 

else 
if vu.vueu_ptr*.eulu_ptr". 

lufu_ptr".fus_ptr = s then 
add vu".vuv_ptr to s{V} 

LOOPUSEptr: 
if vu*.vulu_ptri.lufu_ptr*.fus_ptr = s then 
add vu*.vuv_ptr to s{V} 

SHELLptr: 
if vu®.vus_ptr = s then 
add vu®.vuv_ptr to s{V} 

end {case} 
output s{V} 

end {foreach}



S{E} 
foreach_shell_in_model(s,m,statusl) begin 
create adjacency relationship s{E} 

with empty adjacent group 
foreach_edge_in_model(e,m,status2) 
foreach_edgeuse_in_edge(eu,e,status3) 

if eu”.upptr = SHELLptr 
then begin 

if eu”.eus_ptr = s then 
add eu.eue_ptr to s{E} 

end {then} 
else 

if eu”.eulu_ptr", 
lufu_ptr*.fus_ptr = s then 

add eu”.eue_pir to s{E} 
output s{E} 
end {foreach} 

S{L} 
foreach_shell_in_model(s,m,statusl) begin 
create adjacency relationship s{L} 

with empty adjacent group 
foreach_faceuse_in_shell{fu,s,status2) 
foreach_loopuse_in_faceuse(lu, fu,status3) 
add lu*.lul ptr to s{L} 

output s{L} 
end {foreach} 

RV} 
foreach_region_in_model(s,m,status1) begin 
create adjacency relationship r{V} 

with empty adjacent group 
foreach_vertex_in_model(v,m,status2) 
foreach_vertexuse_in_vertex(vu,v,status3) 
case vu*.upptr of 
EDGEUSEptr: 

if vu*.vueu_ptr*.upptr = SHELLptr 
then begin 

if vu.vueu_ptrt.eus_pur. 
sr_ptr = 1 then 

add vu”.vuv_pir to r{V} 
end {then} 

else 

if vu".vueu ptri.eulu_ptr.lufu_ptr*. 
fus_ptr.sr_ptr = rthen 

add vu".vuv_ptr to r{V} 
LOOPUSEptr: 

if vut.vulu_ptr.lufu_ptr*.fus_ptr", 
sr_pir = r then 

add vu".vuv_ptr to r{V} 
SHELLptr: 

if vu".vus_ptr'.sr_ptr = r then 
add vu*.vuv_ptr to r{V} 

end {case} 

output r{V} 
end {foreach} 
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RIE} 
foreach_region_in_model(s,m,statusl) begin 
create adjacency relationship r{E} 

with empty adjacent group 
foreach_edge_in_model(e,m,status2) 
foreach_edgeuse_in_edge(eu,e,status3) 

if eu".uppir = SHELLptr 
then begin 

if eu".eus_ptr".sr_ptr = r then 
add eu".cue_ptr to r{E} 

end {then} 

else 
if eu”eulu_ptr.lufu_ptr", 

fus_ptr*.sr_ptr = r then 
add eu”.eue_ptr to r{E} 

output r{E} 
end {foreach} 

RI{L} 
foreach_region_in_model(r,m,status1) begin 
create adjacency relationship r{L} 

with empty adjacent group 
foreach_shell_in_region(s,r,status2) 
foreach_faceuse_in_shell(fu,s,status3) 
foreach_loopuse_in_faceuse(lu,fu,statusd) 
add Iu”.lul_ptr to r{L} 

output r{L} . 
end {foreach} 

R {F} 

foreach_region_in_model(r,m,statusl) begin 
create adjacency relationship r{F} 

with empty adjacent group 
foreach_shell_in_region(s,r,status2) 
foreach_faceuse_in_shell(fu,s,status3) 
add fu*.fuf ptr to r{F} 

output r{F} 
end {foreach}
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2.5. Main Diagonal Adjacency Relationships 

VIvV] WHEN 

foreach_vertex_in_model(v,m,statusl) begin 
create adjacency relationship v[V] 

with empty adjacent group 
foreach_vertexuse_in_vertex(vu,v,status2) 

if vu*upptr = EDGEUSEptr then 
add vu".vueuptr®.eueu_mate_ptr". 

euvu_ptr.vuv_ptr to v{V] 
output v[V} 

end {foreach} 

E< [E]IE[V]|> 

foreach_edge_in_model(e,m,statusl) begin 
create adjacency relationship e< > 

with empty adjacent group 
foreach_edgeuse_in_edge(eu,e,status2) begin 
create adjacency relationship [E] 

with empty adjacent group 
if eu”.upptr = LOOPUSEptr then begin 
append eu”.eueu_cw_ptr'.eue_ptr to (E] 
append eu”.eueu_ccw_ptr-.eue_ptr to {E] 
end {then} 

append current [E] to e< > 
end {foreach} 

output e< [E]> 
end {foreach} 

LI< [LP>1] 
foreach_loop_in_model(f,m,status1) 
create adjacency relationship I[} 

with empty adjacent group 
foreach_loopuse_in_loop(lu,l,status2) begin 
create an empty adjacent group < > 
if lu"downptr = EDGEUSEptr then 

F{{< [F]V&I 32 
foreach_face_in_model(f, m,status1) 

create adjacency relationship f[] 

with empty adjacent group 
foreach_faceuse_in_face(fu,f,status2) begin 
create empty adjacent group ] 
foreach_loopuse_in_faceuse(lu,fu,status3) begin 

create an empty adjacent group < > 
if lu*.downptr = EDGEUSEptr then 
foreach_edgeuse_in_loopuse(eu,lu,statusd) begin 
create an empty adjacent group [F} 
append eu”.eueu_radial_ptr*.eulu_ptr*. 

lufu_ptr*.fuf_ptr to {F] 
append eu”.cueu_mate_ptr".cueu_radial_ptr". 

eulu_ptr*.lufu_ptr*.fuf ptr to [F] 
append current {F} to < > 
end {foreach} 

append current < {F}> to [} 
end {foreach} 

append current {< (F]> ] to f[] 
end {foreach} 

output f[{< [Fi> ]} 

end {foreach} 

S{St 
foreach_shell _in_model(s,m,statusl) begin 
create adjacency relationship s{S} 

with empty adjacent group 
foreach_faceuse_in_shell(fu,s,status2) 

if not (fu”.fufu_mate_ptr*.fus_ptr = s) 
then add fu".fufu_mate_ptr*.fus_ptr to s{S} 

output s{S} 
end {foreach} 

foreach_edgeuse_in_loopuse(eu,lu,status3) begin R {R } 
create an empty adjacent group [L] 
append eu”.eueu_radial ptr*.eulu_ptr". 

fufu_pte*.fuf_ptr to [L] 

append eu”.eueu_mate_ptr.eueu_radial_ptr*. 
eulu_ptr*.lufu_ptr".fuf_ptrto (L} 

append current [L] to < > 

end {foreach} 
append current < [L]> to i[] 
end {foreach} 

output [[< {L}> ] 

end {foreach} 

foreach_region_in_model(r, m,status) begin 

create adjacency relationship r{R} 
with empty adjacent group 

foreach_shell_in_region(s,r,status2) 
foreach_faceuse_in_shell(fu,s,status3) 

if not (fu”.fufu_mate_ptr".fus_ptr*.sr_ptr = 1) 
then add fu®.fufu_mate_ptr*.fus_ptr", 

sr_ptr to r{R} 
output r{R} 

end {foreach}
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Appendix E - 

SELECTIVE QUERY AND TRAVERSAL 

This appendix describes the rationale and implementation of a selective query 

mechanism for geometric modeling data structures. The selection is performed based 

on arbitrary specifications of binary attribute data usuaily assigned to components of 

the model at model creation time. 

1. Rationale 

The flexibility offered by the non-manifold modeling form increases the likelihood 

(and desirability) of maintaining geometric shape information for many different but 

related objectives, co-existing in the same model. It is important in these cases to 

keep the different classes of data differentiated from each other while still allowing 

them to be considered together or in any combination when desired. A general 

mechanism to provide this facility would be highly desirable. A modeler system 

implementation, rather than multiple application dependent implementations, would 

require less resources and be more efficient. 

The class or attribute data which is used as a selection key is normally determined by 

the application, not the modeler. For example, in applications involved with 

manufacturing mechanical parts, it may be desirable to compare center line or other 

manufacturing or tolerance datum point geometric information with the the designed 

geometric shape of a mechanical part, and to keep the merged data in the same model 

yet still differentiated (see Figure 3 — 2). Meshes for FEM (finite element method) 

analysis may also exist in the same model, as well as possible approximate geometric 

shape information created to simplify FEM meshing., It may also be desirable to 
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associate additional application dependent characteristics such as identification of pur- 

pose or functionality, sequence of manufacturing, and other characteristics with por- 

tions of the original model. 

Selectively utilizing model information of this type requires the ability to perform 

selective query and traversal based on an arbitrary set of characteristics for the por- 

tions of the model currently under consideration. Proper design of this facility 

prevents specific applications from being inundated with data intended for other appli- 

cations, while still allowing coordination of all data. For example, a single mechanical 

part model may contain primary shape information, FEM meshing or tolerance infor- 

mation, and other relevant geometric data. When the model is to be displayed it is 

desirable to have the ability to select what portions of the model should be displayed 

by specifying the characteristics desired (shape only, mesh only, shape and mesh 

together, etc.). Similarly, queries involving adjacency should only be concerned with 

elements matching the characteristics currently under consideration, giving the 

appearance that the model consists only of the elements which match the selection 

criteria. 

2, Implementation 

One implementation approach to allow selective query and traversal involves associat- 

ing application controlled attribute values or identity values with topological elements 

and requiring all application code to individually perform checking and selection for 

every query and traversal, regardless of whether it really uses such capabilities. A 

more general approach, however, is to have the modeling system itself perform this 

kind of checking and selection, reducing application implementation complexity and 

replication of the same checking code. Applications that do not use these facilities 

would then not need to consider these facilities at all, even in models containing ele- 

ments with selection attributes. 

The approach taken here is to associate an attribute mask with each topological ele-



321 

ment, in which a single bit is used to determine the presence or absence of an appli- 

cation -designated characteristic. An attribute mask allows representation and selection 

based on muliiple simultaneous characteristics. Other alternatives are equally possi- 

ble; this particular one was felt to be useful because of its support of multiple 

independent attributes. 

The interface to this capability is described below in a Pascal-like syntax. All indivi- 

dual applications actually using the capability must restore creation and selection 

masks to their previous values when finished or invoking other applications. Applica- 

tion programmers not utilizing attribute selection capabilities do not need to be con- 

cerned about them in their implementations, The size of the attribute mask is imple- 

mentation dependent. 

set_create_mask(masktype: mask) 
All topological elements created after invocation of set create_mask will 
have an attribute mask equivalent to mask until the next call to 
set_create_mask. A 1 in a bit position indicates presence of an attribute; a 
0 in a bit position indicates absence of an attribute. The default value of 
the creation mask is all zeroes with a one in the least significant bit posi- 
tion. This corresponds with the default selection masks to allow*use of the 
system without setting masks. 

get_create_mask(): masktype 
Returns the current creation mask value, 

set_query_mask(masktype: must_have, must_not_have) 
All'queries and traversals will perform’ attribute checking to provide only 
the required elements which also meet the specified characteristics of hav- 
ing all attributes specified in must_have, and lacking a/l attributes specified 
by must_not_have. Specifically, in a Pascal like sKmax, with AND symboliz- 
ing da bitwise ‘‘and’, and and symbolizing the binary valued Boolean and”, 

((((eleme(x;t’s attribute mask) AND must_have) = must_have) 
an 

(((element’s attribute mask) AND must_not_have) = 0)) 

must be true in order for a match to exist. These query masks will remain 
in effect until the next call to set_query mask. A 1 in a bit position indi- 
cates presence of an attribute; a 0 in a bit position indicates absence of an 
attribute. The default value of the must_have mask is all zeroes with a one 
in the least significant bit position,” and the default value of the 
must_not_have mask is all ones with a zero in the least significant bit posi- 
tion.” This corresponds with the default creation mask to allow use of the 
system without setting masks. As an example, mask settings to include all 
elements in any queries regardless of their attribute values would be must 
have and rhust_not_have consisting of all zeroes.



322 

get_query_mask(var masktype: must_have, must_not_have) 
Refurns the query mask values currently in effect. 

The least significant bit position is used by the system to keep track of all data which 

has not had attributes set so that they may be retrieved by applications not using the 

facility via the default mask settings. 

Note that this capability is used for query and traversal only, and does not affect the 

behavior of the construction operators as far as specification of adjacency and posi- 

tioning are concerned, since all elements must be inserted into the model in relation 

to all existing model data. 
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