CIVL.666, MANE. 666 FUNDAMENTALS OF FINITE ELEMENTS

HOMEWORK 2

Due: September 20, 2018

Problems 1-3 are to be answered for the weak form constructed for the text book 1D ODE:

$$
\begin{gathered}
\mathrm{u}_{, \mathrm{xx}}+\mathrm{f}=0 \text { on } \Omega \\
\mathrm{u}(1)=\mathrm{g} \\
-\mathrm{u}_{, \mathrm{x}}(0)=\mathrm{h}
\end{gathered}
$$

Problem 1 just forces you to go through details of what we did in class.

1. (To be graded) Redo Example 2 (2-degree of freedom problem) given in section 1.7 of the text book except this time repeat the calculation with the following shape functions

$$
N_{1}(x)=1-3 x+2 x^{2}, \quad N_{2}(x)=4 x-4 x^{2}, \quad N_{3}(x)=2 x^{2}-x
$$

Be sure to discuss the ability of these shape functions to approximate the solution for the three forcing functions considered in the text (0 , constant and linear).
2. What order polynomial shape functions are needed to get the exact solution for the following forcing function, $f=\left(2 x^{2}-4 x\right)$? (You do not have to solve for it, just indicate the correct polynomial order.)
3. If the forcing function also included a trigonometric term in it can we still get the exact solution by increasing the polynomial order of the element? Explain your answer.

