
FULLY PARALLEL MESH I/O USING PETSC DMPLEX WITH AN1

APPLICATION TO WAVEFORM MODELING∗2

VACLAV HAPLA† , MATTHEW G. KNEPLEY‡ , MICHAEL AFANASIEV† , CHRISTIAN3

BOEHM† , MARTIN VAN DRIEL† , LION KRISCHER† , AND ANDREAS FICHTNER†4

Abstract. Large-scale PDE simulations using high-order finite-element methods on unstruc-5
tured meshes are an indispensable tool in science and engineering. The widely used open-source6
PETSc library offers an efficient representation of generic unstructured meshes within its DMPlex7
module. This paper details our recent implementation of parallel mesh reading and topological in-8
terpolation (computation of intermediate codimensions from a cell-vertex mesh) into DMPlex. We9
apply these developments to seismic wave propagation scenarios on Mars as a sample application.10
The principal motivation is to overcome single-node memory limits and reach mesh sizes which were11
impossible before. Moreover, we demonstrate that scalability of I/O and topological interpolation12
goes beyond 12’000 cores, and memory imposed limits on maximum mesh size vanish.13

Key words. unstructured mesh, directed acyclic graph, partitioning, topological interpolation,14
parallel I/O, PETSc, DMPlex, seismic waveform modeling, Spectral Element Method15

AMS subject classifications. 65-04, 65Y05, 65M50, 05C90, 35L0516

1. Introduction. Finite-element methods (FEM) [37, 24, 51] are widely used17

in science and engineering to simulate complex physical systems. Many applications18

require FEM dicretization with high polynomial order on large unstructured meshes19

requiring distributed memory computer architectures [1, 14, 46, 34, 2]. Here, two20

complications may arise:21

(1) The distributed memory mesh representation should explicitly include mesh22

entities of all codimensions (vertices, edges, faces, cells). However, mesh datafiles23

typically store only vertices and cells to avoid redundant storage, disk operations,24

and to conform to widely used formats. Edges and faces can be computed in runtime25

using a process which will be called here topological interpolation.26

(2) Meshing tools typically create a single datafile, but loading the whole mesh27

onto one processor and distributing onto all remaining processors becomes a bottle-28

neck for a sufficiently large mesh. Instead, we need to load different portions of the29

mesh file directly onto target processors and maintain a distributed mesh representa-30

tion right from beginning. Additional load balancing and redistribution can be done31

using a parallel partitioner.32

PETSc DMPlex (section 2) is a flexible mesh implementation which addresses33

(1) by design, i.e., it can represent any number of codimensions and implements34

topological interpolation. Moreover, it is completely agnostic to the mesh shape, di-35

mensionality and cell types. However, only with developments presented in this paper,36

also (2) has been addressed. This in turn brought another challenge to implement the37

topological interpolation from (1) in parallel.38

In this paper, we do not deal with hierarchical mesh representations such as oc-39

tree data structures [20, 47]. They are advantageous for certain data access patterns,40

especially in the context of Adaptive Mesh Refinement (AMR) [20, 12], at the ex-41

pense of generality; DMPlex supports, for instance, arbitrary mesh partitions and42

extraction of arbitrary subsets of cells (or facets) as submeshes: features which are43

∗Submitted to the editors on April 18, 2020.
†ETH Zurich, Switzerland (vaclav.hapla@erdw.ethz.ch, andreas.fichtner@erdw.ethz.ch).
‡University at Buffalo, NY (knepley@buffalo.edu).

1

This manuscript is for review purposes only.

mailto:vaclav.hapla@erdw.ethz.ch
mailto:andreas.fichtner@erdw.ethz.ch
mailto:knepley@buffalo.edu

2 V. HAPLA ET AL.

typically missing from hierarchical meshing frameworks [26]. Note that PETSc offers44

the DMForest wrapper of p4est [13, 25, 46], and conversion between DMPlex and45

DMForest [26].46

We demonstrate the efficiency and potential of our new DMPlex functionality on47

a real world application in the context of the full waveform modeling. The spectral-48

element method on unstructured conforming hexahedral meshes has become the de-49

facto standard for global-scale simulations of seismic waves [1, 18, 19, 44]. We apply50

it to simulate full 3D high-frequency wave propagation on Mars, based on data from51

the NASA InSight mission [6]. This consists in solving a coupled system of the elastic52

and acoustic wave equations. To accurately model these data in the desired frequency53

band, large scale simulations are required. In the presented simulation, more than54

100 million 4-th order hexahedral mesh elements were used.55

Before the developments presented in this manuscript, with mesh reading and56

topological interpolation being serial, mesh sizes were limited by the single node57

memory. On our testing platform, Piz Daint supercomputer at the Swiss National58

Supercomputing Center, the mesh size limit was approximately 16 million elements,59

rendering such simulations impossible.60

The manuscript is organized as follows. First, we describe abstractions for mesh61

data management of unstructured meshes in high-order finite-element discretizations62

using PETSc DMPlex. Then we explain our new strategies for the parallel simulation63

startup (mesh reading, topological interpolation and redistribution) on distributed64

memory HPC architectures. We continue with a brief introduction of the spectral-65

element method and its implementation which uses DMPlex. Next, waveform mod-66

eling benchmarks demonstrate scalable performance of the parallel startup for up to67

256 million hexahedral mesh elements, running on up to 1024 Cray XC50 nodes of Piz68

Daint. Finally, the mentioned Mars seismic wave propagation simulation is presented69

as a practical application.70

2. DMPlex. PETSc [3, 4, 5, 10] is a well-known library for numerical meth-71

ods, used by the scientific and engineering computing communities. It provides par-72

allel data management, structured and unstructured meshes, linear and nonlinear73

algebraic solvers and preconditioners, time integrators, optimization algorithms and74

others. Many of these methods (such as geometric multigrid and domain decomposi-75

tion solvers) can take advantage of the geometric/topological setting of a discretized76

problem, i.e., mesh information.77

DMPlex is a PETSc module for generic unstructured mesh storage and operations.78

It decouples user applications from the implementation details of common mesh-79

related utility tasks, such as file I/O and mesh partitioning. It represents the mesh80

topology in a flexible way, providing topological connectivity of mesh entities at all81

codimensions (vertices, edges, faces and cells), crucial for high-order finite-element82

method (FEM) simulations, and provides a wide range of common mesh management83

functionalities.84

PETSc’s interface for serving mesh data to numerical algorithms is the DM object.85

PETSc has several DM implementations. The native implementations of structured86

grids (DMDA), staggered grids DMStag, and unstructured meshes (DMPlex) have the87

most complete coverage of the DM API, and are developed most actively. Besides88

these two, PETSc has several DM implementations that wrap external libraries, such89

as DMMOAB for MOAB [48] and DMFOREST for p4est [13]. Here we will focus on DMPlex90

which proved to be most relevant for the discussed waveform modeling applications.91

DMPlex encapsulates the topology of unstructured grids and provides a wide range92

This manuscript is for review purposes only.

FULLY PARALLEL MESH I/O USING PETSC DMPLEX 3

of common mesh management functionalities to application programmers [45, 36, 35,93

7]. It provides a domain topology abstraction that decouples user applications from94

the implementation details of common mesh-related utility tasks, such as file I/O,95

mesh partitioning, and parallel load balancing [33]. It aims to increase extensibility96

and interoperability between scientific applications through librarization [5, 10].97

2.1. Mesh representation and basic operations. DMPlex uses an abstract98

representation of the unstructured mesh topology, where the connectivity of topo-99

logical entities (vertices, edges, faces, cells) is stored as a directed acyclic graph100

(DAG) [38, 32], also refered to as a Hasse Diagram in topology. Let us call this101

representation a plex and refer to the topological mesh entities as points. The plex102

is constructed of clearly defined layers (strata) that enable access to mesh entities103

by their topological codimension without explicit reference to the overall topological104

dimension d of the mesh, see Figure 1(b). Note also that d can be reconstructed in105

linear time from an unlabeled plex using Depth First Search. Let us denote a set of106

points at the same stratum as Stratum(h), where h is an integer height, h ≤ d + 1.107

All points in the plex share a single consecutive numbering, emphasizing that108

each point is treated equally no matter its shape or dimension, and allowing DMPlex109

to store the graph connectivity in a single array where dimensional layers are defined110

as consecutively numbered subranges. The directional connectivity of the plex is111

defined by the covering relation called cone, denoted here as C(p), yielding a set of all112

points directly connected to p in the next codimension. The transitive closure of the113

cone operation shall be denoted by C+(p). Both C(p) and C+(p) are illustrated in114

Figure 1(d). The dual operation called support and denoted S(p), and its transitive115

closure S+(p) are shown in Figure 1(e).116

In addition to the abstract topology data, PETSc provides two utility objects to117

describe the parallel data layout: a PetscSection object maps the graph-based topol-118

ogy information to discretized solution data through an offset mapping, and a star for-119

est (PetscSF, see subsection 3.2.1) object holds a one-sided description of shared data120

in parallel. These data layout mappings allow DMPlex to manage distributed solution121

data by automating the preallocation of distributed vector and matrix data structures122

and performing halo data exchanges. Moreover, by storing grid topology alongside123

discretized solution data, DMPlex is able to provide the mappings required for sophis-124

ticated preconditioning algorithms, such as geometric multigrid methods [11, 17] and125

multiblock, or “fieldsplit” preconditioning for multiphysics problems [9].126

2.2. Topological interpolation. For high order methods we are interested in,127

we need mesh entities of all codimensions (vertices, edges, faces, cells) be present128

in the memory mesh representation. However, usual mesh generation algorithms or129

mesh file readers result in a mesh with cells and vertices only, while edges and faces130

need to be inferred at runtime. This is accomplished by the so-called topological131

interpolation.132

Topological Interpolation is the process of constructing intermediate levels of the133

ranked poset describing a mesh, given information at bracketing levels. For example,134

if we receive triangles and their covering vertices, as in Figure 2, interpolation will135

construct edges. The first algorithm for interpolation on the Hasse diagram was136

published in [38], but this version is only appropriate for simplices, ignores orientation137

of the mesh points, and did not give a complexity bound.138

The interpolation procedure selects a given point stratum as cells, for which it will139

construct facets. It iterates over the cells, whose cones are an oriented set of vertices.140

The two essential operations are to extract an oriented facet from lower dimensional141

This manuscript is for review purposes only.

4 V. HAPLA ET AL.

3

2 5

4

6

7

8

9

10

0 1

(a) original 2D mesh

0 1

2 3 4 5

6 7 8 9 10

(b) plex representation of (a),
having 3 strata

h = 2: vertices

h = 1: edges

h = 0: faces

(c) coloring of
Stratum(h), h = 0, 1, 2,
throughout the paper

0 1

2 3 4 5

6 7 8 9 10

𝐶(0)

𝐶%(0)

(d) cone C(0),
its transitive closure C+(0)

0 1

2 3 4 5

6 7 8 9 10
𝑆(5)

𝑆%(5)

(e) support S(5),
its transitive closure S+(5)

Fig. 1: DMPlex mesh representation and basic relations. A 1D mesh would have 2
strata: h = 0 edges, h = 1 vertices. A 3D mesh would have 4 strata: h = 0 cells,
h = 1 faces, h = 2 edges, h = 3 vertices. Note we can also refer to the h = 1 entities
commonly, in a dimension-independent way, as facets, and h = 0 as cells. The entities
at h = d, where d is the topological dimension, are always vertices.

points, and then attach it to a cell with the correct orientation. Orientation of mesh142

points is detailed in subsection 2.3. In order to enumerate the facets for a given143

cell type, we have DMPlexGetRawFaces_Internal() which returns an oriented list of144

vertices for each facet of the input cell.145

An initial iteration over cells constructs all facets, and enters them into a hash146

table, where the hash key is the sorted list of vertices in each face. We need one pass147

for each type of face. Once the hash table is constructed, we know the number of148

new facets to be inserted, and can allocate a new plex. The new plex is identical to149

the old, except that it has a new face stratum, and the cone sizes of cells need to be150

calculated anew. For example, hexahderal cells have 8 vertices, but 6 facets, so that151

cone size would change from 8 to 6.152

A second iteration over cells inserts the facets. We clear the hash table and repeat153

the face extraction above. If a face is missing from the table, we insert it into the table,154

record its cone, and also insert it into the cell cone with default orientation. If instead155

it is present in the table, we insert it into the cell cone with orientation computed from156

comparing the face cone with that returned from DMPlexGetRawFaces_Internal().157

Again, we need one pass for each face type.158

The complexity to interpolate a given stratum is inO(NCNFNT), where NC is the159

This manuscript is for review purposes only.

FULLY PARALLEL MESH I/O USING PETSC DMPLEX 5

3

2 5

4

0 1

(a) original mesh

3

2 5

4

6

7

8

9

10

0 1

(b) mesh (a) interpolated

0 1

2 3 4 5

(c) plex representation of (a)

0 1

2 3 4 5

6 7 8 9 10

(d) plex representation of (b)

Fig. 2: Sequential topological interpolation: original mesh and interpolated mesh in
classical and plex representation.

number of cells, NF is the maximum number of faces per cell, and NT is the number160

of used face types. However, NF and NT are obviously constant, so O(NCNFNT)161

= O(NC). The O-complexity remains the same even if we sum all strata because162

the size of (number of points in) stratum h = k + 1 is a certain multiple of the size163

of stratum h = k for any feasible height k. We can conclude that the complexity is164

linear with respect to the mesh size.165

2.3. Orienting edges and faces. Let us focus on two particular points in166

the interpolated mesh in Figure 2(b): cell 0, and edge 7 ∈ C(0). Their cones are167

C(0) = {6, 7, 8} and C(7) = {3, 4}, respectively. We have so far spoken about which168

points form C(p) for given p. However, the orientation of p is also important; for169

instance, to have a well-defined direction of an outer normal, or to assign field values170

correctly during simulation. The orientation of p is represented as the order of points171

in C(p). Hence, e.g. C(0) is rather a tuple, C(0) = (6, 7, 8). This is how the array172

implementing C(0) is stored. Let us from now denote by C(p, c) the c-th point in this173

tuple, c = 0, 1, . . . , n− 1, where n = size(C(p)).174

For consistency, the orientation of points in plex should be in line with the ori-175

entation of their supporting points. There is never a problem for the lowermost and176

uppermost stratum; cells have no supporting points, and vertices have no orientation.177

However, for the intermediate strata (i.e. edges and faces computed by interpolation),178

we can get a conflicting situation as depicted in Figure 3. Edge 7 points against the179

direction of cell 1 but if we flip it, it will point against the direction of cell 0. Thus180

we need a mechanism to allow for this.181

In general, suppose point p ∈ Stratum(0), its cone point q = C(p, c) ∈ C(p) ⊂182

Stratum(1), and C(q) ⊂ Stratum(2). For example, in Figures 3(b) and 3(d), p = 1,183

c = 0, q = 7, C(q) = (3, 4). To compensate the given (stored) order of C(q), additional184

This manuscript is for review purposes only.

6 V. HAPLA ET AL.

information about the proper interpretation order needs to be defined. This informa-185

tion must be attached to the edge (p, q) in the DAG because it varies for different186

choices of p even for the same q. Naturally, the order is not completely arbitrary; it187

can be described by (1) the starting point index S(p, c) ≥ 0 in 0-based local numbering188

with respect to q, and (2) the direction D(p, c) ∈ {−1, 1} (reverse/forward). These189

two can be represented by a single signed integer O(p, c): S(p, c) by its magnitude,190

and D(p, c) by its sign. Since the sign is undefined for 0, the negative values are191

shifted by -1. To summarize,192

(2.1) O(p, c) =

{
S(p, c), D(p, c) = 1,

−S(p, c)− 1, D(p, c) = −1,
193

and the other way around,194

D(p, c) =

{
1, O(p, c) ≥ 0,

−1, O(p, c) < 0,
(2.2)195

S(p, c) =

{
O(p, c), O(p, c) ≥ 0,

−O(p, c)− 1, O(p, c) < 0.
(2.3)196

197

Note that for C(p, c) being an edge, flipping the orientation of the edge implies chang-198

ing the starting point, so O(p, c) ∈ {0,−2} only. We can also define the whole tuple199

of orientations for point p,200

(2.4) O(p) = (O(p, 0), . . . , O(p, n− 1)) ,201

where n = size(C(p)). This O(p) is attached to every plex point p in the same way as202

C(p). We note that O(p) is just a numbering for the elements of the dihedral group203

for a given face.204

3. Parallel simulation startup. Let us call startup phase all steps necessary205

to load the mesh from disk storage and prepare it for use in the simulation time206

loop. It consists of the following steps: (1) raw data loading, (2) plex construction,207

(3) topological interpolation, (4) distribution.208

Before the developments of this paper, these steps were serial and only the last209

step, a one-to-all distribution using a serial partitioner such as METIS [28, 30], re-210

sulted in the distributed mesh. This approach inevitably led to the upper limit on211

the mesh size due to the memory constraints of a single node of a cluster. There-212

fore we developed a new, completely parallel startup phase where all four steps are213

done in parallel right from the beginning. This parallel startup phase is schematically214

depicted in Figure 4. We further show that even for meshes that fit into memory,215

parallel startup can bring significant time and energy saving. Let us describe these216

stages more in detail in the following subsections.217

3.1. Raw data loading. This stage forms the first part of our mesh reader218

implementation, and consists in reading distributed raw topology and geometry data219

by generic index set and vector readers, dominated by low level I/O operations.220

3.1.1. HDF5. Hierarchical Data Format 5 (HDF5) [22] is a file format and221

library, designed to store and organize large amounts of N-dimensional array data. It is222

currently supported by the HDF Group, a not-for-profit corporation whose mission is223

to ensure continued development of HDF5 technologies and the continued accessibility224

of data stored in HDF.225

This manuscript is for review purposes only.

FULLY PARALLEL MESH I/O USING PETSC DMPLEX 7

3

2 5

4

6

7

8

9

10

10

(a) edge 7 in cone of face 0,
C(0, 1) = 7

3

2 5

4

6

7

8

9

10

10

(b) edge 7 in cone of face 1,
C(1, 0) = 7

0 1

2 3 4 5

6 7 8 9 10

0
1

0 1
2

(c) the starting point of edge 7 within face 0
is 3; C(C(0, 1), S(0, 1)) = C(7, 0) = 3,

O(0, 1) = 0

0 1

2 3 4 5

6 7 8 9 10

0
1

0 1 2

(d) the starting point of edge 7 within face 1
is 4; C(C(1, 0), S(1, 0)) = C(7, 1) = 4,

O(1, 0) = −2

Fig. 3: Mesh from Figures 2(b) and 2(d) with cone points order and orientation. We
focus here on the edge 7 within the cones of faces 0 and 1.

Topological interpolation:
generate

edges and faces
from vertices and cells

on-the-fly in parallel

Repartitioning:
minimize partition interface

using parallel partitioner
(optional)

Application
(Salvus)

FEM (SEM)
parallel

simulation

Load naively distributed DMPlex
DMLoad(DM, PetscViewer) with
• DMType=DMPLEX
• PetscViewerType=PETSCVIEWERHDF5
• PetscViewerFormat=PETSC_VIEWER_HDF5_XDMF

Distributed plex construction

Raw data loading

Parallel HDF5

MPI-IO

Lustre parallel filesystem

Fig. 4: Schematic diagram of the parallel simulation startup. Grey stages are within
PETSc scope.

This manuscript is for review purposes only.

8 V. HAPLA ET AL.

HDF5’s file structure includes two major types of objects: (1) datasets, multidi-226

mensional arrays of a homogeneous type; (2) groups, container structures which can227

hold datasets and other groups. Every HDF5 file has a root group /, under which one228

can add additional groups and datasets. This results in a hierarchical, filesystem-like229

data format. Resources in an HDF5 file can be accessed using the POSIX-like syntax230

/group1/group2/dataset. Metadata is stored in the form of user-defined, named231

attributes attached to groups and datasets [22].232

HDF5 transparently handles how all the objects map to the actual bytes in the233

file. HDF5 actually provides an abstracted filesystem-within-a-file that is portable234

to any system with the HDF5 library installed, regardless of the underlying stor-235

age type, filesystem, or endianess. It does automatic conversions between storage236

datatypes (dictated by the data file) and runtime memory datatypes (dictated by the237

application) [22].238

HDF5 supports parallel shared-file I/O using MPI-IO [40] capabilities which in239

turn provide scalable access to the underlying parallel filesystem such as Lustre [42].240

By default, HDF5 provides uniform access to all parts of the file for all processes241

of the communicator (passed to HDF5 using H5Pset_fapl_mpio()). However, since242

PETSc uses data parallelism, it would be very inefficient to load all data to all pro-243

cesses and then distribute them again. The most important functionality in this244

regard are hyperslabs which can read or write to a portion of a dataset. A hyperslab245

can be a logically contiguous collection of points in a dataspace, or a regular pat-246

tern of points or blocks in a dataspace. The hyperslab can select a separate chunk247

of the file for each process individually by means of a rank-dependent offset. The248

H5Sselect_hyperslab() function is used for this purpose [23].249

3.1.2. XDMF. XDMF (eXtensible Data Model and Format) [50] is a mesh250

data file format. It distinguishes the metadata (light data) and the values themselves251

(heavy data). Light data and heavy data are stored using XML and HDF5, respec-252

tively. The data format is stored redundantly in both XML and HDF5. There are253

two crucial datasets describing the mesh in a minimal sufficient way: (1) <Geometry>,254

a 2D dataset where each row contains coordinates of a vertex (2 or 3 scalars based255

on dimensionality); (2) <Topology>, a 2D dataset where each row represents a cell,256

listing indices of all incident vertices. Each vertex index in <Topology> corresponds257

to a row index within <Geometry>). Both these datasets can be defined within the258

XML file as plain text, or refer to a dataset path within the standalone HDF5 file (e.g.259

MyData.h5:/geometry/vertices). Both ways can be mixed within the same XDMF260

file, and are both supported by widely used visualization programs such as ParaView,261

VisIt and EnSight. Nevertheless, the former way is advisable only for small datasets.262

We always store all data in the HDF5 file and use the XDMF file only as a descriptor.263

We will refer to this as HDF5/XDMF format.264

3.1.3. PETSc data loading. PETSc contains a class, called PetscViewer, des-265

ignated for all I/O of any PetscObject such as a vector, matrix, linear solver. The266

source/destination is dictated by the type (PetscViewerType) such as ascii, binary,267

hdf5, socket and others. A more fine-grained control of how the object is read/viewed268

is accomplished with the viewer format (PetscViewerFormat); e.g. ascii_info and269

ascii_info_detail print plain text information about the object with a different270

level of verbosity.271

Most relevant for this work is that DM supports both reading and writing with272

PetscViewer, using DMLoad(DM,PetscViewer) and DMView(DM,PetscViewer), re-273

spectively. Recently, we have implemented a new PetscViewerFormat hdf5_xdmf274

This manuscript is for review purposes only.

FULLY PARALLEL MESH I/O USING PETSC DMPLEX 9

for the PetscViewerType hdf5 to enable parallel reading and writing of unstruc-275

tured meshes represented in memory as plex (DM with DMType plex) and stored in276

an HDF5 file with topology and geometry data compatible with XDMF (see subsec-277

tions 3.1.1 and 3.1.2). HDF5/XDMF has become the first widely used mesh format278

supported by PETSc which is both readable and writable in parallel.279

As we are here interested mainly in the simulation startup phase, we will now280

focus only on DMLoad(), namely its implementation for the combination of DMType,281

PetscViewerType and PetscViewerFormat described above. This implementation282

relies on lower level readers for integer vectors (index sets, IS) and scalar vectors (Vec):283

ISLoad() and VecLoad(). They both read datasets from given paths within the284

HDF5 file (see subsection 3.1.1) using the H5Dread() routine but with different HDF5285

datatypes (H5T_NATIVE_INT and H5T_NATIVE_DOUBLE, respectively). They make use286

of a hyperslab (see subsection 3.1.1) reflecting the given parallel layout (PetscLayout)287

to divide the global dataset into local chunks along the first dimension. The layout is288

either specified by user, or calculated automatically so that the chunks’ lengths differ289

by 1 at most. The second dimension of the dataset is interpreted as a block size,290

i.e., the resulting vector is divided into equally sized shorter blocks. Blocks can have291

various contextual meanings such as DOFs of the same element.292

Within DMLoad(), VecLoad() loads the geometry information (<Geometry> in293

subsection 3.1.2) into a Vec, whose blocks and entries represent vertices and their294

coordinates, respectively. The size of all blocks is the same and corresponds to the295

spatial dimension of the mesh, and global indices of the blocks form an implicit global296

vertex numbering.297

ISLoad() then loads the cell-vertex topology information which is represented in298

XDMF by <Topology> (subsection 3.1.2). Each IS block corresponds to an element,299

and each single entry refers to one of this element’s vertices using the implicit global300

vertex numbering. Global indices of the blocks form an implicit global cell numbering.301

When we read such representation in parallel, all processes load approximately302

equally sized, contiguously numbered, disjoint portions of vertices and cells in a single303

parallel I/O operation. Note that the global vertex and cell numberings are not304

affected by parallel loading on any number of processes.305

3.2. Distributed plex construction. The raw topology and geometry data306

loaded in subsection 3.1 need to be transformed into a plex representation. This forms307

the second part of DMLoad(), and is realized by a call to a communication-bounded308

operation described in detail in subsection 3.2.2. The resulting DMPlex instance is309

naively distributed with vertices and cells only. Let us first describe a parallel star310

forest graph implementation, which allows gluing together serial plexes across different311

processes.312

3.2.1. Star Forest. The Star Forest (SF, in PETSc called PetscSF [4, 8]) is a313

forest of star graphs. The root of each star graph corresponds to something owned314

by a process, such as a mesh point or solution degree-of-freedom (DOF). The leaves315

of each star graph are the shared versions of that point or DOF on other processes,316

or what is often called ghost points. In particular, the SF is a map from local points317

p to remote points (r, q), where r is the remote rank and q is the local number for318

the point on process r. Since the SF only deals with local numberings, not global319

numberings, parallel mesh modification is much easier. Moreover, SF accepts data320

buffers with arbitrary MPI types for its communication routines.321

SF supports a broadcast operation from roots to leaves, as well as a reduction322

from leaves to roots. In addition, it supports gather and scatter operations over the323

This manuscript is for review purposes only.

10 V. HAPLA ET AL.

[0] [1]

20

1

3

1 0

2

3

(a) mesh from Figure 2(a)
after distribution

[0] [1]

20

1

3

1 0

2

3

4

5

6

4

6

5

(b) mesh from (a)
after interpolation

0 0
[0] [1]

1 2 3 2 31

(c) plex representation of (a)

0 0
[0] [1]

1 2 3 2 31

4 5 6 4 5 6

(d) plex representation of (b)

Fig. 5: Parallel DMPlex. Grey dotted arrows denote sfPoint.

roots, inversion of the SF to get two-sided information, and a fetch-and-op atomic324

update. Plex can build a hierarchy of SF objects describing the overlap of partitions,325

point set, topology, data layout, and Jacobian information [33].326

3.2.2. Construction of distributed plex from raw data. Once the raw327

topology and geometry data is loaded as described in subsection 3.1.3, vertex coordi-328

nates are initially distributed independently of the cells, with process p getting some329

N
(p)
V × d vertex coordinates. For example, if we have 20 vertices in 3D and 4 pro-330

cesses, each process might get 15 doubles, namely the coordinates for 5 contiguously331

numbered vertices, regardless of the cells it has been assigned.332

In order to construct a parallel plex from these vertex and cell portions, we employ333

DMPlexCreateFromCellListParallel(). From the cell-vertex topology information,334

it determines how many unique local vertices a process owns using a hash table of the335

vertex numbers. The cone information for a local plex is constructed by translating336

the global vertex numbers to local vertex numbers, using the index of each local337

vertex in the hash table. Once we have the local cone information, we symmetrize338

this to get support information (DMPlexSymmetrize()), and construct strata labels339

(DMPlexStratify()). Both these operations have linear complexity.340

Given this hash table of local vertices and the global division, we construct an341

SF mapping the initial vertex division to the local division, sfVert. With this SF,342

we broadcast coordinates from the initial distribution roots to the local distribution343

leaves, determined by the mesh topology. In addition, we can use the initial SF to344

construct an SF describing the sharing of local vertices between processes, sfPoint.345

We first construct an array which holds (r, l) for each local vertex. Then we reduce this346

array to the roots using sfVert, taking the maximum over ranks. This information347

This manuscript is for review purposes only.

FULLY PARALLEL MESH I/O USING PETSC DMPLEX 11

is then broadcast back to the leaves, giving a unique owner for each vertex, allowing348

us to construct sfPoint.349

The resulting distributed plex object has partition-wise complete topological in-350

formation. Each partition is a serial plex object which includes all incident vertices351

of its elements. These serial plex objects are combined together by the parallel SF352

object sfPoint as shown in Figure 5.353

3.3. Parallel topological interpolation. Since the steps above lead to a dis-354

tributed plex, we need a parallel version of the topological interpolation (subsec-355

tion 2.2). This step appeared to be the most challenging one. It consists of the serial356

interpolation (in-memory computations) and a small communication.357

The first step consists in applying the sequential topological interpolation (subsec-358

tion 2.2) and cone orientation (subsection 2.3) on each rank independently. Then we359

must alter the PetscSF structure which identifies mesh points which are owned by dif-360

ferent processes, or leaf points. The SF structure is described in subsection 3.2.1. We361

mark all leaf points which are adjacent to another ghost point as candidates. These362

candidate points are then gathered to root point owners (using PetscSFBcast()). For363

each candidate, the root checks for each point in the cone that either it owns that364

point in the SF or it is a local point. If so, it claims ownership. These claims are365

again broadcast, allowing a new SF to be created incorporating the new edges and366

faces.367

The cone orientation has been done on each rank independently, and hence it is368

only partition-wise correct. However, we have not yet handled the following assump-369

tion: If interface edges/faces owned by different ranks represent the same geometrical370

entity, i.e., they are connected by pointSF like edges [0]5 and [1]6 in Figure 6, they371

must have a conforming order of cone points ([r] means ownership by rank r). This372

requirement can be written more rigorously as an implication373

p0 → p1

C(p0) = (q0,0, . . . , q0,n−1)

C(p1) = (q1,0, . . . , q1,n−1)

⇒

q0,0 → q1,0

· · ·
q0,n−1 → q1,n−1,

(3.1)374

375

using notation from subsection 2.3 and relation→ meaning a connection via pointSF.376

In Figures 6(a) and 6(c) this assumption is violated for the edges [0]5 and [1]6.377

They are flipped to each other, more rigorously speaking pointSF connects the edge378

and its incident vertices379

[0]5→ [1]6, [0]2→ [1]1, [0]3→ [1]3,380381

but the order of cone points does not conform,382

[0]2 = C([0]5, 0) 6→ C([1]6, 0) = [1]3,383

[0]3 = C([0]5, 1) 6→ C([1]6, 1) = [1]1.384385

This would lead to incorrect PDE solution if the used discretization method makes386

use of the edge.387

In order to satisfy this requirement, and additional synchronization of the interface388

cones must be carried out. We start by synchronization of the interface cone point389

numbering. Let us remind that pointSF is a one-sided structure, so only the origins390

of the arrows can be found directly.391

Let us assume rank r0, its edge/face [r0]p, and that there is a pointSF ar-392

row pointing from [r0]p to some [r1]p If we detect an arrow directed from the cone393

This manuscript is for review purposes only.

12 V. HAPLA ET AL.

2

4

5

0

1

3

1

4

5

6

0 6

[0] [1]

2

3

(a) mesh from Figure 5(b)
with non-conforming cone orientation

2

4

5

0

1

3

1

4

5

6

0 6

[0] [1]

2

3

(b) mesh from Figure 5(b)
with conforming cone orientation

0 0
[0] [1]

1 2 3 2 31

4 5 6 4 5 6

0 1

0 1 2 1 2 0

1 0

(c) plex representation of (a);
O([1]0, 0) = 0

0 0
[0] [1]

1 2 3 2 31

4 5 6 4 5 6

0 1

0 1 2 1 2 0

0 1

(d) plex representation of (b);
O([1]0, 0) = −2

Fig. 6: Parallel DMPlex with cone points order and orientation.

point C([r0]p, c) → [r1]qc, we set root([r0]p, c) = (r1, qc), otherwise root([r0]p, c) =394

(r0, C([r0]p, c)). This root([r0]p, c) is sent to r1 using PetscSFBcastBegin/End(),395

and stored at the destination rank as leaf([r1]p, c). This is done for each rank, each396

point in Stratum(h), h > 0, and each c = 0, 1.397

Now from the rank r1 view, it has for c = 0, 1 point [r1]p, root([r1]p, c) and398

the received leaf([r1]p, c). If root([r1]p, c) = leaf([r1]p, c) does not hold for both399

c = 0, 1, we must rotate and/or flip the cone so that this condition gets satisfied. In400

that case we must also update O(s) for all s ∈ S([r1]p) accordingly to compensate the401

change of cone order.402

We can see that the orientation synchronization heavily relies on the correct403

pointSF. This is why it must be processed first.404

3.3.1. Redistribution. We now have a correct distributed DMPlex instance rep-405

resenting all codimensions. However, the distribution is naive; it is load balanced with406

respect to the size of partitions but the partition shape is not optimized. It can op-407

tionally be further improved using a parallel partitioner to minimize the partition408

interfaces and hence reduce the halo communication in the subsequent application409

computation. PETSc offers interfaces to ParMETIS [29, 30, 31] and PT-Scotch [15].410

For this paper, we always used ParMETIS. We will not discuss this stage further be-411

cause it is not critically needed to overcome the single node memory limit (our main412

motivation), its cost-effectiveness depends on the application, and it was implemented413

in PETSc beforehand.414

4. Seismic wave propagation modeling. As a representative use case and415

benchmarking tool for the new parallel simulation startup phase described above in416

This manuscript is for review purposes only.

FULLY PARALLEL MESH I/O USING PETSC DMPLEX 13

section 3, we use an implementation of the spectral-element method (SEM).417

Although originally developed for applications in fluid dynamics [43], continuous-418

Galerkin SEM on hexahedral elements has emerged as the de-facto standard for419

global-scale seismic wave simulations [44, 18, 19]. SEM is a high-order finite-element420

method with very low dispersion and dissipation errors [18]. The choice of the Gauss-421

Lobatto-Legendre collocation points for the interpolating Lagrange polynomials nat-422

urally yields a diagonal mass matrix, which enables the use of explicit time stepping423

schemes. A second-order Newmark time-stepping additionally allows us to compute424

coupling terms along any solid-fluid interfaces without the need to solve a linear sys-425

tem [41]. Furthermore, the tensorized structure of the finite element basis on hexahe-426

dral elements allows for efficient computations of internal forces. These element-wise427

operations can be formulated as dense matrix–matrix products, making the method428

suitable for the current generation of SIMD computing architectures.429

Salvus [1] contains a flexible implementation of SEM, separating the wave prop-430

agation physics, the spatial discretization and finite-element shape mappings into431

distinct and functionally orthogonal components. It uses modern C++ features to432

ensure that and this does not affect runtime performance. It is parallelized using433

MPI and GPU-accelerated with CUDA. PETSc DMPlex (section 2) is used for mesh434

management so the developments of this paper can be directly applied.435

5. Performance results. This section presents scalability tests of the new par-436

allel simulation startup phase (section 3) used within seismic wave propagation mod-437

eling (section 4).438

5.1. Hardware. All benchmarks were run at Piz Daint, the flagship system of439

the Swiss National Supercomputing Centre (CSCS). Piz Daint consists of 5704 12-core440

Cray XC50 nodes with GPU accelerators, and 1813 36-core Cray XC40 nodes without441

accelerators. All benchmarks presented in this paper ran on the XC50 nodes. Each442

of them is equipped with one 12-core Intel Xeon E5-2690 v3 (Haswell) processor,443

one NVIDIA Tesla P100 16GB GPGPU accelerator and 64 GB RAM. Piz Daint444

has 8.8 PB shared scratch storage with the peak performance of 112 GiB/s. It is445

implemented using Cray Sonexion 3000 [16] scale-out storage system equipped with446

the Lustre parallel file system [42], 40 object storage targets (OSTs) and 2 metadata447

servers (MDSs).448

5.2. Middleware (Lustre, MPI-IO, HDF5) settings. We always used the449

single shared file approach, i.e., every process reads its disjoint chunk from the common450

file. There are many good reasons for such choice, such as reduction of metadata451

accesses, but the main reason is the flexibility in number of processes using the same452

file, unlike the file-per-process approach. As for Lustre file system settings, we used453

stripe count of 40 (maximum on Piz Daint) and stripe size of 16 MB. Regarding454

HDF5/MPI-IO, we always non-collective reading. We tested also collective reading455

with various numbers of aggregators (MPI-IO hint cb_nodes) but never saw any456

significant benefit. The raw file reading always took less than 2 seconds; we cannot457

exclude that some scenarios with much bigger files and/or node counts could require458

more deliberate settings but such scenarios are irrelevant within the context of this459

paper.460

5.3. Cube benchmark. Our performance benchmark consists in elastic wave461

propagation in homogeneous isotropic media from a point source in a cubic geometry.462

The cube is discretized into equally sized hexahedral cells, handled as an unstructured463

mesh. Each cell hosts a 4-th order spectral element with 125 spatial DOFs. Since464

This manuscript is for review purposes only.

14 V. HAPLA ET AL.

a 3-D vector equation was solved, this resulted in 1125 field variables per element,465

together representing acceleration, velocity, and displacement. Figure 7 illustrates the466

solution of the benchmark problem at two different timesteps. Table 1 summarizes467

dimensions of the stored topology and geometry datasets and resulting file sizes for468

different numbers of elements in x-direction (NEX). Our sequence of NEX was chosen469

so that the total number of elements (NE) of each successive mesh is approximately470

doubled, starting at 8 million.471

We present performance of the new parallel startup phase in several graphs.472

Graphs in Figure 8 present strong scalability for the mesh size of 16 million elements,473

and serve mainly for comparison of the new parallel startup with the original serial474

startup. 16 million is an upper bound for the mesh size for the serial startup imposed475

by the memory of a single Piz Daint Cray XC50 node. Overcoming this limit is for476

us the most important achievement of the startup phase parallelization. However,477

obviously the performance improvement is very significant as well. At 1024 nodes,478

the serial startup takes an amount of wall time equivalent to 202’886 timesteps in the479

subsequent time loop, whereas the parallel startup takes only 1827 timesteps, which480

means 111x speedup. The number of timesteps in production simulations varies, but481

generally 30’000 or more are required.482

Graphs in Figure 9 are similar to Figure 8 but show the only the parallel startup483

scalability for various mesh sizes, so that the displayed time can be limited to 70484

seconds. These graph gather all stages in a single graph and different mesh sizes485

are presented separately. By contrast, graphs in Figure 10 show strong and weak486

scalability for each stage separately, gathering all mesh sizes in a single graph. We can487

see that the topological interpolation scales almost perfectly and becomes insignificant488

for high number of nodes even for very large meshes. The other stages do not scale489

that well; however, their absolute wall times are rather small for the mesh sizes and490

node counts of interest. The scalability of the significant redistribution stage breaks491

at about 256 nodes and the mesh size no more dictates the wall time. ParMetis492

was used with default settings; there might be some space for slight improvement by493

tuning its parameters but in general it is well known that current graph partitioners494

do not scale beyond 10’000 cores. We can hardly do anything about it apart from495

perhaps testing alternative approaches such as space-filling curves. There might be496

some space for improvement left for the distributed plex construction; nevertheless,497

from the stagnation between 256 and 1024 nodes for the largest mesh we conclude498

that such optimization is probably not worth the effort, at least for now.499

6. Application: seismicity on Mars. In late 2018, the NASA InSight mission500

[6] placed a highly sensitive seismometer [39] on Mars’ surface and recorded the first501

seismic signals ever observed on Mars [21]. The observation of seismic waves is a502

crucial source of information to investigate the interior structure and composition503

of Mars. However, as the data shows significant differences to seismic data from504

both Moon and Earth, numerical simulations of seismic wave propagation on Mars505

that account for topography as well as 3D scattering due to lateral variations of the506

material parameters are key to assist the interpretation of the observational data.507

Full waveform simulations are essential to constrain the planet’s structure using508

data in the frequency band recorded by the probe. The seismic response to marsquakes509

or asteroid impacts is governed by a coupled system of the elastic/acoustic wave510

equation, which models seismic waves propagating through Mars’ mantle and the511

liquid core, respectively. This can be simulated efficiently using the Spectral Element512

Method (SEM).513

This manuscript is for review purposes only.

FULLY PARALLEL MESH I/O USING PETSC DMPLEX 15

(a) t = 0.1 s (b) t = 0.15 s

Fig. 7: Cube benchmark with a moment-tensor type source located at the center of
the domain. Isotropic elastic material model without attenuation was applied. The
mesh size was 256M elements, and 512 Piz Daint nodes (6144 CPUs, 512 GPUs) were
used for the computation. The normalized magnitude of the velocity vector at time
t is visualized. We can see the P-wave propagating from the source in (a), while (b)
shows the S-wave and reflections of the P-wave from the cube boundary.

topology (int64) geometry (double)
NEX rows = NE = (NEX)3 columns rows columns file size (GB)

200 8’000’000 8 8’120’601 3 0.66
252 16’003’008 8 16’194’277 3 1.32
318 32’157’432 8 32’461’759 3 2.64
400 64’000’000 8 64’481’201 3 5.26
504 128’024’064 8 128’787’625 3 10.51
635 256’047’875 8 257’259’456 3 21.01

Table 1: Cube benchmark datafiles: number of elements in x-direction (NEX); total
number of elements (NE); topology (connectivity) and geometry (vertices) dataset
sizes; file sizes. Both topology (integer numbers) and geometry (real numbers) are
stored with 64-bit precision.

For the computation of the seismic response of Mars, we rely on Salvus’ imple-514

mentation of the SEM (section 4). Salvus’ internal mesher uses custom algorithms515

to generate fully unstructured conforming 3D hexahedral meshes [49], efficiently rep-516

resenting topography and the extreme crustal thickness variations of Mars (∼5–120517

km), see Figure 11. The solver then represents these meshes in memory using DMPlex518

(section 2).519

The CFL condition for Salvus’ explicit second-order Newmark time-stepping520

scheme, coupled with a required minimum number of points-per-wavelength in each521

This manuscript is for review purposes only.

16 V. HAPLA ET AL.

5'073 9'921 21'027 39'078
91'383

202'886

0

100

200

300

400

500

600

32 64 128 256 512 1024

(a) serial startup

51
66 120 219 714 1'827

0

100

200

300

400

500

600

32 64 128 256 512 1024

1000 timesteps

Redistribution

Topological interpolation

Distributed plex construction

Raw data loading

(b) parallel startup

Fig. 8: Cube benchmark. Strong scalability, serial/parallel startup, 16 mil-
lion mesh elements. The serial and parallel simulation startup phase are compared
with each other and 1000 steps of the Salvus time loop in terms of wall time. Approx-
imate wall time for any different number of timesteps can be obtained using simple
proportionality. The number of timesteps in production simulations varies, but gen-
erally 30’000 or more are required. The particular startup stages are described in
section 3. X-axis: number of Piz Daint nodes, each equipped with 12 cores and 1
GPU per node. Y-axis: wall time in seconds. Labels above bars: the number of
timesteps that take the same wall time as the startup phase. Order of colors in the
bars is the same as in the legend.

dimension, results in the computational complexity of a simulation scaling with fre-522

quency to the power of 4. When using 4-th order spectral elements, which is common523

for planetary-scale wave propagation, more than 6 grid points per shortest wave-524

length are needed to accurately resolve seismic waves [19]. As the quakes are small in525

magnitude and the noise level increases at low frequencies, large-scale simulations are526

required to reach the parameter regime of the observations, and the required number527

of spectral elements can easily reach hundreds of millions.528

Such mesh sizes necessitate the parallel simulation startup presented in section 3.529

Prior to these developments, the largest possible mesh size was limited by the available530

memory of a single Piz Daint node to approximately 16 million elements. Moreover,531

loading a mesh of such size took more than four minutes. With the parallel startup532

in hand, these limitations vanish.533

Figure 11(d) shows a snapshot of the surface displacement resulting from a sim-534

ulation of a hypothetical quake on Mars. Here, the discretized coupled elastic wave535

equation has approximately 124 million 4-th order spectral elements, and we compute536

100’455 timesteps representing a simulated time of 30 minutes. Each element has 125537

spatial DOFs, each hosting 9 dynamic field components (vector displacement, veloc-538

ity, and acceleration). These parameters lead to an unprecedented resolved period539

of 3.2 s. Using again all 12 cores per Piz Daint node as well as the attached Tesla540

P100 GPU, this simulation took approximately 2.4 hours of wall time on 256 Piz541

Daint nodes. From this total wall time, raw data loading took 0.9 s, distributed plex542

construction 4.5 s, topological interpolation 3.1 s and redistribution 2.3 s, i.e., the543

whole startup phase took less than 11 s.544

This manuscript is for review purposes only.

FULLY PARALLEL MESH I/O USING PETSC DMPLEX 17

61

87

158
408 1'069 2'259

0

10

20

30

40

50

60

70

32 64 128 256 512 1024

1000 timesteps

Redistribution

Topological interpolation

Distributed plex construction

Raw data loading

(a) 8 million elements

51

66

120
219

714 1'827

0

10

20

30

40

50

60

70

32 64 128 256 512 1024

(b) 16 million elements

63

102

214
480 1'143

0

10

20

30

40

50

60

70

64 128 256 512 1024

(c) 32 million elements

93

168

355
964

0

10

20

30

40

50

60

70

128 256 512 1024

(d) 64 million elements

139

242

628

0

10

20

30

40

50

60

70

256 512 1024

(e) 128 million elements

226

425

0

10

20

30

40

50

60

70

512 1024

(f) 256 million elements

Fig. 9: Cube benchmark. Strong scalability, parallel startup, various mesh
sizes. The parallel simulation startup phase is compared with 1000 steps of the Salvus
time loop in terms of wall time. Approximate wall time for any number of timesteps
can be obtained using simple proportionality. The number of timesteps in production
simulations varies, but generally 30’000 or more are required. The particular stages
are described in section 3. X-axis: number of Piz Daint nodes, each with 12 cores and
1 GPU. Y-axis: wall time in seconds. Labels above bars: the number of timesteps
that take the same wall time as the startup phase. Missing bars: out of memory
failure during the time loop caused by the memory limit of the GPUs. Order of
colors in the bars is the same as in the legend. Note: (a) is the same as Figure 8(b)
but with a re-scaled time axis.

This manuscript is for review purposes only.

18 V. HAPLA ET AL.

0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

128.00
256.00

0.0625 0.25 1 4 16 64 256 1024
16M 64M 256M 40k elem/core

(a) Raw data loading

0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

128.00
256.00

0.0625 0.25 1 4 16 64 256 1024
16M 64M 256M 40k elem/core

(b) Distributed plex construction

0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

128.00
256.00

0.0625 0.25 1 4 16 64 256 1024
8M 16M 32M 64M 128M 256M 40k elem/core

(c) Topological interpolation

0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

128.00
256.00

0.0625 0.25 1 4 16 64 256 1024
8M 16M 32M 64M 128M 256M 40k elem/core

(d) Redistribution

0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

128.00
256.00

0.0625 0.25 1 4 16 64 256 1024
8M 16M 32M 64M 128M 256M 40k elem/core

(e) Total startup

0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

128.00
256.00

0.0625 0.25 1 4 16 64 256 1024
8M 16M 32M 64M 128M 256M 40k elem/core

(f) 1000 Salvus timesteps

Fig. 10: Cube benchmark. Strong and weak scalability per stage. X-axis:
number of Piz Daint nodes (log2 scale), each with 12 cores and 1 GPU; 0.0625 = 1/12
means a single core (serial) run. Note that a single node run was not possible due
to the out-of-memory failure during the redistribution phase. Y-axis: wall time in
seconds (log2 scale). Solid lines show the strong scalability for different mesh sizes.
Dashed line shows the weak scalability for the mesh size of approximately 40’000
elements per core which is the upper bound for the Salvus timeloop imposed by limited
GPU memory. Order of line styles is the same in the plots and in the legends.

This manuscript is for review purposes only.

FULLY PARALLEL MESH I/O USING PETSC DMPLEX 19

(a) cubed sphere with fluid core (blue) and solid mantle (red)

(b) modeling 3D topography on the surface

(c) crustal thickness variations (red)

(d) snapshot of the seismic wavefield on the surface (result of the simulation)

Fig. 11: Anisotropic mesh refinements to accurately model the structure of Mars on
a conforming hexahedral mesh. The Mars texture map is based on NASA elevation
and imagery data.

This manuscript is for review purposes only.

20 V. HAPLA ET AL.

7. Conclusions. We presented algorithmic strategies for handling unstructured545

meshes for high-order finite-element simulations on complex domains. In particular,546

we demonstrated new capabilities for parallel mesh reading and topological interpo-547

lation in PETSc DMPlex, which enables a fully parallel workflow starting from the548

initial data file reading. This is beneficial not only for direct users of DMPlex but549

also users of software libraries and packages employing DMPlex, such as Firedrake550

[45], Salvus [1], or HPDDM [27].551

This work in a sense follows up [35] and addresses the main task stated in their552

Future Work: “Most crucially perhaps is the development of a fully parallel mesh input553

reader in PETSc in order to overcome the remaining sequential bottleneck during554

model initialisation.” Moreover, that paper mentions the “HDF5-based XDMF555

output format” but it has become an input format as well within this work. Hence,556

HDF5/XDMF has become the first widely used mesh format supported by PETSc557

which is both readable and writable in parallel.558

The implementation is agnostic to the type of finite elements in the mesh and559

completely decoupled from the governing equations, and is thus applicable in many560

scientific disciplines. In particular, our solution overcomes bottlenecks in numerical561

modeling of seismic wave propagation on Mars and shows excellent parallel scalability562

in large-scale simulations on more than 12’000 cores.563

Acknowledgments. All presented PETSc developments have been made pub-564

licly available in PETSc since its release 3.13.565

We gratefully acknowledge support from the Swiss National Supercomputing Cen-566

tre (CSCS) under projects s922 and s961; the Platform for Advanced Scientific Com-567

puting (PASC) under the project “Salvus”; the Swiss National Science Foundation568

(SNF) BRIDGE fellowship program under the grant agreement No. 175322; the Eu-569

ropean Research Council (ERC) from the EU’s Horizon 2020 programme under grant570

agreement No. 714069; and the ETH Zurich Postdoctoral Fellowship Program which571

in turn received funding from the EU’s Seventh Framework Programme under the572

grant agreement No. 608881.573

REFERENCES574

[1] M. Afanasiev, C. Boehm, M. van Driel, L. Krischer, M. Rietmann, D. A. May, M. G.575
Knepley, and A. Fichtner, Modular and flexible spectral-element waveform modelling in576
two and three dimensions, Geophysical Journal International, 216 (2019), pp. 1675–1692,577
https://doi.org/10.1093/gji/ggy469.578

[2] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev,579
Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, J. Dahm,580
D. Medina, and S. Zampini, Mfem: a modular finite element methods library, 2019,581
https://arxiv.org/abs/1911.09220.582

[3] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,583
A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley,584
D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith,585
S. Zampini, H. Zhang, and H. Zhang, PETSc web page, https://www.mcs.anl.gov/petsc586
(accessed 2020-03-30).587

[4] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dal-588
cin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Kne-589
pley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan,590
B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc users manual, Tech. Re-591
port ANL-95/11 - Revision 3.13, Argonne National Laboratory, 2020, https://www.mcs.592
anl.gov/petsc/petsc-current/docs/manual.pdf (accessed 2020-03-30).593

[5] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallel-594
ism in object oriented numerical software libraries, in Modern Software Tools in Scientific595

This manuscript is for review purposes only.

https://doi.org/10.1093/gji/ggy469
https://arxiv.org/abs/1911.09220
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
https://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
https://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf

FULLY PARALLEL MESH I/O USING PETSC DMPLEX 21

Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser Press, 1997,596
pp. 163–202, https://doi.org/10.1007/978-1-4612-1986-6 8.597

[6] W. B. Banerdt, S. E. Smrekar, D. Banfield, D. Giardini, M. Golombek, C. L. John-598
son, P. Lognonné, A. Spiga, T. Spohn, C. Perrin, S. C. Stähler, D. Antonangeli,599
S. Asmar, C. Beghein, N. Bowles, E. Bozdag, P. Chi, U. Christensen, J. Clinton,600
G. S. Collins, I. Daubar, V. Dehant, M. Drilleau, M. Fillingim, W. Folkner, R. F.601
Garcia, J. Garvin, J. Grant, M. Grott, J. Grygorczuk, T. Hudson, J. C. E. Irving,602
G. Kargl, T. Kawamura, S. Kedar, S. King, B. Knapmeyer-Endrun, M. Knapmeyer,603
M. Lemmon, R. Lorenz, J. N. Maki, L. Margerin, S. M. McLennan, C. Michaut,604
D. Mimoun, A. Mittelholz, A. Mocquet, P. Morgan, N. T. Mueller, N. Murdoch,605
S. Nagihara, C. Newman, F. Nimmo, M. Panning, W. T. Pike, A.-C. Plesa, S. Ro-606
driguez, J. A. Rodriguez-Manfredi, C. T. Russell, N. Schmerr, M. Siegler, S. Stan-607
ley, E. Stutzmann, N. Teanby, J. Tromp, M. van Driel, N. Warner, R. Weber, and608
M. Wieczorek, Initial results from the InSight mission on Mars, Nat. Geosci., 13 (2020),609
pp. 183–189, https://doi.org/10.1038/s41561-020-0544-y.610

[7] N. Barral, M. G. Knepley, M. Lange, M. D. Piggott, and G. J. Gorman, Anisotropic611
mesh adaptation in firedrake with petsc dmplex, 2016, https://arxiv.org/abs/1610.09874.612

[8] J. Brown, Star forests as a parallel communication model, 2011, https://jedbrown.org/files/613
StarForest.pdf (accessed 2020-03-17).614

[9] J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, and B. F. Smith, Composable linear615
solvers for multiphysics, in Proceeedings of the 11th International Symposium on Parallel616
and Distributed Computing (ISPDC 2012), IEEE Computer Society, 2012, pp. 55–62,617
https://doi.org/10.1109/ISPDC.2012.16.618

[10] J. Brown, M. G. Knepley, and B. F. Smith, Run-time extensibility and librarization of619
simulation software, Computing in Science Engineering, 17 (2015), pp. 38–45, https://doi.620
org/10.1109/MCSE.2014.95.621

[11] P. R. Brune, M. G. Knepley, and L. R. Scott, Unstructured geometric multigrid in two and622
three dimensions on complex and graded meshes, SIAM Journal on Scientific Computing, 35623
(2013), pp. A173–A191, https://doi.org/10.1137/110827077, https://arxiv.org/abs/1104.624
0261.625

[12] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton, and626
L. Wilcox, Extreme-scale AMR, in SC ’10: Proceedings of the 2010 ACM/IEEE Inter-627
national Conference for High Performance Computing, Networking, Storage and Analysis,628
2010, pp. 1–12, https://doi.org/10.1109/SC.2010.25.629

[13] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adap-630
tive mesh refinement on forests of octrees, SIAM Journal on Scientific Computing, 33631
(2011), pp. 1103–1133, https://doi.org/10.1137/100791634.632

[14] H. Bériot, A. Prinn, and G. Gabard, Efficient implementation of high-order finite elements633
for Helmholtz problems, International Journal for Numerical Methods in Engineering, 106634
(2016), pp. 213–240, https://doi.org/10.1002/nme.5172.635

[15] C. Chevalier and F. Pellegrini, PT-Scotch: A tool for efficient parallel graph ordering,636
Parallel Computing, 34 (2008), pp. 318–331, https://doi.org/10.1016/j.parco.2007.12.001.637

[16] Cray Inc., Cray Sonexion 3000 Storage System, 2016, https://www.cray.com/sites/default/638
files/resources/WP-Cray-Sonexion-3000-Storage-Systems.pdf (accessed 2020-03-20).639

[17] P. E. Farrell, L. Mitchell, and F. Wechsung, An augmented Lagrangian preconditioner640
for the 3D stationary incompressible Navier–Stokes equations at high Reynolds number,641
SIAM Journal on Scientific Computing, 41 (2019), pp. A3073–A3096, https://doi.org/10.642
1137/18M1219370.643

[18] A. Ferroni, P. Antonietti, I. Mazzieri, and A. Quarteroni, Dispersion-dissipation analy-644
sis of 3-D continuous and discontinuous spectral element methods for the elastodynamics645
equation, Geophys. J. Int., 211 (2017), pp. 1554–1574, https://doi.org/10.1093/gji/ggx384.646

[19] A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in Geophysical and647
Environmental Mechanics and Mathematics, Springer Berlin Heidelberg, 2011, https://doi.648
org/10.1007/978-3-642-15807-0.649

[20] J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H.650
Ziantz, Adaptive local refinement with octree load balancing for the parallel solution of651
three-dimensional conservation laws, Journal of Parallel and Distributed Computing, 47652
(1997), pp. 139–152, https://doi.org/10.1006/jpdc.1997.1412.653

[21] D. Giardini, P. Lognonné, W. B. Banerdt, W. T. Pike, U. Christensen, S. Ceylan,654
J. F. Clinton, M. van Driel, S. C. Stähler, M. Böse, R. F. Garcia, A. Khan,655
M. Panning, C. Perrin, D. Banfield, E. Beucler, C. Charalambous, F. Euch-656
ner, A. Horleston, A. Jacob, T. Kawamura, S. Kedar, G. Mainsant, J.-R. Scholz,657

This manuscript is for review purposes only.

https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1038/s41561-020-0544-y
https://arxiv.org/abs/1610.09874
https://jedbrown.org/files/StarForest.pdf
https://jedbrown.org/files/StarForest.pdf
https://jedbrown.org/files/StarForest.pdf
https://doi.org/10.1109/ISPDC.2012.16
https://doi.org/10.1109/MCSE.2014.95
https://doi.org/10.1109/MCSE.2014.95
https://doi.org/10.1109/MCSE.2014.95
https://doi.org/10.1137/110827077
https://arxiv.org/abs/1104.0261
https://arxiv.org/abs/1104.0261
https://arxiv.org/abs/1104.0261
https://doi.org/10.1109/SC.2010.25
https://doi.org/10.1137/100791634
https://doi.org/10.1002/nme.5172
https://doi.org/10.1016/j.parco.2007.12.001
https://www.cray.com/sites/default/files/resources/WP-Cray-Sonexion-3000-Storage-Systems.pdf
https://www.cray.com/sites/default/files/resources/WP-Cray-Sonexion-3000-Storage-Systems.pdf
https://www.cray.com/sites/default/files/resources/WP-Cray-Sonexion-3000-Storage-Systems.pdf
https://doi.org/10.1137/18M1219370
https://doi.org/10.1137/18M1219370
https://doi.org/10.1137/18M1219370
https://doi.org/10.1093/gji/ggx384
https://doi.org/10.1007/978-3-642-15807-0
https://doi.org/10.1007/978-3-642-15807-0
https://doi.org/10.1007/978-3-642-15807-0
https://doi.org/10.1006/jpdc.1997.1412

22 V. HAPLA ET AL.

S. E. Smrekar, A. Spiga, C. Agard, D. Antonangeli, S. Barkaoui, E. Barrett,658
P. Combes, V. Conejero, I. Daubar, M. Drilleau, C. Ferrier, T. Gabsi, T. Gud-659
kova, K. Hurst, F. Karakostas, S. King, M. Knapmeyer, B. Knapmeyer-Endrun,660
R. Llorca-Cejudo, A. Lucas, L. Luno, L. Margerin, J. B. McClean, D. Mimoun,661
N. Murdoch, F. Nimmo, M. Nonon, C. Pardo, A. Rivoldini, J. A. R. Manfredi,662
H. Samuel, M. Schimmel, A. E. Stott, E. Stutzmann, N. Teanby, T. Warren, R. C.663
Weber, M. Wieczorek, and C. Yana, The seismicity of Mars, Nat. Geosci., 13 (2020),664
pp. 205–212, https://doi.org/10.1038/s41561-020-0539-8.665

[22] HDF5 Group, HDF5, https://portal.hdfgroup.org/display/HDF5/HDF5 (accessed 2020-03-666
20).667

[23] HDF5 Group, Parallel HDF5, https://portal.hdfgroup.org/display/HDF5/Parallel+HDF5668
(accessed 2020-03-20).669

[24] T. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis,670
vol. 78, Dover Publications, 2000.671

[25] T. Isaac, C. Burstedde, L. C. Wilcox, and O. Ghattas, Recursive algorithms for distributed672
forests of octrees, SIAM Journal on Scientific Computing, 37 (2015), pp. C497–C531, https:673
//doi.org/10.1137/140970963.674

[26] T. Isaac and M. G. Knepley, Support for non-conformal meshes in PETSc’s DMPlex inter-675
face, 2015, https://arxiv.org/abs/1508.02470.676

[27] P. Jolivet, F. Nataf, et al., HPDDM – high-performance unified framework for domain677
decomposition methods, https://github.com/hpddm/hpddm (accessed 2020-04-18).678

[28] G. Karypis et al., METIS - serial graph partitioning and fill-reducing matrix ordering, http:679
//glaros.dtc.umn.edu/gkhome/metis/metis/overview (accessed 2020-03-17).680

[29] G. Karypis et al., ParMETIS - parallel graph partitioning and fill-reducing matrix ordering,681
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview (accessed 2020-03-17).682

[30] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular683
graphs, SIAM Journal on Scientific Computing, 20 (1998), pp. 359–392, https://doi.org/684
10.1137/S1064827595287997.685

[31] G. Karypis and V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse686
matrix ordering, Journal of Parallel and Distributed Computing, 48 (1998), pp. 71–95,687
https://doi.org/10.1006/jpdc.1997.1403.688

[32] M. G. Knepley and D. A. Karpeev, Mesh algorithms for PDE with Sieve I: Mesh distribution,689
Scientific Programming, 17 (2009), pp. 215–230, https://doi.org/10.3233/SPR-2009-0249.690

[33] M. G. Knepley, M. Lange, and G. J. Gorman, Unstructured overlapping mesh distribution691
in parallel, 2017, https://arxiv.org/abs/1506.06194.692

[34] T. Kärnä, S. C. Kramer, L. Mitchell, D. A. Ham, M. D. Piggott, and A. M. Bap-693
tista, Thetis coastal ocean model: discontinuous Galerkin discretization for the three-694
dimensional hydrostatic equations, Geoscientific Model Development, 11 (2018), pp. 4359–695
4382, https://doi.org/10.5194/gmd-11-4359-2018.696

[35] M. Lange, M. G. Knepley, and G. J. Gorman, Flexible, scalable mesh and data manage-697
ment using PETSc DMPlex, in Proceedings of the 3rd International Conference on Exascale698
Applications and Software, EASC ’15, Edinburgh, Scotland, UK, 2015, University of Edin-699
burgh, pp. 71–76, http://dl.acm.org/citation.cfm?id=2820083.2820097 (accessed 2020-03-700
30).701

[36] M. Lange, L. Mitchell, M. G. Knepley, and G. J. Gorman, Efficient mesh management702
in Firedrake using PETSc DMPlex, SIAM Journal on Scientific Computing, 38 (2016),703
pp. S143–S155, https://doi.org/10.1137/15M1026092.704

[37] M. G. Larson and F. Bengzon, The finite element method: theory, implementation, and705
applications, no. 10 in Texts in computational science and engineering, Springer, 2013,706
https://doi.org/10.1007/978-3-642-33287-6.707

[38] A. Logg, Efficient representation of computational meshes, International Journal of Compu-708
tational Science and Engineering, 4 (2009), pp. 283–295, https://doi.org/10.1504/IJCSE.709
2009.029164.710

[39] P. H. Lognonné, W. B. Banerdt, D. Giardini, W. T. Pike, U. Christensen, P. Laudet,711
S. de Raucourt, P. Zweifel, S. Calcutt, M. Bierwirth, K. J. Hurst, F. Ijpelaan,712
J. W. Umland, R. Llorca-Cejudo, S. A. Larson, R. F. Garcia, S. Kedar,713
B. Knapmeyer-Endrun, D. Mimoun, A. Mocquet, M. P. Panning, R. C. Weber,714
A. Sylvestre-Baron, G. Pont, N. Verdier, L. Kerjean, L. J. Facto, V. Gharaka-715
nian, J. E. Feldman, T. L. Hoffman, D. B. Klein, K. Klein, N. P. Onufer, J. Paredes-716
Garcia, M. P. Petkov, J. R. Willis, S. E. Smrekar, M. Drilleau, T. Gabsi, T. Nebut,717
O. Robert, S. Tillier, C. Moreau, M. Parise, G. Aveni, S. Ben Charef, Y. Bennour,718
T. Camus, P. A. Dandonneau, C. Desfoux, B. Lecomte, O. Pot, P. Revuz, D. Mance,719

This manuscript is for review purposes only.

https://doi.org/10.1038/s41561-020-0539-8
https://portal.hdfgroup.org/display/HDF5/HDF5
https://portal.hdfgroup.org/display/HDF5/Parallel+HDF5
https://doi.org/10.1137/140970963
https://doi.org/10.1137/140970963
https://doi.org/10.1137/140970963
https://arxiv.org/abs/1508.02470
https://github.com/hpddm/hpddm
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1006/jpdc.1997.1403
https://doi.org/10.3233/SPR-2009-0249
https://arxiv.org/abs/1506.06194
https://doi.org/10.5194/gmd-11-4359-2018
http://dl.acm.org/citation.cfm?id=2820083.2820097
https://doi.org/10.1137/15M1026092
https://doi.org/10.1007/978-3-642-33287-6
https://doi.org/10.1504/IJCSE.2009.029164
https://doi.org/10.1504/IJCSE.2009.029164
https://doi.org/10.1504/IJCSE.2009.029164

FULLY PARALLEL MESH I/O USING PETSC DMPLEX 23

J. TenPierick, N. E. Bowles, C. Charalambous, A. K. Delahunty, J. Hurley, R. Ir-720
shad, H. Liu, A. G. Mukherjee, I. M. Standley, A. E. Stott, J. Temple, T. Warren,721
M. Eberhardt, A. Kramer, W. Kühne, E.-P. Miettinen, M. Monecke, C. Aicardi,722
M. André, J. Baroukh, A. Borrien, A. Bouisset, P. Boutte, K. Brethomé, C. Brys-723
baert, T. Carlier, M. Deleuze, J. M. Desmarres, D. Dilhan, C. Doucet, D. Faye,724
N. Faye-Refalo, R. Gonzalez, C. Imbert, C. Larigauderie, E. Locatelli, L. Luno, J.-725
R. Meyer, F. Mialhe, J. M. Mouret, M. Nonon, Y. Pahn, A. Paillet, P. Pasquier,726
G. Perez, R. Perez, L. Perrin, B. Pouilloux, A. Rosak, I. Savin de Larclause,727
J. Sicre, M. Sodki, N. Toulemont, B. Vella, C. Yana, F. Alibay, O. M. Avalos,728
M. A. Balzer, P. Bhandari, E. Blanco, B. D. Bone, J. C. Bousman, P. Bruneau,729
F. J. Calef, R. J. Calvet, S. A. D’Agostino, G. de los Santos, R. G. Deen, R. W.730
Denise, J. Ervin, N. W. Ferraro, H. E. Gengl, F. Grinblat, D. Hernandez, M. Het-731
zel, M. E. Johnson, L. Khachikyan, J. Y. Lin, S. M. Madzunkov, S. L. Marshall,732
I. G. Mikellides, E. A. Miller, W. Raff, J. E. Singer, C. M. Sunday, J. F. Vil-733
lalvazo, M. C. Wallace, D. Banfield, J. A. Rodriguez-Manfredi, C. T. Russell,734
A. Trebi-Ollennu, J. N. Maki, É. Beucler, M. Böse, C. Bonjour, J. L. Berenguer,735
S. Ceylan, J. F. Clinton, V. Conejero, I. J. Daubar, V. Dehant, P. Delage, F. Eu-736
chner, I. Estève, L. Fayon, L. Ferraioli, C. L. Johnson, J. Gagnepain-Beyneix,737
M. Golombek, A. Khan, T. Kawamura, B. Kenda, P. Labrot, N. Murdoch, C. Pardo,738
C. Perrin, L. Pou, A. Sauron, D. Savoie, S. C. Stähler, É. Stutzmann, N. A. Teanby,739
J. Tromp, M. van Driel, M. A. Wieczorek, R. Widmer-Schnidrig, and J. Wookey,740
SEIS: Insight’s seismic experiment for internal structure of Mars, Space Sci. Rev., 215741
(2019), p. 12, https://doi.org/10.1007/s11214-018-0574-6.742

[40] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard. Version743
3.1, 2015, https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf (accessed 2020-03-744
20).745

[41] T. Nissen-Meyer, A. Fournier, and F. A. Dahlen, A two-dimensional spectral-element746
method for computing spherical-earth seismograms - II. Waves in solid-fluid media., Geo-747
phys. J. Int., 174 (2008), pp. 873–888.748

[42] Oracle and Intel Corporation, Lustre Software Release 2.x - Operations Manual, 2017,749
http://doc.lustre.org/lustre manual.pdf (accessed 2020-03-20).750

[43] A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel751
expansion, Journal of Computational Physics, 54 (1984), pp. 468–488.752

[44] D. Peter, D. Komatitsch, Y. Luo, R. Martin, N. Le Goff, E. Casarotti, P. Le Loher,753
F. Magnoni, Q. Liu, C. Blitz, T. Nissen-Meyer, P. Basini, and J. Tromp, Forward and754
adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes,755
Geophys. J. Int., 186 (2011), pp. 721–739.756

[45] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-757
T. Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: Automating the finite758
element method by composing abstractions, ACM Trans. Math. Softw., 43 (2016), https:759
//doi.org/10.1145/2998441.760

[46] J. Rudi, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. J. Staar, Y. Ineichen,761
C. Bekas, A. Curioni, and O. Ghattas, An extreme-scale implicit solver for complex762
PDEs: highly heterogeneous flow in earth’s mantle, in Proceedings of the International763
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’15,764
Association for Computing Machinery, 2015, pp. 1–12, https://doi.org/10.1145/2807591.765
2807675.766

[47] R. Schneiders, Octree-based hexahedral mesh generation, International Journal of Com-767
putational Geometry & Applications, 10 (2000), pp. 383–398, https://doi.org/10.1142/768
S021819590000022X.769

[48] T. J. Tautges, C. Ernst, C. Stimpson, R. J. Meyers, and K. Merkley, MOAB: a mesh-770
oriented database, Tech. Report SAND2004-1592, Sandia National Laboratories, 2004,771
https://doi.org/10.2172/970174.772

[49] M. van Driel, C. Boehm, L. Krischer, and M. Afanasiev, Accelerating numerical wave prop-773
agation using wavefield adapted meshes. Part I: forward and adjoint modelling, Geophysi-774
cal Journal International, 221 (2020), pp. 1580–1590, https://doi.org/10.1093/gji/ggaa058.775

[50] XDMF – eXtensible Data Model and Format, http://www.xdmf.org/ (accessed 2020-03-20).776
[51] O. Zienkiewicz, R. Taylor, and J. Zhu, eds., The Finite Element Method: its Basis and777

Fundamentals (Seventh Edition), Butterworth-Heinemann, Oxford, seventh edition ed.,778
2013, https://doi.org/10.1016/C2009-0-24909-9.779

This manuscript is for review purposes only.

https://doi.org/10.1007/s11214-018-0574-6
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://doc.lustre.org/lustre_manual.pdf
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2807591.2807675
https://doi.org/10.1145/2807591.2807675
https://doi.org/10.1145/2807591.2807675
https://doi.org/10.1142/S021819590000022X
https://doi.org/10.1142/S021819590000022X
https://doi.org/10.1142/S021819590000022X
https://doi.org/10.2172/970174
https://doi.org/10.1093/gji/ggaa058
http://www.xdmf.org/
https://doi.org/10.1016/C2009-0-24909-9

	Introduction
	DMPlex
	Mesh representation and basic operations
	Topological interpolation
	Orienting edges and faces

	Parallel simulation startup
	Raw data loading
	HDF5
	XDMF
	PETSc data loading

	Distributed plex construction
	Star Forest
	Construction of distributed plex from raw data

	Parallel topological interpolation
	Redistribution

	Seismic wave propagation modeling
	Performance results
	Hardware
	Middleware (Lustre, MPI-IO, HDF5) settings
	Cube benchmark

	Application: seismicity on Mars
	Conclusions
	References

