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Abstract: The Partition of Unity Method (PUM) can be used to numerically solve a set of differ-
ential equations on a domafh The method is based on the definition of overlapping pat€hes
comprising a covef Q;} of the domafa For an efficient implementation it is important that the
interaction between the patches themselves, and between the patches and the boundary, is well
understood and easily accessible during runtime of the program. We will show that an octree rep-
resentation of the domain with a tetrahedral mesh at the boundary is an efficient means to provide
the needed information. It subdivides an arbitrary domain into simply shaped topological objects
(cubes, tetrahedrons) giving a non-overlapping discrete representation of the domain on which
efficient numerical integration schemes can be employed. The octants serve as the basic unit to
construct the overlapping partitions. The structure of the octree allows the efficient determination

of patch interactions.

1. Introduction

Partition of Unity methods are capable of constructing conforming solution spaces used for the
numerical solution of a set of differential equations on a donfaifthey allow the inclusion of

local properties of the solution into the constructed solution space. The basic idea is to create
overlapping patche; comprising a coJe®; } of the donfaiwith partitions of unity¢,

subordinate to the cove®; . On each patch local function spdces  are set up reflecting the local



solution behavior. The global solution spa¢e is then giveNVby Zi o,V, . Methods based on
that principle were developed by Babuska et al. [1],[2] (Partition of Unity Finite Element
Method), and Duarte and Oden [7],[8] (hp - clouds). Similar methods referred to as Element Free
Galerkin Methods were developed by Belytschko et. al. [5], [11] or the Moving Least Square

Reproducing Kernel Methods by Liu et al. [10].

One way to create the partition of unity is to start from an arbitrarily distributed set of nodes. No
fixed connections between the nodes are required. The nodes are the centers of the overlapping
patchesQ; , which can have almost any shape with cubes and spheres among the most popular.
The partition of unity is then created based on the moving least square scheme (see Lancaster and
Salkauskas [9]). Advocators of this method praise the simplicity with which geometrically com-
plex situations, like cracks, free surfaces etc., can be treated. The sometimes cumbersome task of
meshing and remeshing of a valid finite element mesh can be avoided. However, due to the rather
unstructured distribution of nodes over the domain other algorithmic issues arise. First, a discreti-
zation without structure does not allow determination of the patches that contribute to a certain
integration point without performing a search. Second, the partition of unity based on the moving
least square method creates shape functions that are expensive to integrate with the common inte-
gration rules, like Gauss quadrature formulas. Last, but not least, the treatment of the boundary
conditions, and the interaction with the geometric boundary in general, becomes very difficult.
Recently, Duarte, Babuska and Oden [7] proposed to use a Finite Element mesh to overcome the
problems associated with an arbitrarily scattered set of nodes. The finite element mesh is used for
the purpose of creating the partition of unity. The main difference to a mesh that would be suited
for a finite element analysis is the lack of h-adaptation for singularities or steep gradients, which

simplifies the process of mesh generation slightly. Instead, the singularities are captured by shape



functions enriched by the asymptotic expansions of the elasticity solution in the neighborhood of
the singularity. Since the partition of unity is built on linear shape functions defined by the tetrahe-
dral elements the numerical integration is easier in terms of needed integration points to reach a
reasonable accuracy. Furthermore, since the usual finite element mesh topology is used no search-

ing for shape functions contributing to a certain integration point has to be performed.

Both approaches, building the partition of unity from an unstructured set of nodes or from a finite
element mesh, seem to be the extremal solutions lying on different sides of the optimal solution.
From an implementation point of view it is important that the patches are clearly defined. The
interaction between the patches themselves, and between the patches and the boundary, has to be
well understood and easily accessible during the runtime of the program. An implementation
based only on an arbitrary set of points with patches associated to them is inefficient since the
code would have to perform expensive global searches to determine the interactions of the
patches. On the other hand, a complete finite element mesh may represent more information than

is necessary, leading to a memory inefficient program.

An alternative approach is to employ a structure to construct the patches which would provide a
priori information with respect to the size and interactions of the patches to ensure a valid parti-
tion which could be generated and operated upon more efficiently than a complete mesh. To be
effective, such a structure must efficiently provide all required neighbor information, while being
flexible enough to provide the type of gradations of the patches necessary to obtain optimal con-
vergence. Furthermore, it should allow the use of the moving least square method to construct the

partition of unity as well as a partition of unity based on lagrangian type shape functions as they



are used in finite elements. The structure also needs to define the integration cells that have to be

defined to integrate the governing equations.

In this paper we will show that an octree representation of the domain with a tetrahedral mesh at
the boundary will serve the needed purposes. It subdivides an arbitrary domain into simply shaped
topological objects (cubes, tetrahedrons) giving a non-overlapping discrete representation of the
domain on which efficient numerical integration schemes can be employed. The octants serve as
the basic unit to construct the patches, and allow the efficient determination of patch interactions.

Given an adjusted octree, only a small number of possible octant neighbor constellations can
arise, allowing templates to be constructed for the partition of unity functions on the octants. Last

but not least, the structure of the octree reduces the memory consumption compared to a finite ele-
ment mesh. For the same spatial discretization size the finite element mesh structure [4] needs

about four times as much memory than the octree structure [14].

The paper is organized as follows: in section 2 we introduce the octree structure used as the basic
building block for the partition of unity and the integration cells. Sections 3 and 4 describe how
the open cover and the integration cells are constructed based on the octree structure. In section 5
we present two examples demonstrating the partition of unity discretization for complex three

dimensional geometries.

2. The octree structure as a representation of an arbitrary domai

Various types of spatially-based tree structures have been found to be effective in supporting
searching operations [12] and domain discretization operations such as automatic mesh genera-
tion [16], [15]. The specific tree structure investigated here is an octree structure. Enhanced by

storing octant neighbor information, the octree is capable of providing neighbor information in



constant time (instead of the standard O(log n) traversal time per determination) if the level differ-
ence between neighbored octants is controlled [14]. Furthermore, the simple shape of an octant

allows an easy application of well known efficient integration rules.

An octree structure can be defined by enclosing the domain of int@rasta cube which repre-

sents the root of the octree, and then subdividing the cube into the eight octants of the root by
bisection in all three directions. Those octants are then recursively subdivided to whatever levels
are desired. The terminal octants of that subdivision process represent the basic units referred to
by the application using the octree. See Fig. 1 for a picture of an octree and its corresponding data
representation as a tree. We define theet  as the set of octants describing a given octree rooted

by O, . We define théeevel( Q) = 0 , and derive

Level( Q) = Level( Parent Q) + 1. Q)
For the ease of notation we assume a cubical root octree. The size of the rootsoz&aIt)) is
then defined as the maximum length in X,y or z direction of the geometric model underlying the

discretization process. The size of a child oc@nt  can be stated as

sizg Q) = sizengg (2)

A single octantO; can be identified uniquely by its parent and its child id. We will make use of an
operatorTerm( O]) that will traverse the subtree rooted G’)Jy and return the set of terminal

octants in that subtree.

To identify elements on the closure of an octant, a superscript is used to indicate the dimension of

an octant topological entity, e.g.O?} indicates the region of space associated with Ogtant



{Oiz} is the set of six faces bounding octa®t , etc. With this notation in hand we introduce the

operators returning the face, edge, and vertex neighbors of an O¢tant

FN(O) = {0, O|({ sz} N {sz} # U 0(0; #descenderit 9))} (3)
EN(O) = {Oj O O|({ Ojl} N {Ojl} #z 0 D(Oj # descenderft 9))} 4)
VN(O) = {0; O|({ O?} N {OJQ} # 0(O; #descendert O))}, (5)

and we refer to the operator returning the set of all neighbors of an Gctant  as

N(O,) = {FN(G) OEN(OG)OVN(O)}. (6)

We will assume that the sets are ordered, and a specificjesditybe picked by e.y. Nj(Oi)
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Fig. 1: The octree and its corresponding data representation.

We will define a one level adjusted octree as an octree where the level difference of all terminal
octants and their face and edge neighbors is no more than one. Octants can be classified as interior
octants, exterior octants, and boundary octants. Interior octants are octants that are fully embed-

ded in the interior of the geometric domd Exterior octants are octants that are located outside



of the geometric domaif2. Consequently, boundary octants are octants that are intersected by the

boundary of the geometric domdn See Fig. 2 for a simplified 2D graphical illustration.
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Fig. 2: Definition of interior, exterior, and boundary octants.

We introduce the operatoisiterior(O;) Exterior(Q) , ambundary Q) that traverse the
subtree rooted byD, and return the set of interior, exterior, and boundary octants found in the
subtree. Exterior octants are of no further use in terms of the computation. A set of interior and
boundary octants will be used to define the open cover. For the ease of description we will intro-
duce the notatiorO,. to describe that set. We will require that the geometric model to be dis-
cretized is defined in the closure 6f,. . According to that definition, we allow octants, that are
elements of the set, to overlap. All terminal interior and boundary octants could be used to form a

valid setO,,. , or, as it was done in our computations, th©ggt is given as

oc

Ogc = {Parent( Terng Q)) n (Interior(O,) O Boundary Q))} (7)
The generation of the partition of unity discretization is implemented as a two step process. The
first step being the generation of the octree structure, while the second step sets up the open cover
and integration cells based on the octree structure. To generate an octree of appropriate size for

the specific analysis discretization control information has to be applied. The information is usu-



ally applied to the topological entities of the geometric model in the form of absolute measures
(e.g. maximum size of terminal octants) or relative measures (e.g. percentage error in describing
curved boundaries). In terms of the to-be-constructed partition of unity, the information controls
the size of the integration cells, which will be the terminal interior octants and tetrahedral ele-
ments generated in the boundary octants. After the discretization control information has been
applied a root octant is determined such that the geometric model is contained within the closure
of that octant. Recursively subdividing that octant and its children to the level dictated by the size
control information, while maintaining the type of the newly created octants (interior, exterior,
boundary), yields the octree fulfilling the control information. As a last step a tetrahedral mesh is
generated in the boundary octants. References [16] and [6] discuss issues associated with the con-
struction of the octrees as used in automatic mesh generation. The generation of the octree used
here follows the same basic steps with the exception that the octants interior to the model need not
be decomposed into finite elements. Given an octree structure created based on any form is octant
size control, the algorithm for defining the one level difference between face and edge octants can
be performed inO(nlogn) time whera is the number of original octants using the approach
given in reference [16]. The process of creating the tetrahedral elements to fill the portion of the
boundary octants interior to the domain uses exactly the same procedures used to mesh the bound-

ary octants in the parallel mesh generator described given in reference [6].

The performance of h-refinement of interior octants is supported by the straightforward applica-
tion of the recursive refinement procedure used to construct the original octree. This must be fol-
lowed by an updating of the one-level difference criteria. Since the tree at that start of the
refinement step already satisfies the one-level difference requirement, the face neighbor pointers

can be used to examine the neighbors to see if they need refinem@&gt)n time [13], [14].



Regaining the one-level difference can take fr@ti) time if propagation is limited, and in the
worst case ist@®(n) if each and every octant needs to be refined [13]. When a boundary octant is
refined the new boundary octants can be meshed using local remeshing procedures similar to

those given in reference [3].

The sections, which follow describing the construction of the open cover and the integration cells,
will assume that an octree, constructed as described, is available on which the partition of unity

discretization can be built.

3. Constructing an open cover of2 based on the octree structure

Overlapping patche®; comprise the open cdv@}  Qofrhe patches serve as the building
blocks to form the partition of unity. For the partition of unity to be valid the patches can not be
completely arbitrary. They have to fulfill certain requirements. First, it has to be guaranteed that
each point in the domain of interest is covered by at I&§st, patches, Where depends on
the degree of the partition of unity. Second, the simplex formed by the center Nf the patches
must not degenerate. We refer to the Appendix for a detailed discussion of this issue. It is obvious
that a method based on an arbitrary set of scattered nodes has to perform expensive computations
for each integration point to guarantee the validity of the discretization and ultimately the reliable
solution based on the given set of nodes. Duarte and Oden [8] describe an algorithm of order
O(NlogN) that checks the requirements for the partition of unity discretization based on moving
least square methods of order 0 and 1. The 2d-algorithm searches féf the patches by collect-
ing a list of patches whose center falls into a bounding square around the point of interest, sorting
the list with respect to distance, and checking whether the center of at least three patches are not

aligned. The geometrical check for an alignment is not sufficient for higher order partition of



unity, e.g. like they appear in the element free galerkin method. More complex algorithms have to
be employed. The Appendix describes in detail the requirements that have to be fulfilled for a par-
tition of unity to be valid. As a last step the interaction between arbitrarily distributed patches has
to be determined. This is again a searching problem where the best known algorithms are of order

O(NlogN).

From the arguments made it becomes clear that the efficiency of partition of unity methods can be
enhanced if the open cover is based on a suitable underlying structure. Suitable means that the
chosen structure should support the method solving or at least reducing the implementation prob-
lems associated with the flexibility of an arbitrary scattered set of patches of the open cover, while
not restricting the features of the methods gained from exactly that flexibility. One main argument
for partition of unity methods is they do not necessarily need a mesh and avoid mesh generation.
This argument translates into the demand for a structure that is easier and cheaper to generate than
a classical Finite Element Mesh. Another important argument is the ability of partition of unity
methods to support h-refinement by “throwing in” new patches wherever they are needed. Despite
the fact that the new patches can not be completely arbitrary, but have to follow certain rules to
guarantee the validity of the open cover, the goal should be to create a structure that supports local
h-refinement. A third feature of meshless methods, the ability to easily adapt the local solution
spaces to features of the actual solution, is not affected by the underlying structure as long as
those features (e.g. singularities) can be spatially resolved, which brings us back to the need for a

support of local h-refinement.

An open cover based on an octree can provide the structure needed to simplify the algorithmic

problems discussed above. The validity of the open cover based on an octree can be guaranteed a

10



priori, i.e. no validity checks are necessary during runtime. We refer to the Appendix for a
detailed discussion. The generation of an octree is more efficient than a finite element mesh, and
h-refinement is easily possible since a valid adjusted octree has to follow far less rules than a finite
element mesh. Furthermore, the octree has very good localization capabilities allowing refinement
of the discretization in areas of singularities if necessary. Last but not least, the memory consump-
tion is about four times smaller compared to a finite element structure [4] since the high structure
of the octree allows it to calculate needed information fast rather than storing it, e.g. the coordi-
nates of the corners of an octant can be computed from the coordinate of the center and the size of

the octant.

For methods constructing the partition of unity based on the moving least square scheme the dis-
cretization represented by an octree cannot directly be an open{Qyer Q sinte the spaces
represented by the cells of an octree are closed and do not overlap. However, there are two simple
possibilities to create a valid open cover based on the given octree structure distinguished by
whether the patches are centered around the center or around the corners of the octants. We intro-

duce the following two definitions describing the creation of the open cover.

Definition 1: LetO, 0 O, . . AmembeK; of the covdrQ;}  will be a cube of smésize Q)

centered around the center@f

Definition 2: Let O;00,.. A memberQ; of the covef{Q;}  will be a cube of size

o [min(sizg VI\](Oi))) centered around corngof O, .
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The valuea has to be chosen such that an admissible open cover is created. Whether an open
cover is admissible depends on the actual mesh free method that is used. E.g., for the element free
Galerkin Method (Belytschko et al. [5]) or for the Moving Least Square Reproducing Kernel
Galerkin Method (Liu et al. [10]), the value of depends on the polynomial degree of the shape
functions. The hp-clouds method (Duarte, Oden [8]) can be constructed based on a fixed degree
for the partition of unity, while the approximation quality is increased by local tensor product
spaces. This allows picking an admissible valuedoonce without the need to readjust if the
polynomial degree of the shape functions is increased. The Appendix shows how the value for
has to be selected for different degrees of the partition of unity. It shows also that another criteria
for an admissible open cover, the non-degeneration of the open cover, is automatically fulfilled for

an open cover based on the definitions 1 or 2, and does not need to be checked during runtime.

See Fig. 3 and Fig. 4 for a 2 dimensional example of the open daley created based on the
given definitions. Note that the octants defining the open cover do not have to be terminal octants,
any setO, can be used. This will allow the definition of the integration cells based also on the
octree, but independent of the open co{€r,;} . A low order integration with more integration
cells can be performed as well as a higher integration order with fewer integration cells. Depend-

ing on the actual partition of unity, one method might be more cost effective than the other.

12
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Fig. 3: The definition of the open coef; } based on Definition 1.
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Fig. 4: The definition of the open coe®; } based on Definition 2.

Remark:

» The concept of creating the open cover will be the same for interior and boundary octants.
That might lead to the fact that certain patches are located partly outside of the damain  (see
Fig. 5). That does no harm as long as a reasonably large part of the associated patch intersects
with the domainQ to avoid nearly singular system matrices. We have found that the needed
minimum value foix to construct a valid partition of unity creates an overlapping of the

13



patches with the domain that is large enough.

DomainQ

Fig. 5: PatchQ; located partly outside of the donfain

4. Constructing integration cells based on the octree structure

For the numerical integration of the governing equations, numerical quadrature formulas have to
be employed. The most efficient methods, e.g. the Gauss quadrature formula, are based on an inte-
gration over a unit domain for which the weights and integration points are tabulated. To make use
of those methods a discretization consisting of simply shaped topological objects is of advantage
since it facilitates the definition of the necessary mapping function. Since the spaces represented
by the terminal octants are closed and do not overlap we can use interior terminal octants as inte-
gration cells for the numerical integration scheme. The cubical shape of an octant provides an
easy way to map the integration domain onto a unit cube where standard integration rules are

applied.

For arbitrary domains we face the problem that boundary octants are cut arbitrarily by the bound-
ary of the problem domain (see Fig. 2). The domain of integration for that cell is consequently

only the portion of the terminal cell that is interior € To perform the integration in terminal

14



cells that intersect the boundary we break those cells up into simplices (tetrahedrons in 3-D or tri-
angles in 2D) over which the integration can be done with sufficient accuracy.

T A =

Fig. 6: Triangulations of boundary octants.

Fig. 6 gives an example for resolving the boundary octants into simplices. Note that it is not nec-
essary that the closure of the simplices coincide with the boundary of two neighbored boundary
octants. Any convenient subdivision of the boundary octants into simplices can be used as long as

the simplices cover the space of the geometric do@auithout gaps in between them.

The creation of the open cover and the integration cells as described eliminates any global search-
ing for members of the open cover during integration. With the knowledge of the eadne uti-

lizing direct face neighbor links [14] all patches covering a poiri Q can be found in O(1).
Since the integration point procedure should be as fast as possible a list is set up for each integra-
tion cell that contains all patches covering a potrif Q . This allows it to loop over the list at the
time of integration without searching at all. The list is set up using the algorithm given in Fig. 7,
where we make use of the operatmveredQ; ,Oj) that returns -1 if the member of the open
coverQ; does not cover the octaD  at all, O if it covers the odfant  at least partly. We assume

that the octree was already created, and that the terminal octants serve as integration cells. Fur-
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thermore, we assume that the set of octadits. was chosen as described in section 2., and that a

valid open covef Q;} was built based Og,~

1 for each octan®, [0 O, do

2 get the set of neighbored eleme@ts = N(O,) 0 {O;}
3 for eachO; 0 O, do

4 done = FALSE

5 get the set of integration cells:

Orc = {((Interior(Oj) O Boundary Q)))} n Term OJ)
6 for eachO,. 0 O, do
7 if (notcoveredQ;, O;;))
8 addO; to the list of octants attacheddp
9 else done = TRUE
1

0 end
11 if (not done) thel®,, = O, 0 N(O;)
12 end
13 end

Fig. 7: Algorithm to find the patches contributing to the integration cells.

Note that the algorithm given in Fig. 7 does not consider tetrahedral elements. The tetrahedral ele-
ments are used as integration cells, but for each integration point the terminal octant containing
that point is computed. The information about patches covering this integration point is then avail-
able since the algorithm (see line 5 in Fig. 7) considers terminal boundary octants, and those con-
tain the tetrahedral elements. We would like to point out that the terminal octant containing a
specific integration point is easily computable since the relation between tetrahedral elements and
boundary octants is available during the generation of the tetrahedral boundary mesh and can be

stored.

It can be seen that the algorithm depicted in Fig. 7 is of order O(N) where N is the number of

members of the open covgQ;} . The steps 2 to 12 are local operations on an octant collecting
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neighbor information using direct neighbor links. Those operations are performed in constant

time assuming an adjusted octree [14].

Fig. 8 shows that for certain choices of the vatyaelepending on the level difference between the
octants defining the open cover and the integration cells, the boundary of the p&ches coin-
cides with the boundary of the octants on level n in the interior of the domain. This avoids the
need to check for each integration point if the contribution of a member of the open cover that is
stored in the list of potentially contributing shape functions is non zero. Fig. 8 shows the situation
for an open cover constructed from octants on level n-1, and integration cells constructed from the
terminal octants (=level njx is set to 3.0 for this example. It can be seen that the boundary of the
patches of the open cover (defined on octants on level n-1) coincides with the boundary of the
integration cells, which are the terminal octants on level n. This creates a situation comparable to
the finite element method where all integration cells inside an element get contributions from the
same shape functions, and allows the computation of an “integration cell stiffness matrix” which
can then be assembled into the global system of equations yielding a faster computation of the
global stiffness matrix. As explained in section 4. tetrahedral elements cross the boundary of

octants, and therefore the described simplification does not apply for tetrahedral integration cells.

Octants on level n-1 Octants orievd n

Lyl I Member of the p = =
o open cover 1 ]

\{

Fig. 8: Interaction between patches and integration cells.
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5. Examples

The focus of this work was on the development of the octree-based discretization technology that
can be used with the various partition of unity methods (like hp-clouds, Element Free Galerking
Methods etc.). Simple numerical examples have been done to be sure that the structures will
work, and we are currently working on implementing a partition of unity method that takes advan-
tage of the discretization not only for the purpose of integration and identifying contributing shape

functions, but also as a means to construct the shape functions themselves.

In the following we present two examples that show the discretization, i.e. the integration cells
and the open cover created by the procedures worked out in this paper. As the first example we
present a screwdriver. Fig. 9 shows the geometric model. In Fig. 10 the integration cells are
depicted. It can be clearly seen that the interior integration cells are octants while all integration
cells at the boundary are made of tetrahedral elements to capture the curvature of the boundary.

Fig. 11 shows the overlapping patches that make up the open cover.

Fig. 9:Screwdriver: Geometric model.
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Fig. 10:Screwdriver (cut through): Integration cells.

Fig. 11:Screwdriver: Overlapping patches.

Fig. 12: Intersection of two pipes: Geometric model.
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Fig. 13 and Fig. 14 show an example of the discretization of the intersection of two pipes for the
model given in Fig. 12. Fig. 13 shows the integration cells for half the model, i.e. octants in the
interior of the model and a tetrahedral mesh on the boundary to describe the curved boundary. The
patchesQ; defining the open cove®; } are given in Fig. 14. Fig. 14 a) gives a 3D view of the
overlapping patches while Fig. 14 b) shows a projection of the octant boundaries to illustrate the

overlapping more clearly.

Fig. 13: Two pipes: Integration cells.
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Fig. 14: Two pipes: Overlapping patches.

6. Conclusion

The automatic generation of three-dimensional discretizations for partition of unity methods was
presented. The discretization is based on an octree structure. The octants are used to create the
open cover as well as the integration cells. The center or the corners of the octants are used as the
centers for the patches comprising the open cover. The structure of the octree allows the a priori
determination of the size of the patches needed to form a valid open cover, which avoids expen-
sive runtime validity checks. Furthermore, the search for patches contributing to an integration
point reduces to a local operation of O(1) if face neighbor links are used. In order to capture the
curvature of the boundary, the boundary octants are subdivided into tetrahedral elements serving
as integration cells besides the interior octants. Two examples show the applicability of the pre-

sented methods to generate partition of unity discretizations for complex geometries.
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9. Appendix A
The partition of unity can be constructed by determining the best approximg¢iori] G, of a
function f(x) O V , whereV is a Hilbert space with scalar prod(sGte ) and the corresponding

normlls| = ./(e,*),andG, OV is a-dimensional space with the same norm.

Now let{h,, h,, ....,h.} beabasisof, .Introducingthe notation (u(x), ..., u(xN))T fora
vector containing data at tié data points a scalar produf, v), = uTW(R)v can be defined.
W(X) = diag(wl(i), WN(>“<)) is a squareNxN matrix with positive diagonal elements. Fol-

lowing standard arguments we calculate the best approxingtign

9(x) = > a(x)hi(x) (8)

i=1

with

n
i=1
If W(X) is a constant matrix, (8) is a classical, weighted least squares approximation. Otherwise a

new set of constantg;(X)  has to be computed for each new point where the value of the approxi-

mation is needed.

By introducing the matrixA  with its elemem;t;kij = (h;, hj))n( we find the partition of unity by

plugging the solution for the coefficierag k)
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a(0) = 3 AN, (10)
j=1

into (8)
n n N n n
g0 = ¥ T AN = T YT hOOAW (R f,
i=1j=1 a=1li=1j=1 (11)

N
= S a0,

a=1
The partition of unity as it is developed here is used by Belytschko et. al. [5] in their Element-Free
Galerkin Method (EFGM). They use the functiops  directly as the shape functions to discretize
the variational form. The polynomial degree of the shape functions is increased by increasing the
number of basis functions,  used to calculate the partition of unity. At this point we would like to

point out that a necessary condition for the matix  to be invertible is

OxOQ cardijx JQ;} >m (12)
if mis the degree of the partition of unity. This basically compels us to increase the size of the
patches for a p-extension if a fixed number of patches is given. To be able to compute the partition
of unity from the moving least square method the Mami;f = (h;, hj)x has to be inverted.
Therefore it is necessary that the matrix is not singular. We will point out some implications on

implementation issues that arise from that condition.

Let us write the matri>Aij = (h;, hj)f( explicitly fan basis functions and points:

hy (%) hy(%) - ha(x)] (Wi 0 . 0 | [hy(x) ho(xy) .. ho(xy)]
ha(x) ha(X5) - () | 0 wi(R) ... 0 |gh(X2) ha(xp) ... hp(x))

M0 10 - ta)] | o 0w 1O halxy) - h(xy)
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= FWF' = A (13)
A necessary condition for the produew F' notto be singular is Mhatn . Let us investigate

the most critical casBl = n . With the theorem (Sylvester Law of Inertia),

it AODO""is symmetricandX 0 0""" is nonsingular, then  aXdAX  have the same iner-

tia, i.e. they have the same number of negative, zero and positive eigenvalues.

n

We conclude thaA is not singular ifF [ 0" " is not singular, i.detF #0

We will now discuss how the regular structure of the center of the patches defined by the octree
guarantees a priori the non singularity of the proda¥ F . To simplify the discussion we will

look at the 2-dimensional case; an extension to three dimensions is straight forward.

For a constant basis {1FW F s positive based on the assumptionvii{ad is positive defi-
nite. For a linear basis {1,x,y}, i.ea = 3 any point in the domain will be covered by at least 4
patches it is chosen appropriately for each patarhas to be at least 2; it has to be 3 for patches
that are defined on an octaqt ﬂﬂZDj [ N(Oi)|(Leve( OJ) <Level( Q))} . The necessary
condition N = n is then fulfilled. Since the center of the 4 patches are given as the corners of a
square there are always 3 points defining a 2-dimensional simplex, i.e. they are not aligned yield-
ing a positive definite matrixW F . Fora quadratic basis {1,x,y,x*x,x*y,y*y}has to be cho-

sen as 3 or 5, respectively. This will guarantee the coverage of any point in the domain by at least
9 patches. This fulfills the necessary conditre n with6 andN = 9. The matrix F would be
singular if for any subset of 6 points coefficielts, ..., Ay can be found, not all of them equal to

zero with

AL+ ALK +Agy A C +AXY #Agy” = 0 Oi = 1.6 (14)
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Points(x;, y;) that would do so have to lie on a conic section (including a straight line if the cone
is degenerated into a cylinder). Obviously, the points given by the octree are representing a 9 point

stencil pattern, and do not lie on a conic section.

Similar ideas can be employed for a larger basis or a basis in three dimensions to showothat an
can always be chosen that guarantees a non-singular matrix A a priori. Costly computations dur-

ing runtime to perform the check numerically are not necessary.
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