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ABSTRACT

Directional features like boundary layers commonly arise in the solution of partial

differential equations governing fluid flows. Such features can be resolved efficiently

by using anisotropic meshes. To automatically construct such a mesh requires an

adaptive algorithm that provides information about the desired anisotropic mesh

size field. In recent years, several researchers have considered and investigated pro-

cedures to construct anisotropic size field. To compute anisotropic element sizes

over the domain we adopt the Hessian strategy. In this work, the Hessian strategy

is based on the second derivatives of average flow field over a cardiac cycle due to

the pulsatile nature of the flow in blood vessels.

This study presents an algorithm to perform anisotropic mesh adaptation in

the simulation of blood flow in the cardiovascular system. The governing equations

are the transient incompressible Navier-Stokes equations. We first apply the pro-

cedure to analytical cases and then to a real case of porcine aorta with a stenosis

bypassed by a graft that involves real 3D curved geometry of blood vessels. We

demonstrate that such a method results in an order of magnitude reduction in the

computing time for a given level of accuracy making the method computationally

efficient.

One of the quantities of physical interest in blood flow simulations is the

wall shear stress (WSS). In this study we investigate the effect of the quality of

meshes, obtained through anisotropic adaptive procedure, on WSS predictions. We

demonstrate that controlling the mesh adaptation procedure in a way that main-

tains structured and graded elements near the wall leads to a more accurate WSS

computation.

viii



CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The dramatic increase in computational power has enabled numerical simu-

lations of a wide range of physical problems, including fluid mechanics, as a cost-

effective way for understanding the physical problem at hand. In recent years,

significant effort has been spent in the field of hemodynamics to simulate blood flow

in the cardiovascular system. The relationship between hemodynamic factors and

arterial diseases has attracted numerous investigators to study arterial blood flow

and wall shear stress (WSS) patterns. The direct application of such a relationship

will help in surgical planning, in which patient-specific anatomic and physiologic

information can be used to predict changes in blood flow for alternative surgical

procedures [43].

Interesting challenges arise in blood flow simulations due to transient and non-

linear nature of the problem involving 3D complex geometries. Finite element (FE)

methods provide a viable option for understanding the complex nature of blood flow

in realistic geometry (i.e., patient-specific geometry) and for obtaining relevant flow

quantities, like WSS. FE method falls under the class of numerical methods used

for constructing approximate solutions of well defined partial differential equations.

In FE methods the physical domain is discretized into a finite collection of elements

called a mesh. The solution of the problem is then approximated on each element.

In order to employ the FE method to simulate blood flow the geometric model,

representing blood vessels, has to be subdivided into a finite number of elements.

The obstacles include generating a mesh that sufficiently represents the geometry

of blood vessels and ensuring that this mesh is able to accurately resolve all the

desired flow quantities.

Efficient and reliable computational methods are highly desirable to make

blood flow simulations practically possible. In other words, an adaptive approach

becomes valuable for simulating blood flow in the human arterial system. An adap-

1
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tive procedure is designed to automatically control the accuracy of the numerical

solution (or of any quantity of physical interest) in an efficient manner. Such an

adaptive procedure will accelerate the convergence behavior leading to substantial

savings in terms of computational resources. One way to automatically control the

error in the numerical solution is to perform mesh adaptation based on a posteriori

error estimators/indicators.

Mesh adaptation is achieved by modifying the mesh elements according to the

size field information provided by the error estimator. Size field information given

by scalar error estimates does not account for the directional features like boundary

layers, shocks etc., that commonly arise in fluid flows. In other words, the avail-

able scalar error estimates lack the directional information required to construct

an anisotropic size field to carry anisotropic mesh adaptation. However, desired

mesh size in different directions, or mesh anisotropy, can be obtained by employing

methods based on derivatives or second derivatives (Hessian) matrix of an appro-

priate solution variable. Anisotropic mesh adaptation procedures further reduce the

number of elements (and degrees of freedom) leading to significant computational

savings for a given level of accuracy.

1.2 Current Status

A common, and most importantly efficient, approach to control the error in-

troduced due to discretization of the physical domain is to perform mesh adaptation

that modifies the spatial discretization. One way to carry mesh adaptation is by

applying local mesh modification procedures dictated by the size field information

based on a posteriori error estimators/indicators. Traditionally, the size field is based

on a scalar error information that allows for isotropic mesh adaptation resulting in,

almost, equilateral elements.

Generally, the desired element size and orientation is significantly influenced

by the characteristics of the solution field which in turn depend on the equations

being solved, the initial and boundary conditions, and the geometry of the physical

domain. Although equilateral elements would be good where the solution field is

isotropic, in reality many physical problems exhibit strong anisotropic phenomena
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that introduces a desire for anisotropic elements, for example, boundary layers that

form near walls in viscous flows or shock waves in high speed flows. In this scenario,

an anisotropic mesh adaptation procedure capable of creating such elements is highly

desirable to further increase the efficiency of the simulations.

Recent efforts to obtain anisotropic meshes have considered the mesh metric

field to define the required mesh anisotropy. A mesh metric field allows one to invoke

local mesh modification operations (or perform remeshing process) in order to obtain

elements that respect the required mesh anisotropy and in turn align the mesh with

the solution anisotropy. Substantial progress has been made on the development

of such procedures for three dimensional domain (see, [31] and references therein)

including efforts on its application to a wide variety of physical problems in 2D

([2, 7, 8, 21]) and 3D ( [15, 35, 38, 39]). Recently, such mesh modification procedures

have also been extended to handle 3D curved geometries [32], which makes the

process amenable to blood vessels.

Although anisotropic meshes have been used in the field of fluid mechanics for

some time, especially for cases with a prior knowledge of boundary layers (see, for

example [18, 24, 25, 27, 33] and literature cited therein), adaptive specification of the

size field for 3D problems has been achieved only in the past few years [15, 35, 38, 39].

Most of the efforts carried out construct mesh metric field based on Hessian matrix

of an appropriate solution variable.

The current status of blood flow simulation shows that mesh adaptation pro-

cedures have only recently been utilized (see, Prakash and Either [36]). All the

attempts to improve the simulation efficiency of hemodynamics by means of mesh

adaptivity are limited to isotropic adaptation over simple geometries and steady

flows, while cardiovascular flows involve 3D complex geometries of blood vessels and

are unsteady in nature. In this study, we have attempted to apply anisotropic mesh

adaptation for pulsatile flows arising in the human arterial system over patient-

specific geometries obtained from imaging data.
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1.3 Our Approach

This study considers pulsatile flows arising in the cardiovascular systems over

real blood vessel geometries. The inherent (quasi-) transient phenomena in blood

flows complicate the process of mesh adaptation as the flow features can propagate

and vary, in terms of shape and/or intensity, with time. There are two possible

approaches to perform mesh adaptation for such problems. In the first, the mesh is

continually adapted according to the transient flow features. The second approach is

to use a single adapted mesh for the whole unsteady flow cycle. The latter approach

is a practical alternative for flows of pulsatile nature and therefore periodic in time.

The single mesh adaptation process for the whole flow cycle can be based on different

scenarios of flow conditions like time averaged flow field, peak flow field over the

cycle or spatially local peak flows. We propose a method in which the errors are

identified by averaging the flow field over a cardiac cycle and then base the error

analysis on this averaged flow field. In particular, we employ the Hessian strategy,

discussed in section 3.2, by choosing the averaged flow speed as an appropriate

solution variable.

1.4 Outline

The organization of the thesis is as follows. Chapter 2 introduces the nu-

merical method that we use to solve hemodynamic flows along with a section that

describes the computation of WSS, the most relevant physical quantity for blood

flow simulations. Chapter 3 presents the overall anisotropic mesh adaptation pro-

cedure. In this chapter, we discuss the Hessian strategy and introduce the concept

of a mesh metric field. We also present the details of anisotropic mesh size field

computation. Chapter 4 considers the effects of mesh quality near the walls on

WSS computation. In this chapter, we try to identify the mesh requirements in

terms of element shape and gradation that will lead to more accurate prediction

of WSS and also provide a possible methodology to meet the desired requirements.

Chapter 5 demonstrates the applications of the anisotropic adaptive procedure for

blood flows. We first demonstrate the efficiency of our procedure by applying it to

a steady flow case in a straight cylindrical vessel. Here, we compare the computed
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wall shear stress with the analytical values. We then increase the complexity of

the problem by extending it to pulsatile flow for the same geometric model. The

complexity is further increased by applying the method to steady flow in a blood

vessel bifurcating into symmetric branches. Finally, we apply the procedure to a

real case of porcine aorta with a stenosis bypassed by a graft for which experimental

validation of the finite element method has been obtained by Ku et al. [28]. In this

chapter, we also demonstrate the effect of element quality near the walls on WSS

computation. Chapter 6 concludes the thesis by summarizing the results obtained

and discussing future work.



CHAPTER 2

BLOOD FLOW SIMULATION

This chapter presents the finite element formulation for the transient incompressible

Navier-Stokes equation governing blood flows. In this work, we use the stabilized

finite element formulation that has been shown to be robust, accurate and stable on

a variety of flow problems (see, for example, Jansen et al. [45] and Taylor et al. [43]).

In particular, we employ the streamline upwind/Petrov-Galerkin (SUPG) stabiliza-

tion method introduced by Brooks and Hughes [6].

The chapter also presents a discussion on the numerical computation of wall

shear stress that plays a role of an important determinant in the formation of arterial

diseases.

2.1 Governing Equations

The governing equations for blood flow, assuming Newtonian constitutive be-

havior and rigid blood vessel walls, are the transient incompressible Navier-Stokes

equations:

ui,i = 0, (2.1)

ρu̇i + ρujui,j = −p,i + τij,j + fi. (2.2)

The variables are: the velocity ui, the pressure p, the density ρ, and the

viscous stress tensor τij. The summation convention is used throughout, i.e., sum

on repeated indices. For incompressible flow the viscous stress tensor τij is simply

the symmetric strain rate tensor as shown below:

τij = µ(ui,j + uj,i), (2.3)

where, µ is the viscosity. Finally fi is a body force or source term, such as gravity.

This term is typically neglected in arterial flow analysis.

6
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The above system of equations is supplemented with an appropriate set of

boundary conditions that are prescribed on the model boundary of the blood ves-

sels. The usual zero velocity, consistent with a no-slip condition is imposed on the

rigid and impermeable vessel walls. A time varying velocity profile, based on the

physiological values, is prescribed at the inlet. And a zero exit pressure in a weak

sense is imposed at the traction-free outlet.

2.2 Flow Solver

Finite element methods are based on the weak form of the governing equations

(2.1,2.2) which is obtained by taking the L2(Ω)-inner product of the entire system

with weight functions. Integration by parts is then performed to move the spatial

derivatives onto the weight functions. The diffusive term, pressure term and conti-

nuity equation are all integrated by parts. The diffusive term is integrated by parts

to reduce continuity requirements, otherwise we would have second derivatives on

our solution space. The pressure term is integrated by parts to provide symmetry

with the continuity equation which in turn is integrated by parts to provide discrete

conservation of mass. This process leads to an integral equation often referred to as

the weak form.

To derive the finite element discretization from the weak form of the governing

equations (2.1,2.2), discrete weight and solution function spaces must be introduced.

Let Ω̄ ⊂ RN represent the closure of the physical spatial domain (i.e. Ω ∪ Γ where

Γ is the boundary) in N dimensions; where only N = 3 is considered here. The

boundary is decomposed into portions with natural boundary conditions, Γh, and

essential boundary conditions, Γg, i.e., Γ = Γg ∪ Γh. In addition, H1(Ω) represents

the usual Sobolev space of functions with square-integrable values and derivatives

on Ω. Subsequently Ω is discretized into nel finite elements, Ω̄e. With this, one

can define the discrete solution and weight function spaces for the semi-discrete

formulation as:
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S
k
h = {v|v(·, t) ∈ H1(Ω)N , t ∈ [0, T ],v|x∈Ω̄e

∈ Pk(Ω̄e)
N ,v(·, t) = g on Γg}, (2.4)

W
k
h = {w|w(·, t) ∈ H1(Ω)N , t ∈ [0, T ],w|x∈Ω̄e

∈ Pk(Ω̄e)
N ,w(·, t) = 0 on Γg}, (2.5)

Pk
h = {p|p(·, t) ∈ H1(Ω), t ∈ [0, T ], p|x∈Ω̄e

∈ Pk(Ω̄e)}, (2.6)

where, Pk(Ω̄e) is the space of all polynomials defined on Ω̄e, complete up to order

k ≥ 1. Let us emphasize that the local approximation space, Pk(Ω̄e), is same for

both the velocity and pressure variables. This is possible due to the stabilized nature

of the formulation to be introduced below. These spaces represent discrete subspaces

of the spaces in which the weak form is defined.

The stabilized formulation used in the present work is based on the formulation

described by Taylor et al. [43]. Given the spaces defined above, the semi-discrete

Galerkin finite element formulation is applied to the weak form of equations (2.1,2.2)

as:

Find u ∈ S
k
h and p ∈ Pk

h such that

BG(wi, q;ui, p) = 0, (2.7)

BG(wi, q;ui, p) =

∫

Ω

{wi (ρu̇i + ρujui,j − fi) + wi,j (−pδij + τij)− q,iui} dΩ

+

∫

Γh

{wi (pδij − τij)nj + quini} dΓ,

(2.8)

for all w ∈W
k
h and q ∈ Pk

h . The boundary integral term arises from the integration

by parts and is only carried out over the portion of the domain without essential

boundary conditions.

Since the standard Galerkin method is well known to be unstable for equal-

order interpolation of the velocity and pressure, additional stabilization terms are

introduced as follows:



9

Find u ∈ S
k
h and p ∈ Pk

h such that,

B(wi, q;ui, p) = 0, (2.9)

B(wi, q;ui, p) = BG(wi, q;ui, p)

+

nel
∑

e=1

∫

Ω̄e

{τM(ujwi,j + q,i/ρ)Li + τCwi,iuj,j} dΩe

+

nel
∑

e=1

∫

Ω̄e

{wiρ
∆

ujui,j + τ̂Ljwi,jLkui,k} dΩe,

(2.10)

for all w ∈ W
k
h and q ∈ Pk

h . We have used Li to represent the residual of the ith

momentum equation,

Li = ρu̇i + ρujui,j + p,i − τij,j − fi. (2.11)

The second line in the stabilized formulation, (2.10), represents the typical

SUPG stabilization added to the Galerkin formulation for the incompressible set of

equations (see Franca and Frey [13]). The first term in the third line of (2.10) was

introduced by Taylor et al. [43] to overcome the lack of mass conservation introduced

as a consequence of the momentum stabilization in the continuity equation. The

second term on this line was introduced to stabilize this new advective term.

The stabilization parameters for continuity and momentum equations are de-

fined as:

τM =
1

√

2c1/∆t
2 + uigijuj + c2ν2gijgij

, (2.12)

τC =
ρ

8τMtr(gij)
, (2.13)

and the stabilization of the new advective term is defined in direct analogy with the

advective portion of τM as:
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τ̂ =
τM

√

LigijLj

, (2.14)

with

∆

ui = −τMLi/ρ, (2.15)

where, c1 and c2 are defined based on considerations of the one-dimensional, linear

advection-diffusion equation using a linear finite element basis and gij = ξk,iξk,j is the

covariant metric tensor related to the mapping from global to element coordinates.

It should be noted that for tetrahedral elements, this mapping depends on the

orientation of the element, and therefore must be corrected to create an invariant

element length-scale by permuting the possible choices of orientation. This term

may be identified with the element length-scale, and is hence a mesh dependent

parameter.

To summarize, we use the SUPG stabilized formulation for the transient in-

compressible Navier-Stokes equations, governing blood flow, that are discretized by

linear finite elements, both for the pressure and the velocity field. Now, to develop

a discrete system of algebraic equations, the weight functions wi and q, the solution

variables ui and p, and their time derivatives are expanded in terms of the finite

element basis functions. Gauss quadrature of the spatial integrals results in a sys-

tem of first-order, nonlinear differential-algebraic equations. Finally this system of

non-linear ordinary differential equations is discretized in time via a generalized-α

time integrator (see Jansen et al. [26]) resulting in a non-linear system of algebraic

equations. This system is in turn linearized with Newton’s method which yields

a linear algebraic system of equations that is solved (at each time step) and the

solution is updated for each of the Newton iterations. The linear algebra solver of

Shakib [40] is used to solve the linear system of equations.

2.3 Wall Shear Stress Computation

Wall shear stress (WSS) can be defined via the surface traction vector t whose

components are given as:
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ti = (−pδij + τij) nj, (2.16)

p denoting the pressure, τij are the components of the viscous stress tensor and nj

are the components of the normal n to the surface. The WSS is then defined, on

each point on the surface, as:

tw = |tw| = |t− (t · n)n|, (2.17)

that is, the magnitude of the traction vector’s component in the plane of the surface.

Traditionally the boundary quantities also referred as wall quantities, like the

viscous fluxes τ̂in (= τijnj), are evaluated by substituting the numerical derivatives

of flow quantities into the definition of the fluxes. However, instead of computing the

viscous flux in a usual way (i.e., by differentiating the velocity) one can introduce

a modified finite element formulation with an auxiliary flux field which amounts

for the boundary flux, i.e., on the portion with essential boundary conditions, Γg

(see, Hughes [22, page 107] , Hughes et al. [23]). Taking τ̂in, as the unknown (dis-

crete) viscous flux, the modified formulation which derives from the discrete weak

formulation (2.10) is:

Find u ∈ S
k
h, p ∈ P

k
h and τ̂in ∈W k

h −W
k
h such that,

Bmod(wi, q;ui, p) = 0, (2.18)

Bmod(wi, q;ui, p) = B(wi, q;ui, p)

+

∫

Γg

ŵi(− τ̂in) dΓ ∀ŵ ∈ W k
h −W

k
h.

(2.19)

Note that the above problem splits into two subproblems:
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B(wi, q;ui, p) = 0 ∀w ∈ W
k
h, (2.20)

∫

Γg

ŵiτ̂in dΓ = B(ŵi, q;ui, p) ∀ŵ ∈W k
h −W

k
h, (2.21)

where, W k
h is the discrete function space spanned by the basis functions; including

the ones omitted to satisfy the homogenous essential boundary conditions. Let η

denote the set of all degrees of freedom (dof) and ηg be the subset corresponding to

the ones located on Γg. W
k
h spans all the basis functions associated with η− ηg, as:

W
k
h = span{NA}A∈η−ηg

, (2.22)

where, NA is basis function associated with dof dA. Now, W k
h can be expressed as:

W k
h = W

k
h

⊕

span{NA}A∈ηg
. (2.23)

This technique is often referred as the consistent boundary-flux calculation

technique and it is constructed to satisfy the conservation properties, see, e.g.,

Gresho and Sani [20, pages 42–44] and Hughes et al. [23]. The auxiliary prob-

lem (2.21) is solved for the boundary flux after the original problem (2.20) as a

post-processing step (i.e., if u (∈ S
k
h) is already determined by (2.20), then the

right-hand side of (2.21) is completely determined). The flux is expressed in terms

of the basis functions associated with ηg. The integrals in (2.21) exist only over the

elements touching Γg, due to the compact support of basis functions, making the

auxiliary problem inexpensive.

The traction vector, t, can be computed once τ̂in is known, which in turn can

be used to compute the WSS magnitude as defined in (2.17). The remaining step is

the computation of the normal, n, at boundary nodes. Noting the normal is poorly

defined at nodes on curved boundaries (i.e., vessel walls) because of the C0 elements,

the final task is to find an appropriate normal. In this work, we use basis function

weighted normals as described in Gresho and Sani [20, pages 542–544].



CHAPTER 3

ANISOTROPIC ADAPTIVE PROCEDURE

The accuracy of the numerical solution significantly depends on the spatial dis-

cretization of the physical domain, i.e., on the process of subdividing the domain

into finite number of elements. In general, the desired element size in different di-

rections are influenced by the physical and geometric features of the problem that

varies significantly over the domain. In many physical problems, including blood

flows, the solution exhibits strong anisotropic features that generates a need for ele-

ments which are aligned with the solution anisotropy. Unfortunately, for real cases

such information, required to compute the desired solution field to an acceptable

level of accuracy, is unknown a priori.

An efficient approach to overcome this difficulty is to apply an adaptive proce-

dure where the errors introduced due to spatial discretization are controlled within

a specified tolerance. The goal of such an adaptive scheme is to modify the spatial

discretization so that the errors are controlled effectively. An anisotropic adaptive

procedure modifies the spatial discretization in a way such that it is adequate in all

directions.

In this chapter, we describe the anisotropic adaptive procedure employed in

this work. We describe the basis for Hessian strategy and introduce the concept

of mesh metric tensors that is used to represent the desired mesh anisotropy. The

last section of this chapter presents the details of the anisotropic mesh size field

computation.

3.1 General Components

An adaptive method involves a feed-back process that evaluates the quality

of the computed solution in order to efficiently control the error(s). It typically

involves a stopping criterion to control the error within a user specified tolerance,

which if not satisfied invokes a modification strategy. For real applications both of

these items are based on a posteriori error information.

13
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In order to control the errors introduced due to spatial discretization, referred

as discretization error, the mesh modification procedures change the local mesh

resolution. It is well known, for consistent numerical methods, that increased mesh

resolution leads to more accurate solutions. The rate at which the error is reduced

as the element size is reduced governs the convergence behavior of the process. The

goal of an adaptive meshing technique is to accelerate this convergence rate in an

optimal fashion, which can be possibly achieved through equidistribution of the

errors iteratively [42]. Such techniques have found its use in applications as diverse

as solid mechanics, fluid mechanics, geomehanics, electromagnetics, semi-conductor

device simulations, and image processing, among many others.

The key ingredients of an adaptive meshing method include:

• A posteriori error estimation/indication: estimating and/or obtaining an indi-

cation of the discretization error based on the quality of the computed solution.

See, Ainsworth and Oden [1] or Verfürth [44] for a survey.

• Size field construction: this step involves the transformation of the error infor-

mation into a size field information that describes the desired mesh resolution

over the domain. This can be achieved by equidistribution of the local errors

over the domain.

• Modifying strategy: the last ingredient involves modification of the mesh ele-

ments based on the size field information. This strategy can be applied based

on local mesh modifications [4, 11] or global remeshing [19].

The above components are general enough to include anisotropic mesh adap-

tation techniques provided each one of them incorporate appropriate directional

information. The remainder of this chapter elaborates on each of these key com-

ponents, except the last one that has been described in [30, 31], for anisotropic

adaptive procedures.

3.2 Hessian Strategy

To extract directional information of the error we use the Hessian strategy [29],

a method where the field’s second derivatives are used to obtain information on the
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error distribution. This directional information can be in turn converted into a mesh

metric field (discussed in the next section) which prescribes the desired element size

and orientation.

To illustrate the origin of the discretization error, we recall that a function

which is sufficiently smooth can be developed into a Taylor series as:

u(x) = u(x̄) + h
du

dx

∣

∣

∣

∣

x̄

+
1

2
h2

d2u

dx2

∣

∣

∣

∣

x̄

+O(h3). (3.1)

When trying to interpolate that function with a piecewise linear function, the

interpolation error will have a lowest order error term (i.e., second order) propor-

tional to the second derivatives of the function. Therefore, the interpolation error

is equivalent to second derivatives for linear finite elements and a large portion of

the discretization error is covered by this error [9].

For the sake of simplicity, we show this for a one-dimensional case and then

generalize it for a three-dimensional case. Let u be approximated by uh as piecewise

linear interpolation (see Fig. 3.1) then the local interpolation error eI = uI − uh
I is

bounded over an interval I as follows [10]:

|eI | ≤ c1h
2

I max
x̄∈I

∣

∣

∣

∣

d2f

dx2
(x̄)

∣

∣

∣

∣

, (3.2)

where, c1 is a constant and hI is the interval length.

x

h
Exact

Discrete

I

i−1 i i+1 i+2

u

u
u

I−1 I+1

Figure 3.1: Linear approximate solution

In this way, the generalization of the interpolation error for 3D in the L∞ norm

defined on an element K can be measured as follows [14]:
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‖eK‖∞,K ≤ c1max
x∈K

max
v⊂K

〈v, |H(x)|v〉, (3.3)

≤ c1max
x∈K

max
e∈EK

〈e, |H(x)|e〉, (3.4)

where, c1 is a constant independent of element parameters, v is any vector contained

in the element, EK is the set of element edges and |H| is the absolute value of the

Hessian matrix of the solution (i.e., consists of absolute eigenvalues). To obtain

such error estimates over the domain in different norms see references [3, 12, 29].

Note that the Hessian strategy is based on certain assumptions on regularity of the

solution and interpolation estimates, see Kunert [29].

The Hessian strategy involves the computation of the matrix of second deriva-

tives. As the Hessian matrix is symmetric, it can be decomposed as:

H = RΛRT , (3.5)

where, R is the eigenvector matrix and Λ = diag(λk) is the diagonal matrix of eigen-

values (k = 1, 2, 3 in 3D). The strategy is based on the idea that a high magnitude

of eigenvalue implies high error in the direction associated with the corresponding

eigenvector, so a small element size would be desired in this direction. Conversely,

low magnitude of eigenvalue in a particular eigendirection suggests that the element

size can be large in this direction. This is discussed further in the section 4 of this

chapter.

3.3 Mesh Metric Field

To perform anisotropic mesh adaptation requires a way to define the desired

element size distribution over the domain. Mesh metric tensors are used to represent

an anisotropic mesh size field defining the desired mesh anisotropy at a point (see,

for example, [5]). The concept of a mesh metric field is used to represent the desired

size field as a tensor over the domain.

The mesh metric tensor at any point P in the domain is defined as a symmetric

positive definite matrixM. The associated quadratic form 〈x,Mx〉 = 1, whose ge-
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ometric representation will be an ellipsoidal surface (see Fig. 3.2), defines a mapping

of an ellipsoid in the physical space into a unit sphere in the transformed/metric

space. In other words, any vector x at point P assumes a unit value in the space

where distances are measured under the metric M.

x 3

x 2

x 1

P

,

Ellipsoidal surface

= 1xx M

Figure 3.2: Ellipsoidal surface associated with the quadratic form

The ideal goal of the mesh adaptation algorithm is to yield a mesh with regular

elements in the metric space where each edge e must satisfy the following equality:

〈e,Me〉 = 1. (3.6)

A mesh with all its edges satisfying the above relationship is commonly referred

as a unit mesh. However, the fact that we cannot pack unit regular tetrahedra to

satisfy a constant unit mesh metric field over a domain indicates that a perfect match

is not possible. Therefore, using a relaxed criteria is inevitable. For further details

on issues of relaxed criteria for mesh modifications and element quality measures

in the transformed space see references [30, 31]. The same reference also provides

the details of discretization of mesh metric field over the domain along with its

implementation.
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3.4 Size Field Computation

In this study, we carry out anisotropic mesh adaptation dictated by a local

directional error indicator based on the second derivatives of the finite element

solution. The crucial step is the construction of a size field, which represents the

desired solution characteristics, that can be fed to the mesh adaptation module.

The key point in the construction of a size field is equidistribution of the error in

all directions.

The interpolation errors for piecewise linear approximation are represented by

the second derivatives (Hessian) matrix which is given by:

H =









∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂z

∂2u
∂y∂x

∂2u
∂y2

∂2u
∂y∂z

∂2u
∂z∂x

∂2u
∂z∂y

∂2u
∂z2









. (3.7)

This is a real symmetric matrix that can be decomposed into real eigenvalues

λk and corresponding orthogonal eigenvectors pk, for k = 1, 2, 3 in 3D. The directions

associated with the eigenvectors are referred as principal directions. The eigenvalues

are then equivalent to the second derivatives along the local principal directions.

Provided the exact solution is known, it is then possible to estimate the error

in an element from the interpolation error equation (3.4). To achieve a suitable mesh

resolution in different directions, a uniform distribution of local errors is applied in

the principal directions which leads to:

h2

p
k
|λk| = ε, (k = 1, 2, 3), (3.8)

where, ε is the user specified tolerance on error. In this way, a mesh metric tensor can

be constructed by scaling the Hessian (or its eigenvalues) with the aim of reaching

the specified error level through equidistribution of error in all directions. In other

words, we want to modify the mesh size, in terms of edge lengths, such that the

error in any direction reaches the specified level.

Practically the exact solution is not known and therefore, it creates a need

for an approximation of the Hessian matrix to estimate the interpolation error. To

do this we reconstruct the second derivatives at each node based on the computed
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solution (described later). With the help of reconstructed Hessian matrix at nodes

we obtain an estimate of the interpolation error over each edge of a node through

inner product as follows:

ejii = 〈eji , |H|
R
i eji〉, (3.9)

where, i is the node number, eji is the jth edge around node i and HR
i is the

reconstructed Hessian matrix at node i. This process is shown at node i for a 2D

case in Fig. 3.3.

i
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Figure 3.3: Error estimates (ejii ) over edges (eji) of node i in a 2D case

The leading error term among these error estimates over edges at node i is

taken as an indicator of the error eii at that node:

eii = max
ji∈Ei

ejii , (3.10)

where, Ei is the set of edges around node i. As we obtain an indication of the error

the user is asked to specify a reduction factor, γ, to define the desired error level

ε̃. The desired error level is then determined based on the user specified reduction

factor and the mean of the leading error terms over the nodes as follows:

ε̃ = γ
1

N

N
∑

i=1

eii, (3.11)

where, N is the total number of nodes.

Now, to recover the second derivatives at a node we employ a reconstruction



20

technique, among many possibilities, that uses the derivative information from the

patch Si of all elements K surrounding that node. In the first step we recover the

gradient of an approximate field component uh at node i as follows:

∇R(uh)i =
1

|Si|

∑

K∈Si

|K|∇(uh|K), (3.12)

where, |K| and |Si| are the volume of element K and the patch of elements Si

around node i. This is equivalent to a lumped-mass approximation by least squares

reconstruction of the gradient for linear elements. A schematic for such a recovery

technique is shown in Fig. 3.4.

K

Gradient on elements

Recovered gradients on nodes

i

S i
FE approximation

Figure 3.4: Schematic of gradient recovery technique in 1D

The same procedure applied to each term of second derivatives yields the

reconstructed Hessian matrix. We should note that values that are reconstructed

on the domain boundary in this way usually does not very well represent the actual
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Hessian, therefore a simple extrapolation technique is applied to project the interior

values onto the nodes that lie on the domain boundary. In this technique, for

current applications, the mean of values at interior nodes around a boundary node

is assumed at that boundary node for each component of the Hessian.

A mesh metric tensor is then obtained at each node by calculating a scaled

eigenspace of the recovered Hessian matrix as:

M = RΛ̄RT , (3.13)

where, R is the eigenvector matrix and Λ̄ = Λ/ε̃ is the diagonal matrix of scaled

eigenvalues. R and Λ are defined in eq. (3.5) whereas ε̃ is defined in eq. (3.11) and

is used to scale the eigenvalues at each node.

Truncation values hmin and hmax for mesh size are specified to limit the eigen-

values. One reason for truncating the element size, in terms of edge length, is to

avoid singular metrics. For example, it is necessary to apply hmax in case eigenvalue

is zero (or close to zero) in the direction where the solution does not vary. The

modified eigenvalues of the Hessian matrix then becomes:

λ̃k = min(max(ε̃−1|λk|,
1

h2
max

),
1

h2
min

), (k = 1, 2, 3). (3.14)

The final mesh metric field is then constructed at each node through multipli-

cation of the diagonal matrix of modified eigenvalues Λ̃ = diag(λ̃k) with the matrix

R of eigenvectors, as shown below:

M = RΛ̃RT . (3.15)



CHAPTER 4

CONTROLLING MESH ADAPTATION

In this chapter, we assess the accuracy of the numerical results obtained on adapted

meshes and identify the mesh requirements that must be met by the adaptive pro-

cedures to improve the reliability of the computation. We also introduce a possible

methodology that enables adaptive procedures to meet the desired mesh require-

ments. The assessment is based on preliminary viscous flow simulations performed

for two cases. One being a high shear flow between parallel plates and other with

the identical inflow profile in a straight pipe.

With this goal we first determine the sensitivity of viscous flux predictions,

namely wall shear stress (WSS), to mesh quality close to the walls. We then try to

identify the mesh requirements in order to improve the accuracy of the computed

quantities like WSS. In this way, the investigation is performed in order to define

the objectives for adaptive procedures that can produce suitable meshes for accurate

prediction of boundary or wall quantities.

4.1 Mesh Requirements for Viscous Flows

Adaptive procedures based on strategies as given in chapter 3 have proved to

be successful in automatically obtaining highly anisotropic meshes aligned with the

solution anisotropy for 3D problems, see the results presented in section 5.1. Al-

though the capabilities of the adaptive procedures have been clearly demonstrated,

improved procedures are required to obtain better accuracy in the prediction of wall

quantities, like WSS. In section 5.2 this is shown for two examples, where we observe

that the predicted WSS values are better on meshes which have structured layer(s)

of elements close to the walls.

Moreover, turbulence models, like Spalart-Allmaras one-equation turbulence

model [41], are also highly sensitive to the mesh quality near the walls. We have

observed that to correctly predict the near wall behavior of the turbulent scalar

variable require many structured layers of elements close to the walls. This requires

22
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further careful investigations and is considered to be a topic of future research.

See, for example [16, 24, 27], where the predictions of wall quantities, like

pressure distributions and skin friction coefficients, on meshes with structured el-

ements close to the walls have been shown to be in excellent agreement with the

experimental ones for complex aerospace geometries. The meshes used in therein

involved user intervention in the sense that they were generated based on a prior

knowledge of the flow features.

Mesh generation for such viscous flow simulations have been tackled and ad-

dressed by many researchers (see, [18] and references therein). The main idea of

the technique, referred as generalized advancing layer method, is to inflate the sur-

face mesh into the volume along the local surface normals. The inflation process is

generalized by making it flexible to be able to handle geometries with sharp corners

or edges. Such a mesh possesses structure in the direction normal to the walls by

creating highly anisotropic triangular prisms and is called a boundary layer (BL)

mesh. A schematic of boundary layer elements is shown in Fig. 4.1.

Figure 4.1: A schematic of boundary layer elements: triangular prisms
are tetrahedronized.

Generally, flow features arising in real applications are unknown a priori there-

fore adaptive procedures are needed to accurately resolve them. Although adaptive

procedures governed by the mesh metric field helps to produce highly anisotropic

meshes with the help of general mesh modification procedures, special treatment of

elements close to the walls appears to be necessary to introduce and/or maintain

structured layers as generated in a boundary layer mesh very near the walls. In
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this study, we describe preliminary steps for adaptive procedures that can maintain

structured layers of elements close to the walls.

4.2 Control of Mesh Adaptation

In this section, we describe a possible methodology that enables adaptive pro-

cedures to maintain structured and graded elements near the walls for accurate

prediction of wall quantities. The idea is to consider BL elements as a product of a

surface mesh (2D) and a thickness mesh (1D) as depicted in Fig. 4.2. To preserve

the structure of the mesh along the normals of the walls the adaptive procedure

can be divided into two steps: surface adaptation and thickness modification. To

perform surface adaptation mesh modifications can be carried on the surface mesh

while layer thickness can be changed by applying modifications in the thickness

mesh.

Layer Surface

Layer Thickness

Wall

First Layer

Second Layer

Figure 4.2: Conceptual decomposition of a boundary layer element.

This two step adaptive procedure can be dictated by the mesh metric field.

The mesh metric field at any point can also be decomposed into a component on

the layer surface and a normal component along the layer thickness, see Fig. 4.3. As

described in chapter 3, a mesh metric tensor M at any node in a 3D case consists

of three eigenvalues and corresponding principal directions. The planar part (see

Fig. 4.3) of a mesh metric tensor can be defined on the basis of the projection of

two principal directions on the layer surface.

One of the principal directions will be more aligned to the local surface normal
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Figure 4.3: Conceptual decomposition of a mesh metric tensor.

vector n than the other two (for regions with boundary layers only, i.e., without

shocks and corners, it will be associated with the largest eigenvalue and will be

totally aligned with the normal vector ideally). The plane containing the other two

principal directions will be the one closer to the layer surface. Now, the principal

direction associated with the largest eigenvalue among the ones associated with the

remaining two principal directions, referred as v̄, can be projected on the layer

surface (see Fig. 4.4) as follows:

P1

n
v

v (Projection on plane)

Layer Surface

Figure 4.4: Projection of a principal direction on layer surface.

vP1 = v̄ − (v̄ · n)n, (4.1)

where, vP1 is the projection of v̄ on the layer surface. Here, we essentially remove

the part of the vector along the surface normal n. The second direction on the plane

of the layer surface that is orthogonal to n and vP1 will be:
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vP2 = n× v̄. (4.2)

The choice of largest eigenvalue among the ones associated with the two princi-

pal directions closer to layer surface will ensure for attainment of error within desired

level. The mesh size along any of the projected vectors will be: hPk = vPkMvT
Pk

(for k = 1, 2). The planar part of a mesh metric tensor can then be determined

based on the two projected principal directions vPk and sizes along these directions

hPk. Similarly, the normal component of the mesh metric tensor can be computed

as: hn = nMnT .

With this information at hand, the decision to apply any mesh modification

procedure on a layer’s surface will be based on the planar part of the mesh metric

tensor and any change in the layer thickness will be based on the normal component.

Basic mesh modification operations, like edge split, edge collapse, node movement

etc. [11, 31], can be applied to perform these steps.

The edges of a boundary layer element can be classified into three categories,

as depicted in Fig. 4.5:

• Layer edge : All the edges of a BL element that have their nodes on the same

layer surface.

• Growth edge : Shortest edge, along the surface normal, of a BL element that

has its nodes on different layer surfaces.

• Diagonal edge : All the remaining edges of a BL element (that essentially

tetrahedronize the BL prisms).

Layer edges

Growth edges

Diagonal edges

Figure 4.5: Classification of edges of a boundary layer element.
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To perform adaptation on a layer surface only layer edges will take part in

the modification process whereas to change the thickness of layers only growth edges

will be split (or collapsed) and/or their length will be adjusted through node move-

ment. The existence of diagonal edges (see, Fig. 4.5) makes the process tedious, but

considering the inherent structure of triangular prisms allows one to simplify the

process.

The surface adaptation is possible with the help of three basic mesh modifica-

tion operations:

1. Edge Split : An edge split operation will split a layer edge into two layer

edges. See Fig. 4.6 to see the initial and final mesh topology.

Edge Split

Figure 4.6: Mesh topology before (left) and after (right) edge split

2. Edge Collapse : An edge collapse operation will collapse a layer edge. See

Fig. 4.7 to see the initial and final mesh topology.

Edge Collapse

Figure 4.7: Mesh topology before (left) and after (right) edge collapse

3. Edge Swap : An edge swap operation will swap a layer edge. See Fig. 4.8 to

see the initial and final mesh topology.
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Edge Swap

Figure 4.8: Mesh topology before (left) and after (right) edge swap

In all the operations, basic geometric and topological validity checks must be

done (see appendix A in [17] for details). For surface adaptation, these will be

performed to check the validity only on the layer’s surface as depicted in Fig. 4.9.

Swap possible

Collapse possible Collapse NOT possible

Swap NOT possible

Figure 4.9: Validity checks on layer’s surface

To change the thickness of the layers basic operations of edge split and/or node

movement can be performed. It is possible to carry both of these operations in a way

that results in graded elements in the normal direction. For example, in the process

of edge split operation the position of the newly created node can be determined on

the basis of the ratio of the normal component of the two mesh metric tensors at

the two end nodes of the growth edge. Node movement can be also applied in the

normal direction to obtain smooth transition in element lengths.
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With the idea of working with triangular BL prisms, a mesh modification op-

erations can be carried out on a single layer’s surface and propagated through all

the layers as shown in Fig 4.10(a). Node movement can be applied to change the

layer thickness while maintaining the number and topology of layers. To introduce

more structured layers of elements growth edges can be subdivided to create new

nodes and in turn layers, see Fig. 4.10(b). After carrying out all the mesh modi-

fication operations each of the boundary layer prisms can be tetrahedronized (see

[18] for tetrahedronization of triangular prisms). Extension of procedures chang-

ing the number of layers to handle complex geometries with sharp corners or edges

where the boundary layers have topological adjustments in them will require some

additional considerations.

Initial Adapted

Initial Adapted

(a)

(b)

Layer edge split

Growth edge split

Figure 4.10: Mesh modification applied on boundary layer prisms.



CHAPTER 5

APPLICATION TO BLOOD FLOWS

In this chapter, we present the results obtained in the current work to demonstrate

the efficiency of our method. This chapter has been divided into two sections. The

first section presents the results for cases in which we apply anisotropic adaptive

procedures presented in chapter 3. The second section investigates the effect of mesh

quality close to the vessel walls in wall shear stress (WSS) computation.

We first apply our method to steady flow in a straight cylindrical blood vessel.

We then increase the complexity of the problem by extending it to pulsatile flow

for the same geometric model. The complexity is further increased by applying

the method to steady flow in a blood vessel with a symmetric bifurcation. Finally,

we apply the procedure to a real case of porcine aorta with a stenosis bypassed

by a graft for which experimental validation of the finite element method has been

obtained by Ku et al. [28].

The second section of the chapter presents results for steady turbulent flow in

a channel and straight pipe. In this part we compare the WSS values obtained on

an adapted mesh to the ones where elements close to vessel walls are structured in

the direction normal to the walls.

5.1 General Mesh Adaptation

5.1.1 Straight Cylindrical Vessel

In this case we compute the flow in a blood vessel as depicted in Fig. 5.1. The

vessel has a radius of 1 cm and is 20 cm long.

5.1.1.1 Stationary Flow

In this case a stationary flow in a straight cylindrical vessel is considered. The

symmetry of the geometry and therefore the flow profile allow easy measurement

of the computational savings while comparing the numerical solution obtained on

different meshes to an analytical value. This example provides an opportunity to

30
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z

Cut plane

Figure 5.1: Model of a straight cylindrical blood vessel. The axis is
aligned with the z direction.

explicitly quantify the major improvements achievable with our method.

The inlet flow profile is parabolic while the outflow has a zero natural pressure.

The rigid vessel wall is assumed to have no-slip (zero velocity) boundary condition.

The flow field is fully developed in the direction of the axis of vessel, varying only

radially with a unit maximum. Therefore, the exact wall shear stress attains a

constant value of tw = 2µ over the entire vessel wall. In our example, the viscosity

is set to µ = 0.01dyn s/cm2 and the density is assumed to be ρ = 1g/cm3.

The comparison is based on results obtained on two kinds of meshes. First we

obtain results on a series of successively refined uniform meshes, hereby reflecting

the fact that the value should become more accurate the finer the mesh is. Second,

we try to calculate the WSS more efficiently by applying anisotropic mesh adapta-

tion based on the Hessian strategy. To perform anisotropic adaptation we compute

the flow on the coarsest mesh and construct a mesh metric field based on the recon-

structed second derivatives of the flow speed. The mesh metric obtained is input

into the mesh adaptation module which, after a number of iteration cycles produces

a highly anisotropic mesh. Fig. 5.2 shows the surface of three uniform meshes and

an anisotropically adapted mesh.

Table 5.1 shows the mean values and standard deviations of WSS values that

are interpolated on the surface mesh along a cut plane perpendicular to the axis of

vessel, as indicated in Fig. 5.1, for different meshes. The mean values together with

the standard deviations σ cover the analytic value in all the cases. Fluctuations

of the WSS obtained on the uniform meshes are smaller the finer the mesh is. We



32

Uniform 3021 Nodes Uniform 6939 Nodes

Uniform 12758 Nodes Anisotropic Adaptive

        1258 Nodes

Figure 5.2: Surface mesh of three successively refined uniform meshes and
one anisotropically adapted mesh for cylindrical vessel (mesh
with 18K nodes is not shown in this figure).

observe that we achieve higher accuracy in terms of both the mean and the standard

deviation when using an anisotropically adapted mesh of 1258 nodes as compared

to a uniform mesh of 18184 nodes. Fig. 5.3 shows the spatial distribution of the

WSS along the circumference of vessel wall at a fixed z location (see the cut plane

depicted in Fig. 5.1.).

Table 5.1: WSS mean values and standard deviations (σ) for stationary
flow in cylindrical vessel.

Mesh type No. of nodes Mean WSS σ
Uniform 3021 1.975e-2 0.928e-3
Uniform 6939 1.977e-2 0.531e-3
Uniform 12758 1.982e-2 0.436e-3
Uniform 18184 1.985e-2 0.388e-3
Anisotropic 1258 1.991e-2 0.316e-3
Analytic - 2.000e-2 -

We try to quantify the amount of savings that we gain through the adaptive

method. We can claim, by considering the mean value along with the standard

deviation as a measure, a gain factor of an order of magnitude when measuring

computational expenses in terms of degrees of freedom. We should note that this



33

0 50 100 150 200 250 300 350
0.015

0.017

0.019

0.021

0.023

0.025

Uniform : 3021N
Uniform : 6939N
Uniform : 12758N
Uniform : 18184N
Aniso     : 1258N

d
yn

e
s/

cm
 2

Angle

Figure 5.3: WSS values along the circumference of a cylindrical blood
vessel for stationary flow.

gain factor has to be reduced when taking into account that first an initial solution

has to be computed on the coarsest uniform mesh. However, the gain factors given

above hold for the best case scenario where the flow solver scales linearly with the

number of degrees of freedom. In practice, the computer time versus the number of

unknowns varies by a higher order than linear which will enhance the gain factor.

One can argue that in real cases it is likely that the flow will be much more complex

than the one considered in this example but we expect anisotropic adaptivity to play

a more important role for flows with confined critical regions, like sharp boundary

layers near the walls, for which uniformly refined meshes over the whole domain

would result in huge computational costs.
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5.1.1.2 Pulsatile Flow

As blood flow is unsteady it is fruitful to understand the effect of pulsatile

flow in the straight cylindrical blood vessel considered in the previous example. The

time varying inflow boundary condition is assumed to be a Womersley profile [46],

with Womersley number α = 5.6 and a time period of 5s, for which the flow rate

is depicted in Fig. 5.4. As in the previous example, we apply zero velocity (no-slip)

boundary conditions on the vessel wall and zero natural pressure at the outlet. In

this case, the viscosity and the density are assumed to be µ = 0.04dyn s/cm2 and

ρ = 1g/cm3, respectively.
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Figure 5.4: Flow rate profile at the inlet of a straight cylindrical vessel.

Similar to the stationary case, the only non-zero velocity component is along

the axis of vessel. This component varies periodically in time at each location within

the domain, reflecting the pulsatile nature of the flow. We analyze the WSS values

both at a given point over a cycle and temporally averaged over the period. The

latter is also known as the time average of the wall shear stress magnitude, defined

as:

tmag =
1

T

∫ T

0

|tw|dt, (5.1)
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where, T is the time period of the cycle. tmag is approximated in time by taking the

discrete sum of the WSS values at each time step.

The comparison is again based on the results obtain on a series of uniformly

refined meshes with those obtained on an anisotropically adapted mesh. As it does

not seem to be advisable to adapt the mesh during the cycle for periodic flows we

employ a single mesh adaptation for the whole cycle. To achieve this we use the

time averaged flow speed over a cycle, i.e., we use the Hessians of the average flow

field to construct the mesh metric field.

As can be expected, the adapted mesh looks similar to the ones depicted in

Fig. 5.2. Table 5.2 lists the mean values of the time averaged tmag along the wall

circumference as depicted in Fig. 5.1 at a fixed z location. In this case we can use

the analytical Womersley solution to compute the exact wall shear stress value and

compare it with the numerical value.

Table 5.2: Time-averaged WSS magnitude (tmag) mean values and stan-
dard deviations (σ) for pulsatile flow in cylindrical vessel.

Mesh type No. of nodes Mean tmag σ
Uniform 3021 2.8782 0.7638
Uniform 6939 2.8328 0.2630
Uniform 18184 2.6569 0.1612
Uniform 103409 2.5969 0.0451
Anisotropic 4238 2.6045 0.0504
Analytic - 2.5900 -

Employing the anisotropic adaptive technique, again suggests a gain factor of

an order of magnitude when considering the mean values along with the standard

deviations of the time-averaged WSS magnitude. One can again argue that for real

problems the flow will have more complexity but one would also expect the crucial

flow features to be confined to a portion of the domain with different degrees of

anisotropy. In other words, the flow considered in this and the previous example

leads to mesh adaptation in the whole domain with essentially uniform refined of

elements in the radial direction but real cases will most likely request a size field

that will have significant variation of sizes in different directions and portions of the

domain.
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We further illustrate the benefit of anisotropic adaptation by presenting the

time dependent behavior of the WSS magnitude at a specific point on the vessel

wall in Fig. 5.5. While the shape of the curves follow the same pattern over a cycle,

the magnitude is too high for the coarser meshes. When comparing to the analytical

solution we can state that the anisotropic mesh is capable of adequately resolving

the time dependent behavior. This shows that our adaptive strategy based on the

average flow field for pulsatile flows is capable of producing a suitable mesh for the

whole cycle to make accurate WSS predictions.
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Figure 5.5: WSS values at a point on straight cylindrical vessel over a
cycle for pulsatile flow.
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5.1.2 Blood Vessel with Symmetric Bifurcation

In this example, the complexity in the blood vessel geometry is increased by

introducing a symmetric bifurcation down the stream. The model for the blood

vessel is depicted in Fig. 5.6.

A

A

10cm
7.66cm

B

B

1cm

30

0.7
cm

Figure 5.6: Model of a blood vessel with a symmetric bifurcation

In this case a stationary flow is considered. The inlet flow profile is taken to be

an artificial turbulent flow profile based on Prandtl’s one-seventh power law along

the axis of vessel with high shear near the walls:

u = ((25(1− r))−2 + ((1− r)1/7)−2)−
1

2 , (5.2)

where, r (≤ 1) is the radial distance from the axis of vessel’s main branch. In this

example, the viscosity is set to a low value of µ = 10−5dyn s/cm2 to avoid significant

diffusion of the flow profile; and the density is assumed to be ρ = 1g/cm3

As before, we carry out simulations on different meshes to compare the results.

Fig 5.7 shows four of the meshes used in this example together with their total

number of nodes. A clip plane of the mesh illustrates the effect of mesh modification

procedures, see Fig. 5.8. We observe that well aligned elements are created close to

the vessel walls where the velocity gradient is steep. The flow field, as depicted in
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Fig. 5.9, makes this observation more obvious. We also observe significant changes

in the mesh close to the bifurcation. The element sizes in this region are small

but isotropic (see the center zoom window in Fig. 5.8), reflecting the fact that the

solution behavior is singular around bifurcation. This example shows the capability

of our strategy to handle situations with arterial branching, i.e., it can automatically

deal with cases requiring both isotropic and anisotropic adaptivity.

We show the computed WSS values along the circumference of the vessel wall

in Fig. 5.10 at cross-section A − A, as depicted in Fig. 5.6. Similar to the case

of straight cylindrical vessel we calculate the mean values along with the standard

deviations σ of WSS (see, Table 5.3). The fluctuations in WSS values on uniform

meshes are smaller the finer the mesh is. We observe that we achieve less fluctuation

in WSS values on the adapted mesh. For this example we can claim, using mean

value and standard deviation as a measure, a high gain factor of more than an order

of magnitude.

Table 5.3: WSS mean values and standard deviations (σ) for stationary
flow in blood vessel with symmetric bifurcation.

Mesh type No. of nodes Mean WSS σ
Uniform 6767 1.0830e-3 9.1526e-4
Uniform 19055 0.6065e-3 5.1718e-4
Uniform 96818 0.4093e-3 4.1865e-4
Uniform 172232 0.3779e-3 3.2646e-4
Anisotropic 13811 0.2350e-3 0.8566e-4

5.1.3 Porcine Aorta

As the last but practically most relevant application we study the performance

of our method by applying it to the simulation of pulsatile flow in a porcine aorta

with a stenosis and a bypass graft. The dimensions of the model are approximately

10cm in length while the vessels diameter at the inlet is around 1.6cm. Blood

was modeled as an incompressible Newtonian fluid with a constant viscosity of

0.04dyn s/cm2 and a constant density of 1.06g/cm3. The geometric model is shown

in Fig. 5.11.
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Uniform 6767 Nodes

Uniform 19055 Nodes

Uniform 96818 Nodes

Anisotropic Adaptive

        13811 Nodes

Figure 5.7: Surface mesh of three successively refined uniform meshes
and one anisotropically adapted mesh for blood vessel with a
symmetric bifurcation (mesh with 172K nodes is not shown
in this figure).
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Figure 5.8: Clip plane through anisotropically adapted mesh of a blood
vessel with a symmetric bifurcation (the windows correspond
to zooms).
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Figure 5.9: Isolines of flow speed on a clip plane in blood vessel with a
symmetric bifurcation. Bright shades indicate high speed.
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Figure 5.10: WSS values at section A-A in a blood vessel with a symmet-
ric bifurcation.

The inlet is prescribed with a pulsatile flow profile that is based upon PC-MRI

through-plane flow rate data, see [28]. Fig. 5.12 shows the velocity at an instant

during the cardiac cycle and the inset depicts the velocity profile at a point near the

center of the inlet for one cardiac cycle (together with the instant of the snapshot).

Similar to the other cases we obtain simulation results on different meshes, four

of them being uniform and one being an anisotropically adapted mesh. Again, the

latter was obtained by first computing the solution on the coarsest uniform mesh,

then constructing the mesh metric field based on the Hessians of the averaged flow

speed. Fig. 5.13 shows four of the meshes used in this simulation together with their

total number of nodes.
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Figure 5.11: Model of a porcine aorta with a stenosis bypassed by a graft.
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Figure 5.12: Flow profile during a cycle (inset) and isolines of flow speed
on a clip plane in porcine aorta at an instant. Bright shades
indicate high speed.
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Anisotropic Adaptive

        42196 Nodes

Uniform 41971 Nodes

Uniform 3456 Nodes

Uniform 217757 Nodes

Figure 5.13: Surface mesh of three successively refined uniform meshes
and one anisotropically adapted mesh for porcine aorta
(mesh with 857K nodes is not shown in this figure).
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A clip plane parallel to the flow direction of the main vessel further illus-

trates the effect of the mesh modification procedure, see Fig. 5.14. We observe

that slender and elongated elements, well aligned with the flow features, are created

such as the ones near the vessel walls due to the presence of boundary layer. This

becomes more obvious when comparing Fig. 5.14 and the flow field at an instant

as depicted in Fig. 5.12. Other regions where major mesh adaptation takes place

(see the zoom windows in Fig. 5.14) are the stenosis area, re-entrant corners of the

model and locations in the main artery where the re-directed flow impacts on the

vessel wall. Typically, element sizes are predominately small but isotropic near the

re-entrant corner, reflecting the fact that solution behavior around that portion is

nearly singular.

Figure 5.14: Clip plane through anisotropically adapted mesh of a porcine
aorta (the windows correspond to zooms).

We analyze the transient behavior of the WSS in two different ways. First,

we compare the WSS distribution for different meshes at the same instant during

the cardiac cycle. Figs. 5.15 and 5.16 show the WSS at t/tp = 0.2 and t/tp = 0.8,
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respectively. Secondly, in Fig. 5.17 we compare the time dependent behavior of the

WSS for different meshes at one particular point on the vessel wall, located near the

downstream vessel branching and labeled as P in Fig. 5.11. The WSS are computed

on a series of uniform meshes ranging from 3456 nodes to over 857164 nodes and on

an adapted mesh consisting of 42196 nodes.

The calculated WSS generally is too high on the coarser meshes, whereas

the values show significant sign of convergence for the finer meshes. Even though

the convergence is not uniform during the cardiac cycle we do observe convergence

patterns that are similar to that of the pulsatile flow in the straight vessel case.

For location P, see Fig. 5.17, considering that the finest uniform mesh of over 857K

nodes (corresponding to over 4.7 million tetrahedra) sufficiently resolves all the

flow features including the derivative quantities, we observe that the anisotropically

adapted mesh follows the pattern of the finest uniform mesh very well in most parts

of the cycle and differs only slightly in the rest of the cycle.

The convergence behavior for WSS seems sufficient for uniform meshes, i.e.,

the difference in WSS values between the meshes consisting of 857K and 217K

nodes is extremely small as compared to the difference in WSS between meshes with

217K and 42K nodes for the whole cardiac cycle. The WSS values obtained on the

anisotropically adapted mesh with 42K nodes follow those of the finest uniform mesh

for most part of the cycle. The anisotropic mesh even seems to capture the WSS

pattern better than the 217K mesh for a substantial part of the cycle. Considering

the complex flow pattern resulting in a convergence behavior that cannot be fully

classified as spatially and temporally uniform, which is further exacerbated by our

attempt to reduce errors in WSS value at each point on the vessel walls, we still are

able to claim considerable gains in computational time. In this example, it seems

difficult to define a single gain factor for the whole spatial and temporal domain but

we do observe that results are far better on anisotropically adapted meshes than

those obtained on uniform meshes of twice or thrice the number of nodes and are

similar to the finest uniform mesh with 857K nodes, i.e., 20 times the number of

nodes, for a substantial part of both the spatial and temporal domain.
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Figure 5.15: Wall shear stress at t/tp = 0.2 for porcine aorta.
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Figure 5.16: Wall shear stress at t/tp = 0.8 for porcine aorta.
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Figure 5.17: WSS during a cycle at a point P in porcine aorta.

5.2 Mesh Adaptation with Boundary Layer Mesh

In this section, we present results to show the impact of the mesh quality,

close to the vessel walls, in WSS computation. To compare the results we apply two

different meshing strategies. One in which meshes are obtained by performing com-

plete anisotropic mesh adaptation process and other in which meshes are obtained

by constraining the structured layer of elements for one (or two) layer(s) near the

walls in the process of mesh adaptation.

We demonstrate this for two simple cases in which there is a steady flow with

high shear near the walls. First we apply it to a simple case of a flow between

parallel plates. In the second case, we consider a similar flow in a straight pipe. We

use identical surface mesh for all the simulations in each example to see the effect

of element size and shape in the direction normal to the walls.
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5.2.1 Turbulent Channel

In this example, we consider a turbulent flow profile within a channel, i.e., a

high shear flow between parallel plates. The viscosity is set to µ = 10−5dyn s/cm2

and the density is assumed to be ρ = 1g/cm3. The model is depicted in Fig. 5.18

along with an inset that shows the inlet flow profile, as the one used in section 5.1.2.

Flow

Figure 5.18: Model of a channel with inlet flow profile.

In this example, we obtain simulation results on three different meshes, one of

them being a completely adapted mesh and others have structured elements frozen

for one and two layer(s) near the walls. Fig. 5.19 shows the three meshes used in

this simulation together with a zoom of meshes close to the wall. As before, the

adaptation is based on the Hessian strategy.

As the domain is a polyhedron there is no geometric model approximation

error. This case helps us to clearly isolate the mesh sensitivity in the post-processing

step of WSS computation. We show WSS values on the upper surface of the channel

at different locations along the length in Fig. 5.20. Table 5.4 provides the mean

values along with the standard deviations of WSS for locations near the outflow,

i.e., farther from the artificial inflow.

We can observe that oscillations in WSS prediction are reduced by an order of

magnitude with the help of structured layer(s) of elements near the walls. Most of

the fluctuations diminish even by one structured layer of elements. The differences

in the prediction between the one and two structured layer(s) meshes vanish quickly

with increase in downstream location. The results clearly demonstrate that the post-
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Figure 5.19: Three different meshes used for turbulent channel (the win-
dows correspond to zooms).
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Figure 5.20: WSS values along the span on upper surface at different
downstream locations for channel.
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Table 5.4: WSS mean values and standard deviations (σ) for high shear
flow in channel.

Mesh type Mean WSS σ
Adapted 1.9975e-4 1.9292e-5
One Layer Frozen 1.7931e-4 3.8245e-6
Two Layers Frozen 1.7559e-4 1.9011e-6

processing technique used for WSS computation is sensitive to the mesh quality close

to the walls and shows that the WSS predictions can be significantly improved with

the help of structured layer(s) of elements.

5.2.2 Turbulent Pipe

In this example, we consider a high shear flow in a straight cylindrical pipe.

The value of the viscosity is set to µ = 10−5dyn s/cm2 and the density is assumed to

be ρ = 1g/cm3. The model is depicted in Fig. 5.21 along with an inset that depicts

the inlet flow profile, which is an artificial turbulent flow profile based on Prandtl’s

one-seventh power law and is identical to the one used in section 5.1.2, see (5.2).

Flow

Figure 5.21: Model of a pipe with inlet flow profile.

As in the previous example we obtain simulation results on three different

meshes (see, Fig. 5.22). We show the computed WSS values along the circumference

of the pipe at different downstream locations in Fig. 5.23. Table 5.5 provides the

mean values along with the standard deviations of WSS for locations near the outflow

of the pipe, i.e., away from the artificial inflow.

Similar to the case of channel we observe that the oscillations in WSS predic-

tion significantly reduces with the help of structured layer(s) of elements near the

walls. Note that the fluctuations does not completely vanish with structured layers,
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Figure 5.22: Three different meshes used for turbulent pipe (the windows
correspond to zooms).
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Figure 5.23: WSS values along the circumference at different downstream
locations for pipe.
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Table 5.5: WSS mean values and standard deviations (σ) for high shear
flow in pipe.

Mesh type Mean WSS σ
Adapted 1.9139e-4 1.9857e-5
One Layer Frozen 1.8551e-4 1.1200e-5
Two Layers Frozen 1.7989e-4 6.1007e-6

owing to the fact that shear stress computation is also sensitive to the approximation

of the geometric model (introduced due to linear straight sided elements). Again,

the oscillations dampen out in the downstream direction. This example also shows

that the structured layer(s) of elements near the walls helps to improve the WSS

predictions substantially.



CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Conclusions

In this study, we have demonstrated a novel approach in the field of compu-

tational hemodynamics to perform efficient blood flow simulations. The method we

presented is based on anisotropic mesh adaptivity dictated by directional error indi-

cators defined from the interpolation part of the discretization error. The directional

error indicators are used to construct a mesh metric field that yields information

on the local mesh resolution desired in different directions. Mesh adaptation dic-

tated by such a mesh metric field results in highly anisotropic meshes well aligned

with the flow features leading to substantial computational savings. We applied our

method to examples ranging from analytical cases to a real patient-specific one with

different complexities in vessel geometries. With these examples we illustrated that

our method can be applied to significantly accelerate hemodynamic finite element

simulations.

In all the cases the quantity of physical interest studied was the wall shear

stress. In these examples, we compared the wall shear stress predictions on the

meshes produced through our anisotropic adaptive method to the ones computed

on a series of uniformly refined meshes. We observed a gain factor of an order

of magnitude for the two analytical examples. In the case of a blood vessel with

a symmetric bifurcation a gain factor of more than an order of magnitude was

noticed. Finally, we demonstrated our anisotropic adaptive procedure for numerical

simulation of blood flow in a porcine aorta with a bypassed stenosis. In this example,

it appeared rather difficult to define a single gain factor for the whole spatial and

temporal domain but we do observe that results are far better on anisotropically

adapted meshes than those obtained on uniform meshes of twice or thrice the number

of nodes and are similar to the finest uniform mesh with 857K nodes, i.e., 20 times

the number of nodes, for substantial part of both the spatial and temporal domain.

In this work, we also investigated the effect of mesh quality close to the walls
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on the wall shear stress computation. We demonstrated that meshes with struc-

tured layers of elements at the walls lead to better wall shear stress predictions. We

observed that the fluctuations in the predictions was higher by one order of mag-

nitude on meshes without structured layers of elements in the case of channel flow;

and was quadruple in the case of pipe flow for similar mesh resolution in the normal

direction to the walls in each case.

6.2 Future Work

The current status of adaptive procedures clearly shows that although these

procedures have been successfully applied for many interesting problems in varied

areas of research, there are still open issues. These issues have to be resolved to

design adaptive procedures applicable to more challenging problems, with complex

geometries, possessing a large degree of anisotropy in solution characteristics. Au-

tomatically obtaining a suitable mesh for different quantities of physical interest not

only requires focused effort to develop more sophisticated adaptive meshing tech-

niques but also needs more stringent and dependable goal-oriented error estimators

that can provide the necessary directional information.

Efficient and reliable large scale flow computations on geometries, like detailed

human arterial system or complex aerospace geometries, deserve careful investiga-

tions to define the objectives of the adaptive procedures. Further, design and de-

velopment of such indispensable tools would require necessary effort to achieve the

goals, making such simulations practically plausible. Here, we try to present a few

of the numerous research areas that need to addressed:

• To improve the computation of the boundary or wall quantities, like wall shear

stress, pressure coefficients, eddy viscosity etc., requires structured and graded

elements close to the walls. Development of adaptive meshing techniques that

can create and/or maintain such elements for geometries with sharp corners

or edges needs considerable efforts. Other possibility to improve the results in

cases with curved geometries can be achieved by curving the structured and

graded elements near the walls (see, for example [34]). One would expect bet-

ter results on such meshes due to less geometric approximation errors that are
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generally dominant near the boundaries; and also due to smooth surface nor-

mals that is possible by using C1 elements. This process would not only require

efforts to develop meshing techniques to create such elements but also need

efforts to increase the capabilities of the flow solver and the post-processing

step of boundary flux computation to handle such curved elements.

• To perform efficient simulations with high reliability demands more stringent

error estimators. Real problems possessing large degrees of anisotropy, that

are common in the field of fluid flows among many others, creates a desire for

the estimation of the errors associated with different directions. Moreover, to

improve the accuracy of a specific quantity of physical interest requires goal-

oriented error estimators that will lead to further increase in the simulation

efficiency (see, for example [37]). Design of such anisotropic goal-oriented error

estimates require detailed error analysis based on the mathematical models

of the problem at hand. Considerable efforts will be needed to investigate

the effectiveness of such methods for real problems by carefully studying the

convergence behavior of the errors.

• To practically achieve large scale computations, like high Reynolds number

flow over complex aerospace geometries involving shocks and boundary lay-

ers, creates a critical need to properly link the two items mentioned above.

The directional error estimates that have to be transformed into a size field

information which can be fed to the mesh adaptation module must support

strategies that can deal with the large variations of desired mesh sizes over the

physical domain. In this regard, appropriate construction and usage of the

size field information, over different portions of the domain, by the adaptive

meshing techniques needs careful investigations.

• To extend the adaptive techniques mentioned above for problems involving

several quantities of physical interest, for example, performing adaptation to

obtain accurate predictions for both the wall shear stress and particle residence

time, will require steps to construct a final size field based on the size fields

associated with different quantities such that the errors are controlled within
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the specified tolerance for each quantity. Such situations also oftenly arise in

multi-physics problems.

• To better characterize hemodynamic flow simulations extension of the math-

ematical and constitutive models can be done to account for the many con-

stituents of blood, like lipids, proteins. Application of improved boundary

conditions accounting for vessel wall resistance will lead to more physical flow

conditions. Other possibility to achieve better physiological conditions can be

usage of models incorporating deformable blood vessels. Developments will be

needed to be able to perform efficient simulations by using mesh adaptivity for

deformable blood vessels that has temporal variability due to pulsatile nature

of the blood flows.
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