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Abstract

Flow and pressure waves emanate from the heart and travel through the major arteries where they are damped, dis-
persed and reflected due to changes in vessel caliber, tissue properties and branch points. As a consequence, solutions to
the governing equations of blood flow in the large arteries are highly dependent on the outflow boundary conditions
imposed to represent the vascular bed downstream of the modeled domain. The most common outflow boundary con-
ditions for three-dimensional simulations of blood flow are prescribed constant pressure or traction and prescribed
velocity profiles. However, in many simulations, the flow distribution and pressure field in the modeled domain are
unknown and cannot be prescribed at the outflow boundaries. An alternative approach is to couple the solution at
the outflow boundaries of the modeled domain with lumped parameter or one-dimensional models of the downstream
domain. We previously described a new approach to prescribe outflow boundary conditions for simulations of blood
flow based on the Dirichlet-to-Neumann and variational multiscale methods. This approach, termed the coupled mul-
tidomain method, was successfully applied to solve the non-linear one-dimensional equations of blood flow with a vari-
ety of models of the downstream domain. This paper describes the extension of this method to three-dimensional finite
element modeling of blood flow and pressure in the major arteries. Outflow boundary conditions are derived for any
downstream domain where an explicit relationship of pressure as a function of flow rate or velocities can be obtained at
the coupling interface. We developed this method in the context of a stabilized, semi-discrete finite element method.
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Flow rate and pressure distributions are shown for different boundary conditions to illustrate the dramatic influence of
alternative boundary conditions on these quantities.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In normal and disease states in children and adults, quantification of three-dimensional flow phenomena
and pressure fields is important to understand the response of the cardiovascular system to biomechanical
forces [1]. In the development of the circulatory system in normal subjects and congenital heart disease pa-
tients, flow modulates diameter and pressure controls wall thickness [2,3]. In older subjects, the initiation
and progression of atherosclerotic and aneurismal disease is directly affected by the complex three-dimen-
sional fluid mechanical environment of the major arteries [4,5]. Moreover, the ability to adequately simulate
flow and pressure is needed to model the performance of devices such as heart valves, LVADs (left ventric-
ular assist devices), filters, stents and stent-grafts. Non-invasive three-dimensional flow and pressure data
can also provide important information to determine the significance of an obstruction or predict the out-
come of a procedure [6,7].

In recent years, remarkable progress has been made in simulating blood flow in realistic anatomical
models constructed from three-dimensional medical imaging data. Arguably, accurate anatomic models
are of primary importance in simulating blood flow. However, as we demonstrate in this paper, realistic
boundary conditions are equally important in computing velocity and pressure fields. Yet, this subject
has received far less attention than image-based model construction for three-dimensional simulations.
In contrast, significant progress has been made in devising outflow boundary conditions for solving the
one-dimensional equations of blood flow in elastic vessels. For example, Stergiopulos solved the non-linear
one-dimensional equations of blood flow in a comprehensive model of the arterial system using a lumped
parameter model of the vasculature downstream of each branch in his numerical model [8]. Several groups
have developed and analyzed the coupling of one-dimensional equations with lumped models [9-12]. In
contrast to methods coupling the one-dimensional equations of blood flow to lumped parameter models,
Olufsen developed a distributed downstream model based on calculating the input impedance of an asym-
metric binary fractal tree using Womersley’s linear wave theory [13,14] and an algorithm for computing the
impedance of a vascular network first proposed by Taylor [15]. Olufsen’s approach was to generate a fractal
tree for each outlet starting from a vessel that matched the diameter of the outlet and diminished in size
with each successive generation of vessels until a fixed terminal vessel size was attained. With this method
an impedance for each outlet of the upstream numerical model was computed naturally from linear wave
theory and branching laws. Olufsen’s distributed model of the downstream vasculature enabled the repre-
sentation of more realistic flow and pressure waveforms than those obtained with lumped parameter mod-
els [16]. Steele and Taylor used a modified version of Olufsen’s impedance boundary condition to model
blood flow at rest and during simulated exercise conditions [17]. In this case, vascular networks were as-
signed to the outlets of a model of the abdominal aorta, modified to represent the resting flow distribution
of 11 different subjects and then dilated to simulate the effects of lower limb exercise. Vignon and Taylor
developed a multidomain approach to couple one-dimensional equations to different lumped and one-
dimensional boundary conditions [18]. While these one-dimensional methods can be used to compute flow
rate and mean pressure, by design, they cannot be used to simulate complex three-dimensional flow phe-
nomena and pressure losses. Three-dimensional numerical methods have been used to compute velocity
fields and quantify shear forces acting on the surface of blood vessels. However, since most three-dimen-
sional models of blood flow use zero or constant pressure, zero traction, or prescribed velocity profiles
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as outlet boundary conditions, blood pressure is not computed accurately and notably absent from reports
of hemodynamic investigations [19-24].

For simulations of blood flow in large arteries, the outlet boundary conditions represent the downstream
vasculature including smaller arteries, arterioles, capillaries, venules and veins returning blood to the heart.
Clearly, the vast extent and complexity of the circulation precludes a three-dimensional representation of
the entire circuit, yet ignoring the effect of the downstream circulation results in grossly inaccurate predic-
tions of velocity and pressure fields for many problems where the distribution of flow between the major
arteries is unknown. If zero or equal pressures or tractions are used for different outlets, the flow split will
be dictated solely by the resistance to flow in the branches of the domain of interest, neglecting the
dominant effect of the resistance of the downstream vascular beds. An alternative approach is to utilize
three-dimensional models for the major arteries where high-fidelity information is needed, and reduced-
order models to represent the remainder of the system. While closed-loop models are optimal, a simpler
approach is to directly represent the vasculature of the small arteries and arterioles using zero-dimensional
or one-dimensional models. These models can be terminated at the level of the capillary vessels where an
assumption of constant pressure is reasonable. Several groups [6,25-33] have successfully coupled three-
dimensional models to either resistances or more sophisticated zero-dimensional models (lumped models),
but this coupling has been performed iteratively, and generally applied to geometries with few outlets and
low resistances (as seen in the pulmonary vasculature). A further limitation of these methods to couple
three-dimensional and zero-dimensional models is the fact that there is no direct relationship between
the anatomy of the downstream vascular bed and the lumped parameters resulting in difficulties in speci-
fying these parameters and relating them to subsequent physiologic or pathophysiologic changes in the
downstream vasculature. In addition, for many simulations based on three-dimensional imaging data,
anatomic information is available for vessels downstream of the primary region of interest. The incorpora-
tion of such data would improve the accuracy of the models of the downstream vasculature.

Methods to couple three-dimensional and one-dimensional models were first described by Formaggia
et al. [34,35]. While great progress was made in these landmark papers, the coupling was performed for sim-
ple geometries and iteratively. Based on our experience, implicit coupling significantly improves conver-
gence, especially for models with multiple outlets. In addition, these papers did not include coupling
between three-dimensional domains and complex vascular networks as have been incorporated in one-
dimensional numerical solutions of blood flow in arteries. Since the vascular bed from the major arteries
to the capillaries can include tens of millions of blood vessels, non-linear one-dimensional models would
be intractable. However, using linear wave propagation theory the input impedance of the downstream vas-
cular bed can be computed for large complex vascular trees. A method to prescribe the impedance (calcu-
lated using linear wave theory) of these downstream vascular beds at the outlets of three-dimensional
models would enable the specification of realistic boundary conditions for three-dimensional simulations
of blood flow and pressure.

While inadequate outflow boundary conditions and rigid-wall models are the main impediments to the
realistic prediction of pressure in three-dimensional blood flow simulations, in this paper we focus on the
first issue and do not address the issue of wall deformability in the three-dimensional domain. We describe a
new method to prescribe outflow boundary conditions in the context of the finite element method as this
method is particularly well suited for handling complex geometries and boundary conditions inherent in
modeling blood flow [24]. The approach we describe is based on the Dirichlet-to-Neumann (DtN) [36]
and the variational multiscale [37] methods and is an extension of the 1D coupled multidomain approach
we successfully applied with a variety of models of the downstream domain [18]. For one-dimensional prob-
lems, we demonstrated that a DtN map can be calculated for the impedance of complex vascular trees and
that this approach incorporates naturally occurring wave reflections from a downstream bed. Wave prop-
agation in transient and periodic states was simulated and the importance of selecting appropriate bound-
ary conditions was demonstrated for one-dimensional simulations of blood flow. We also noted that the
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Computational Domain
A

Boundary Conditions
Pressure = f (Velocities)

Downstream Domain

Fig. 1. Hlustration of the “Coupled Multidomain Method”, where information from the downstream (analytical) domain is
incorporated in the upstream (computational) domain through a boundary map. This approach accommodates a variety of
downstream models ranging from pure resistive to complex electrical analogs and impedance models.

best boundary condition for cardiovascular applications is not the one that exhibits no wave reflection,
since wave reflections naturally arising from downstream beds (from bifurcations, tapering, and variations
in wall properties) should propagate back upstream into the numerical domain. We concluded that, at pres-
ent, impedance-based boundary conditions are the best approach for incorporating natural sites of wave
reflection in the downstream vasculature.

In this paper we present a coupled multidomain approach for three-dimensional finite element simula-
tions of blood flow and pressure. Given the computational expense of three-dimensional numerical meth-
ods and the resolution limits imposed by current imaging technologies, we constrain the three-dimensional
domain to the major arteries, and model the downstream domains with simpler models (Fig. 1). The outlet
boundary conditions are implemented implicitly resulting in good stability and convergence properties at
physiologic pressures. The organization of the paper will begin with the description of our coupled multi-
domain method in three-dimensions and its specialization to resistance and impedance boundary condi-
tions. We then demonstrate this new method on a straight, cylindrical blood vessel, a bifurcation model
with a stenosis on one side, and a subject-specific model of the human abdominal aorta.

2. Methods
2.1. Governing equations (strong form)

The method described can be applied to conservative as well as advective formulations of the incom-
pressible Navier—Stokes equations, and was successfully implemented in both cases. We proceed by defining
the spatial domain as Q and its boundary as I'. The three-dimensional equations for the flow of an incom-
pressible Newtonian fluid consist of the three momentum balance equations and the continuity equation
(written here in advective form) subject to suitable initial and boundary conditions



3780 LE. Vignon-Clementel et al. | Comput. Methods Appl. Mech. Engrg. 195 (2006) 3776-3796

pU,+ pv-Vi=—-Vp+ div(z) +f
div(z) = 0 (1)
1=2uD with D :%(vm vi').

The primary variables are the fluid velocity ¢ = (v,, v, v.) and the pressure p. The density of the fluid is gi-
ven by p (assumed constant), the external force by f, and the viscosity by u (assumed constant).

In regards to boundary conditions, the boundary I" of the spatial domain can be split into a Dirichlet
partition I', and a Neumann partition I, such that (I'=0Q=T,UTI,;I';N I, =0). Considering this,
the velocity at the inlet(s) of the domain is typically specified as

03X 1) =" Fel™CT,. (2)

A no-slip boundary condition is imposed on the walls (surfaces that are neither inlets nor outlets). We dis-
cuss outflow boundary conditions subsequently. The initial conditions for this problem are given by

i(%0) =% FeQ. (3)

2.2. Weak form

We define the trial solution and weighting function spaces for the semi-discrete formulation as
$ = {v|5(-,¢) €e H'(Q)™,t € [0,T],5(-,t) =& on I},
W = {W|w(-1) € H'(Q),t € [0,T],w(-,1) =0 on I}, (4)
2 = {plp(-,1) € H'(Q),1 € [0, T]},
where H' represents the usual Sobolev space of functions with square-integrable values and first derivatives
in Q; nyy represents the number of spatial dimensions and g represents the prescribed Dirichlet boundary

condition.
The weak form reads: find ¥ € & and p € £ such that for every w € # and q € 2

BG("_\;a q; ﬁvp) = 07
Bs(W,q;7,p) = /

Q

—/Vq-z?d?—/ sz-(—pI—i—r)-h'ds—i—/qU-ﬁds.
Q r, ~o r

{w- (0T, + p¥- VT — f) + Viv : (—p£+3>}d55

2.3. Coupled multidomain method

We adopt the following approach to derive appropriate outflow boundary conditions [18,37]. First, we
divide the spatial domain Q into an upstream ‘“‘numerical” domain Q, and a downstream ‘““analytic” do-

main Q' such that @ N @ =0 and QU Q' = Q. The boundary that separates these domains is defined
as I'p (Fig. 2). We define a disjoint decomposition of the variables, for example for the unknown solution
vector, U(%, 1) = [t,p]", (%,1) € @ x [0, T],

U=U+U withUly=0 and Ul|,=0 (6)
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Fig. 2. The spatial domain is divided between the upstream numerical domain Q (main model) and the downstream analytic domain
Q = U;, (here the trees), separated by the coupling boundary I'y = U, s, (here in green).

so that

U:{f]p?e?z, Ue@ and U= ’ferg}. (7)
Note also that

i = —ii. (8)

We use a similar decomposition for the weighting functions, and insert these expressions into the previous
variational form:

/Q(fﬂw’) : (p(ﬁ,t+i,) +pE+7)-VE+T) )+ (Vit+ V') : (—(ﬁ+p’)£+(%+r’))d5c’

W) (~(p+ ) I+t + 7)) iids - /Q(vq+ Vq) - (F+7)d¥

|
=
g>
+

+/F(€1+q’)(z7+17’)~ﬁds:0. 9)

The disjoint nature of this expression is used to derive a new variational form for the numerical domain.
Specifically, since U vanishes on Q' and U’ vanishes on Q (and similarly for the weighting functions),
we find:
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/vﬁ.(pa,+p§-vﬁ—f)+w;;(—p1+%)df—/ W (—pl+1)-iids
Q Iy

+/ W’~(pﬁt+pﬁ'Vﬁ—f)+VW':(—p'[+‘c’)d§c’—/ W~(—p’]+r')~ﬁ'ds—/V€1~ﬁAd>?
/ ~o ]";‘ Q

+/qﬁ.ﬁds_/ dx+/qv nds =0. (10)
r r

Now since (1) holds in Q’, we obtain the original variational form specialized to the numerical domain Q
with the addition of boundary terms accounting for the interface to the analytic domain, Q'

/v*;.(pﬁ,,+p§-vz?—f)+vﬁ:(—,51+a-)d55— W (—pl+1) - iids
5 L

I

+/ W (g 1 47) -ﬁ’ds—/vq.ﬁdﬂ/z]ﬁ-ﬁds—/ g7 i ds = 0. (11)
Iy ~o Q r Iy

Here we introduce an approximation to be able to quantify the terms above that come from the down-
stream domain:

(_p/£+‘5)‘rg ~ [1\? 1( )+H ]FB’ (12)
v, ~ M, p) + Hl,

The operators M = [AN/I,,,,ZVI clr, and H = [fNIm, ﬁc] r, are defined on the Q" domain based on the chosen mod-
el to represent the downstream domain (different examples are provided subsequently).
Then using Egs. (7) and (8), we enforce the continuity of the momentum and mass fluxes across I'p

/»%-(Mm(ﬁ,p)+Hm)-ﬁds:—/ W (Mu(T,p) + H,) -7 ds,
s s (13)
[ atinp)+ o das =~ [ g+ s
I'p I'p

We thus approximate the boundary terms on I'z in the weak form (11) by

/W’-(—p’]—i—f')-fi’ds%—/ W (M (8. p) + H,y) - Ads,
FB ~ ~ ~

I'p ~

— A~

/ qv -iids ~ —/ q(ﬂc(f},ﬁ) +H,.) ids.
I'p I'p
The resulting weak form for the multidomain method is then

/ (pvt—&-pv Vu—f)+Vw (—p1+r )dx — / (=pI+7) - iids,
Q

~

—/ W (M, (3,p) + H,) - iids| — /vq vdx+/ Jt - ﬁds+/ q(M.(Z,p) + H,) - iids| = 0.
I ~ r I'p

(15)

We see that the solution in the numerical domain depends on operators defined by the mathematical model
chosen to represent the physics of the downstream domain (see the terms in boxes) but not the solution
variable, 7 and p’ in the downstream domain.
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2.4. Derivation of the operators depending on the model chosen to represent the physics
in the downstream domain

In selecting a mathematical model of the downstream domain Q’, we have the goal of obtaining a rep-
resentation formula whereby the solution on the boundary I'z can be obtained as a function of the problem
on the interior of the analytic domain and the outlet(s) of the analytic domain. Fundamentally, this repre-
sentation formula will depend on the approximations we introduce in treating the downstream domain. We
consider two possibilities, namely zero-dimensional models and one-dimensional wave propagation theory.
In those cases, we will have a relationship between mean pressure and flow rate at I' g, but this method can
incorporate more general relationships between the primary variables or functions of them—namely, full
traction relationships instead of just the normal component.

2.4.1. Resistance boundary condition

We first present the results for the simplest zero-dimensional model for the downstream domain, the
resistance. The general concept of resistance is to define a constant relationship between mean pressure
and flow rate P = QR [38], consistent with Poiseuille flow where the flow is fully developed (gradients in
the axial direction are zero). We make the assumption that pressure in the downstream domain is constant
over the cross-sectional area of the inlet boundary I'g so that

/ p'ds
A =p Oz—ﬁ———:—R/"ﬂ-ﬁmx (16)
ds I's
I'p
Therefore, the operators M and H are defined as
[Mnl(ﬂvp/)+Hnl]FB: (R/ ﬂ'ﬁ/d51+fl_ﬁ/'f/'ﬁ/l>
< < Jr, ~ e ~ TN

)

r (17)

[A_;Ic(ﬁ,p/) + ﬁc‘]rg = 1_74|FB'
Note that the sign of the resistance part of the operators changes if the face is an inlet or an outlet. Here, I'p
is an inlet for Q' and an outlet for Q. In this simple resistance case, the first box representing a term on the
coupling interface I'p in (15) is modified as follows:

/V@.<Mm<ﬁ,p>+ﬂm>.ﬁds:_/ W(R/ d+>d+/ 5.4 Ads. (18)
I'p ~ ~ I'p ~ I'p ~

I'p

2.4.2. Impedance boundary condition

An example of a memory map is the impedance model, which is analogous to the concept of impedance
in electricity. In this paper the downstream domain is approximated using Womersley’s linear wave theory
[13,14] in an asymmetric fractal tree to derive a one-dimensional impedance Z(¢) assuming periodicity in
time. Note that in this theory 7 - 7 -7 is negligible. We can then derive for an inlet face:

/ pds Lo
p’—ﬁ'~r'~ﬁ'zp’—0:”7:—?/ Z(t—t1)q (1) de
N ds =T

I'p
1 [ ,
:--/‘apJQ/ﬁmyﬁmmb (19)
T =T I'p
The flow rate at time ¢ depends on the history of the pressure over one period. The representation formula
for the operators is obtained as
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?

I' (20)

— 1 ! —
M, (T, p') + Hylp, = (f/ Z(t—tl)/ 7(ty)-ddsdty [ +7' — 7 - r'-ﬁ'[)
t—T I'p ~
[A_;[c(ﬂapl)+ﬁ0]rg :mr,y

As before, note that the sign of the impedance part of the operators changes if the face is an inlet or an
outlet. Here, ' is an inlet for Q" and an outlet for Q. For this memory case, the first box on the coupling
interface I'g in (15) is modified as follows:

t
/f;.(Mm(a,ﬁHH,,,).ﬁds:_/ wz(l/ Z(t—tl)/ ﬁ(zl).ﬁdsdt1+ﬁ-%.ﬁ>ds
I'p ~ ~ I'p T t—T I'p ~
+/ Wt -iids. (1)
I'p ~

Remark 1. Pressure and velocities on the boundary become unknown solution variables. Thus this method
enforces an implicitly coupled boundary condition.

Remark 2. The method described above can also be used when the impedance is derived from a (zero-
dimensional) lumped parameter model.

Remark 3. The components of the natural boundary integrals over I';, in (5) that are not explicitly
described above in (18) and (21) are computed directly from the current solution

/W.
I'p

These so-called ““consistent boundary conditions” are not in fact boundary conditions since they are di-
rectly computed from the solution variables. For a description of this as well as many alternative outflow
boundary conditions see Gresho and Sani [39]. In particular, the magnitude of the tangential tractions
which arise in Egs. (18) and (21) are very small relative to other terms and could be neglected with minimal
effect on accuracy and stability.

A=A 1) ds. (22)

PR B

Remark 4. For simplicity, we omit the A superscript from the field variables and the corresponding spaces
in the subsequent sections.

2.5. Finite element discretization

We employ a stabilized semi-discrete finite element method, based on ideas developed in Brooks and
Hughes [40], Franca and Frey [41], Taylor et al. [24]. The discrete trial solution and weighting function
spaces for the semi-discrete formulation are given by

S = {8, 1) € H(Q)"™,1 € [0,T],7,5 € Pe(Q.)™,8(-,1) = § on I},

W= {#w(-,1) € H(Q)™,1 € [0,T],%|. 5 € Pe(Q)",w(-,1) =0 on I}, (23)

x€Q,
WI}(, = {P\P(,l‘) € HI(Q)’[ € [07 T]ap|xeﬁe S Pk(‘Qe)}'

Considering this, the weak form becomes: find ¥ € &% and p € 2} such that for every w € %7 and
q9€7,
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BG(qu; ﬁap) = Oa
Bl gii.p) = [ (9 (50, + 90 V- ) 4 Vs (-p1 + D)} i - [ Vg o
Q ~ ~ Q

- / B(—pl +)iids + / gt - 7ids (24)
Iy ~ ~

r-rg

—

~ [ 01a5.0) + Ha) AT+ [ (05 p) 4 H) T
I'p ~

~ Iy

In this equation, the superscripts %, k of the discrete approximation of the continuous variables have been
omitted for simplicity. Note that the boundary terms are identified in the box. In order to stabilize the
Galerkin method, the formulation becomes [24,42]:

Find ¥ € &% and p € 2} such that for every w € #7} and ¢q € 2%

B(wﬂ q; 177p) = 07

Nel

el A . . 25
230 [ o8V + (205 ) (D) V) o )
e=1 Qe
N
e=1 59 p
(3, p) represents the residual vector of the momentum equation:
P(B,p) = pB, + pB-Vi+Vp—V- z—fz (26)
A
And 7 is a conservation-restoring advective velocity whose expression is given by
A -
5= 2,p). (27)
1Y
The stabilization parameters are defined as follows:
1
™ = )
\/(2c1/At)2 +0-gv+cn?(g: g+w?)
N C 28
_ 14 Cr(; - ™™ ( )
= e ) tr(g) ¢ and T=—= - ,
e \/S’(v,p) 8- 2(V.p)

where ¢; and ¢, are constants defined from the one-dimensional scalar model problem of the advection—dif-
fusion equation. w is the frequency of rotation of the reference frame, C.,. is a scale factor for 7¢, and g is
the covariant metric tensor ~
2 \TZ
g=(5) s (29)
These non-linear equation (25) are then solved using methods described in [42,43]. The “coupled multi-
domain method” was implemented for different boundary conditions in both the advective and the conserva-

tive forms, explicitly (in the residual only) and implicitly (in both the tangent matrix and the residual). We
observed good numerical convergence and stability properties. In addition, we verified that the relationships
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we imposed as boundary conditions were numerically satisfied and checked for mass conservation between
the inlet and outlets. Subsequent to the verification studies, we solved a series of problems to demonstrate
that realistic pressure fields could be computed and to compare and contrast impedance, resistance and con-
stant pressure boundary conditions. This is described fully in the next section.

3. Results

In the examples below, the profile of the inlet velocity was chosen to be parabolic for subsequent com-
parisons with one-dimensional analysis simulations [18]. For a prescribed input flow, we do not expect that
the pressure fields will be significantly different between time-varying parabolic and Womersley inlet bound-
ary conditions. Furthermore, while the focus of this paper is on the outlet boundary conditions, the method
described could be applied in a similar fashion for inlet boundary conditions to include, for example, a
lumped model of the heart.

We first consider pulsatile flow in a straight vessel with a prescribed flow rate at the inlet mapped into a
parabolic velocity profile and different boundary conditions at the outlet, to specifically observe the influ-
ence of the outlet boundary condition on the solution in the numerical domain. The inlet flow wave is a
representative carotid flow rate [38,44,45]. The nominal radius of 0.3 cm and the vessel length of 12.6 cm
(length to diameter ratio of 20) were chosen to correspond approximately to that of the human common
carotid artery. The solution was computed on a 45,849 element and 9878 node mesh with a time step of
0.002 s, for a total of five cardiac cycles. The pressure pulse in the carotid artery has been reported to be
approximately 70-80/110-120 mmHg for a healthy person [38,46]. The resistance value is the ratio of mean
pressure to mean flow. The impedance is generated following Olufsen’s approach described in the introduc-
tion: a fractal tree is generated starting from a vessel that matched the diameter of the outlet and diminished
in size with each successive generation of vessels until a fixed terminal vessel size was attained. The length-
to-radius ratio of the tree is chosen so that the zero-frequency of the impedance matches the previous resis-
tance boundary condition. The mean outlet pressure of the previous simulations is chosen to impose the
constant pressure outlet boundary condition. Fig. 3 depicts the results obtained with constant pressure,
resistance and impedance outflow boundary conditions. Flow is displayed for reference, since the incom-
pressibility constraint forces the flow to be instantaneously the same at the outlet as that prescribed at
the inlet. The constant pressure outlet boundary condition results in a pressure pulse that does not have
the correct amplitude or phase (pressure lags flow in reality). Note that this is the most common outlet
boundary condition used for three-dimensional analyses of blood flow. The resistance boundary condition
results in an unrealistically large pressure pulse, and forces pressure and flow to be in phase at the outlet.
However, the resistance boundary condition is an improvement over the constant pressure outlet boundary
condition when studying wave propagation, and does not require any knowledge of the pressure or flow
wave forms before the simulation. Finally, Fig. 3 depicts the results for the impedance boundary condition.
In this case, the pressure wave is propagated down the length of the vessel with little damping or dispersion.
In this case, pressure lags flow and the pressure amplitude and wave form are similar to curves given by
Nichols and O’Rourke [38]. Therefore, in regards to pressure curves, we conclude that the impedance
boundary condition is the most realistic boundary condition examined.

To further illustrate the critical influence of boundary conditions, we performed numerical simulations in
an idealized model of an abdominal aorta bifurcation to the iliac arteries with a 75% area reduction stenosis
on one side, using realistic anatomic dimensions (see Fig. 4a) and inflow wave form for an abdominal aortic
bifurcation. The finite element mesh consists of 94,280 elements and 19,579 nodes. A pulsatile, parabolic
profile was imposed at the inlet, and constant pressure (P = 90 mmHg) or equal impedance boundary con-
ditions (with a resistance of 24,000 dyn-s-cm ) at the two outlets. The simulation was run for 10 cardiac
cycles, with a CFL number of 1 in the stenosis and thus a time step size of 0.0008 s, with three non-linear
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Fig. 3. Comparison of flow and pressure wave forms in a carotid artery with a periodic inlet flow and constant pressure, resistance and
impedance outlet boundary conditions. For the pressure boundary condition, inlet pressure varies little from the prescribed constant
outlet pressure and the peak pressure precedes the peak flow. The resistance boundary condition gives rise to an unrealistically large
pressure amplitude. In addition, pressure and flow are in phase at the outlet. For the impedance boundary condition, the range of
pressure is gror? approximately 85-115 mmHg and the pressure lags flow along the length of the vessel. | mmHg = 133.3 Pa,
lee/s=10"°"m’/s.
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Fig. 4. (a) Geometric model and (b) flow distribution between normal iliac artery and an iliac artery with a stenosis that reduces the
cross-sectional area by 75% for constant pressure and impedance boundary conditions. For a constant outlet pressure, the flow split is
dictated solely by the resistance to flow due to the geometry of the computational domain (approximately 70% to the normal side, 30%
to the stenosed side). For an impedance boundary condition with a physiologic level of resistance, the flow split (50%/50%) is
principally determined by the downstream demands (represented by equal outlet impedances). These results are consistent with clinical
observations for resting flow conditions and iliac artery stenoses with less than an 85% area reduction.
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iterations per time step. Fig. 4b depicts the dramatic differences in flow split depending on outlet boundary
conditions. With a constant outlet pressure, the flow split is dictated solely by the resistance to flow due to
the geometry of the computational domain (70% flow to the normal side, 30% to the stenosed side). With an
impedance boundary condition, the flow split (50%/50%) is primarily determined by the downstream con-
ditions (represented by equal outlet impedances), which is representative of most clinical cases (i.e. for ste-
noses with less than an 85% area reduction). Note that because the impedance boundary condition
incorporates the history of flow and pressure over a cardiac cycle, it takes longer for the solution to become
periodic (about 6 cycles) than that observed with a constant outlet pressure (within 2 cycles).

The time varying flow and pressure curves at the inlet and outlets for the constant pressure and imped-
ance boundary conditions are shown in Fig. 5. With the constant pressure boundary condition, blood flow
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Fig. 5. Inlet and outlet flow and pressure curves during the last two cardiac cycles of the simulation for constant pressure (90 mmHg)
and impedance outlet boundary conditions. Note that for the constant pressure boundary condition, the flow to the normal iliac artery
exceeds that through the stenosed iliac artery for all time points in the cardiac cycle and the inlet pressure varies from approximately
88-96 mmHg. For the impedance outlet boundary condition, the peak flow is greater in the normal iliac artery than the stenosed iliac
artery, yet during late systole and early diastole, the flow is greater in the stenosed iliac artery than the normal iliac artery. Note that for
the impedance outlet boundary condition, the peak pressure for the normal iliac artery is close to that of the inlet pressure, whereas the
peak pressure for the stenosed iliac artery is significantly less than that in the normal iliac artery. Also note that the inlet pressure varies
between approximately 88 and 106 mmHg. 1 mmHg = 133.3 Pa, 1 cc/s = 107% m%/s.
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from the aorta to the normal iliac artery is greater than that to the stenosed iliac artery throughout the car-
diac cycle, following the 70/30 mean flow split noted above. The inlet pressure amplitude for the pressure
boundary condition is not representative of physiologic conditions: it is solely determined by the instanta-
neous pressure gradient from the inlet to the prescribed constant outlets that is needed to drive the flow to
both outlets, and therefore is only a slight variation from the mean value. For the impedance boundary
condition we observe that while the mean flow split is nearly 50/50, the normal iliac artery gets more flow
at peak systole (when the effect of the 75% area stenosis is greatest) and less flow during diastole. We also
note that for a brief period in diastole, the flow in the stenosed iliac artery is actually greater than the inlet
flow, indicating flow is actually drawn from the normal iliac artery—coinciding with the brief period of re-
verse flow in the normal iliac artery. This latter observation is quite interesting and perhaps due to the fact
that during the deceleration phase in late systole, blood is more easily decelerated in the normal iliac artery
than would be expected for the stenosed iliac artery. Again, note that this phenomenon is not observed
with constant outlet pressure boundary conditions. For the impedance boundary conditions, the inlet, nor-
mal iliac and right iliac pressure wave forms exhibit physiologic amplitudes and phase. Note that the peak
systolic pressure at the outlet of the stenosed iliac artery is considerably less than that observed in the nor-
mal iliac artery and that all the pressure waveforms exhibit little difference in diastole when the flow rate is
low.

Fig. 6 provides a dramatic illustration of the differences in the velocity fields between the constant pres-
sure and impedance outlet boundary conditions. Velocity magnitude at peak systole and early diastole is
shown along the symmetry plane of the model. The velocity fields for the two different outlet boundary con-
ditions exhibit substantial differences. We note, in particular, that the peak velocity through the stenosis is
much higher for the simulation performed with the impedance outlet boundary condition as compared to
that performed with the constant pressure outlet boundary condition. This is consistent with the significant
differences in flow through the stenosed iliac artery for the two boundary condition cases examined. Fig. 7
depicts the instantaneous pressure fields for the constant pressure and impedance outlet boundary condi-
tions at peak systole and early diastole. Note the fact that the scales are different for the two boundary con-
ditions and the two time points in the cardiac cycle examined.

Finally, we consider pulsatile flow in a model of the abdominal aorta of a normal subject with geome-
try and flow rates generated from magnetic resonance imaging data [47]. The measured volumetric flow rate
at the level of the diaphragm was specified at the inlet boundary and impedances are specified at all the
outlets. The exit impedances were chosen so that the mean flow rate in each of the branches corresponded
to the measured flow distribution when such data was available and literature data as needed [48,49]. Fig. 8
shows the 3D model. A total of 800,151 elements and 167,850 nodes were utilized and the solution was
computed using a time step of 0.001 s for a total of five cardiac cycles. Fig. 8 depicts the volume flow rate
and pressure at the inlet and representative outlets of the subject-specific abdominal aorta model when
impedance boundary conditions are applied. Blood flows into the different arteries according to the pre-
scribed impedances representing the demands of the downstream trees. Previous simulations of pulsatile
flow in the human abdominal aorta [50] were performed by imposing outflow velocity profiles using
Womersley’s theory of pulsatile flow in rigid vessels to match the prescribed volumetric flow rates. For
the branch vessels feeding the viscera (celiac, superior mesenteric, inferior mesenteric and renal arteries),
these flow rates were scaled to some fraction of the inlet flow waveform and reverse flow in the iliac arter-
ies during diastole arose because more flow was pulled from the other branch vessels than was input to
the abdominal aorta. Note that for the present simulations the flow split between the branch vessels
occurs naturally. Finally, to illustrate the results that can be obtained from coupling three-dimensional sim-
ulations of blood flow to impedance boundary conditions, the mean wall shear stress for the subject-specific
model is presented in Fig. 9. Clearly, mean wall shear stress will be highly affected by the outlet boundary
conditions.
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Fig. 6. Velocity magnitude along the symmetry plane of the model at peak systole and early-diastole for the constant pressure and
impedance outlet boundary conditions.
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Fig. 7. Pressure at peak systole and early diastole for the constant pressure and impedance outlet boundary conditions.
1 mmHg = 133.3 Pa.
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Fig. 9. Mean wall shear stress over one cardiac cycle for the subject-specific abdominal aorta model depicted in Fig. 8.
1 dyn/cm® = 0.1 Pa.

4. Conclusions

We have successfully developed and implemented a method to prescribe outflow boundary conditions
intended for three-dimensional finite element simulations of blood flow based on the Dirichlet-to-Neumann
and variational multiscale methods. As long as the effect of the downstream domain can be represented by
an explicit function of pressure as a function of flow rate or velocity, the methods described can be used to
couple the upstream three-dimensional numerical domain with the downstream analytic domain. The
numerical results presented demonstrate that physiologic values of pressure can be attained and illustrate
the importance of using appropriate boundary conditions. A long straight cylindrical blood vessel is used to
demonstrate that realistic blood pressures can be calculated using this new method and that the choice of
the outlet boundary conditions has a significant effect on the computed pressure field. The next example, an
otherwise symmetric model of an abdominal aortic bifurcation with an obstruction in one iliac, demon-
strates that the choice of outlet boundary conditions can dramatically affect the flow distribution, velocity
and pressure fields. The final example, a patient specific abdominal aorta model, demonstrates that this ap-
proach can be used for complex multi-branched systems.

Results have been shown for idealized and patient specific 3D geometries, using physiological values,
coupled to more sophisticated downstream models that incorporate memory-effects like the impedance
boundary condition. Lumped parameter models more complex than a simple resistance could be easily
incorporated in a manner similar to that used for the impedance boundary condition.
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The stability of the solutions proved to be sensitive to the number of frequencies used to generate the
impedance boundary condition, due to the convolution with the flow rate history. Although these results
are very encouraging, for a more realistic representation of flow and pressure further analysis of the gen-
eration and validation of the impedance functions is needed. The impedance functions were generated using
a binary fractal tree that did not incorporate differences between the branching patterns in different organs.
Alternate models based on physical measurements of branching patterns would aid in the specification of
realistic impedance functions. A further limitation of the impedance boundary condition is that it is derived
based on the assumption of periodicity. An alternate outflow boundary condition that incorporates tran-
sient, non-periodic flows or a coupling to the non-linear one-dimensional equations of blood flow may be
needed for non-periodic three-dimensional flow problems.

It is important to note that the present implementation does not incorporate deformable vessels in the
three-dimensional domain and, as such, does not model wave propagation from the three-dimensional to
one-dimensional domains. However, the analyses performed clearly indicate the need for appropriate
boundary conditions in computing pulse pressures. Realistic values of blood pressure (mean and pulse) will
be essential for obtaining accurate loading and displacement in fluid-solid interaction methods. Finally, the
method described may be extensible to other biological and non-biological flow phenomena where the
downstream model can be described as a function that links the primary variables or their derived quan-
tities at the coupling interface.
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