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Abstract
Microstructurally small fatigue crack (MSFC) formation includes stages
of incubation, nucleation and microstructurally small propagation. In
AA 7075-T651, the fracture of Al7Cu2Fe constituent particles is the major
incubation source. In experiments, it has been observed that only a small
percentage of these Fe-bearing particles crack in a highly stressed volume.
The work presented here addresses the identification of the particles prone to
cracking and the prediction of particle cracking frequency, given a distribution
of particles and crystallographic texture in such a volume. Three-dimensional
elasto-viscoplastic finite element analyses are performed to develop a response
surface for the tensile stress in the particle as a function of the strain level
surrounding the particle, parent grain orientation and particle aspect ratio. A
technique for estimating particle strength from fracture toughness, particle size
and intrinsic flaw size is developed. Particle cracking is then determined by
comparing particle stress and strength. The frequency of particle cracking
is then predicted from sampling measured distributions of grain orientation,
particle aspect ratio and size. Good agreement is found between the predicted
frequency of particle cracking and two preliminary validation experiments. An
estimate of particle cracking frequency is important for simulating the next
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stages of MSFC formation: inserting all particles into a microstructural model
for these stages is computationally intractable and physically unnecessary.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The structural integrity of complex mechanical systems such as bridges, turbine engines and
aircraft is a prime concern of engineering practice. Generous safety factors are often built
into such systems in order to avoid catastrophic failure during use. In opposition, economic
pressures, performance criteria, resource limitations and the desire for simplicity encourage
efficient and elegant design. This issue is of particular importance when fatigue damage is a
primary limitation of structural integrity and maximum utilization. Recent efforts to reduce the
costs associated with overly conservative approaches to the avoidance of fatigue failure have
emphasized the possibility of using specific knowledge of the fatigue process in conjunction
with novel sensors and sophisticated reasoning techniques to create highly detailed, predictive
models of fatigue damage (Christodoulou and Larsen 2004). This approach seeks to exploit
thorough knowledge of the microstructural origins of fatigue failure combined with the power
of modern computing to create high-fidelity physically-based models of the fatigue degradation
process that can be used for probabilistic predictions of structural failure. As part of one such
effort (Papazian et al 2007a, 2007b), the microstructural origins of fatigue failure in commercial
aluminum alloys are being codified into multi-scale, highly detailed finite element (FE) models
that are capable of analyzing the fatigue process in large complex systems while taking into
account the specifics of the material microstructure. This paper addresses the first step in such
a modeling capability, that of the incubation of cracks in aluminum alloy 7075-T651.

It is well known that, in the high-cycle regime, most of an aluminum alloy’s fatigue life
is spent in the microstructurally small fatigue crack (MSFC) formation phase. This phase
consists of the crack incubation, nucleation and microstructurally small propagation stages.
Suresh (1998) asserted that up to 90% of the total fatigue life of a structural component
could be consumed during the formation of a dominant fatigue crack. Other researchers
have argued that the time spent before a crack becomes microstructurally large could be
50–70% of total fatigue life (Brockenbrough et al 1994, Fan et al 2001). McDowell et al
(2003) distinguished the distinct stages of MSFC formation and implemented a corresponding
series of phenomenological models to predict the fatigue life in A356-T6. Previous work by
Li et al (1999a, 1999b) studied damage characterization of an Al–Si–Mg alloy matrix with
dispersed Si particles. Microstructural features, including size, local volume fraction, nearest
neighbor distances and clustering, were investigated for damage evolution and crack nucleation.
Numerical analysis of fields in the particle was not considered. A complete understanding of
the physical response and associated statistics, in each stage and proper sequence, of the
microstructure during MSFC formation is still needed. One way to obtain additional insight
is to couple improved experimental techniques with ever increasing computing power such
that individual microcracks can be modeled directly, an explicitly geometrical approach. This
strategy will provide an environment to explore the underlying physics and mechanics of
the MSFC phase. The opportunity now exists to create and validate an improved prognosis
capability, which accurately captures the stochastic behavior of this dominant fatigue life phase.

This is the first in a series of papers addressing such a capability, with aluminum alloy
7075-T651 as the proof-test material. Throughout this series, wherever possible, statistically
accurate morphologies and textures are explicitly included in all three-dimensional FE models.
The goal of this paper is to develop a microstructure-based model wherein the observed statistics
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Figure 1. Micrographs of an Al7Cu2Fe constituent particle on the surface of a fatigue loaded
7075-T651 rolled plate. (a) SEM micrograph showing regimes of (i) incubation, (ii) nucleation
and (iii) microstructurally short crack propagation, and (b) [0 0 1] inverse pole OIM image showing
the surrounding grain structure.

related to incubation are accurately predicted. These incubation statistics are necessary inputs
for statistically accurate simulations of the later stages of MSFC formation. Future papers will
address these subsequent stages, nucleation and microstructurally small crack propagation,
and provide validation of the implemented criteria and predicted statistics.

In general, incubation is the stage of MSFC formation that precedes and enables the
development of new surface area in the alloy, and varies with alloy composition. In 7075-
T651, a major element of the incubation process is the brittle cracking of Al7Cu2Fe constituent
particles. This is a common observation in commercial aluminum alloys, which often contain
such brittle intermetallic impurities (e.g. Morris 1976, Morris 1978, Kung 1979). Using
optical and SEM microscopy to observe the notch root of a single edge-notch tension (SEN(T))
specimen, Gruenberg et al (1999) conducted experiments to show that cracked particles serve as
the origins of MSFC formation in 7075-T651. Other experimental results indicate that fatigue
cracks in 7075-T651 are formed from the fractured Fe-bearing constituent particles located on
the specimen surface (Xue et al 2007). Some particles crack, while some particles debond from
the matrix, but the debonded particles are much less effective in the nucleation of matrix cracks.
Therefore, particle cracking is the dominant incubation mechanism of consequence in this alloy.
Figures 1(a) and (b) are micrographs of a region surrounding a constituent particle after 3000
cycles of R = 0 constant amplitude loading at a far-field strain range of 1% in the rolling
direction (RD). Figure 1(a), a SEM micrograph, shows the three phases of MSFC formation:
(i) incubation, (ii) nucleation and (iii) propagation. Generally, the crack is propagating in a
plane defined by the normal direction (ND) and transverse direction (TD). Figure 1(b), an
orientation imaging micrograph (OIM), shows the orientations of the surrounding grains in the
aluminum matrix.

In figure 2(a), many constituent particles (white) are observed embedded in the aluminum
matrix. This SEM image was taken in a highly stressed region with the sample under load,
so that many fatigue cracks (black) can be observed. The larger field of view, figure 2(a),
illustrates the stochastic nature of the fatigue phenomena at the microstructural scale. Under
higher magnification, it is observed that most particles do not crack, figure 2(b), and of the
few that do, figures 2(c) and (d), fewer nucleate a matrix crack and even fewer matrix cracks
continue through MSFC propagation, figure 2(d).
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Figure 2. (a) SEM image of 7075-T651 under load, showing multiple MSFCs. Close-up images
show (b) an uncracked particle, (c) a cracked particle where the crack did not extend into the matrix
and (d) a cracked particle where the crack did extend into the matrix.

From experimental observations, it has been hypothesized that particle aspect ratio and
size, grain orientation and strain level are the key parameters to explain the stochastic nature of
particle cracking. In this paper, this hypothesis is tested using a combination of observations,
measurements and FE analyses. The overall objective of this series of papers is to describe
the development and validation of a computational simulation system capable of reproducing
the mechanics and stochastic behavior of MSFC formation, as apparent in figure 2(a). A
necessary first step is to answer quantitatively the question: given a distribution of particles in
a highly stressed area, which particles will crack? The answer to this question is important
for simulating the next stages of MSFC formation: inserting all particles into a microstructural
model for these stages is computationally intractable and physically unnecessary.

This paper is organized to answer this question systematically, and the strategy is depicted
in figure 3. First, section 2 contains a description of, and results from numerous FE analyses
performed on an idealized single grain/single surface particle model. The key variables studied
are applied strain level, grain orientation and particle aspect ratio. A response surface is then
developed for a specific stress component at a particular point in the particle, σp. Next, a
technique for determining distribution of particle strength as a function of fracture toughness,
KIC, and particle size is described in section 3. In section 4, the results from sections 2
and 3 are combined into a particle cracking criterion, charted in figure 3: a particle cracks
if a measure of σp exceeds the particle strength, σcr. This criterion can be viewed as a filter
or function dependent on distributions of particle aspect ratio, grain orientation, strain level
surrounding the particle, particle size, particle fracture toughness, KIC, and intrinsic flaw size,
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Figure 3. Flowchart of steps taken in this study to predict the frequency of particle cracking.

given by a material parameter, C, discussed in section 3. This function is applied to observed
particle distributions to predict particle cracking frequency. Section 5 presents a preliminary
validation study of this criterion by comparing the predicted particle cracking frequency
with experimental observations performed at Northrop Grumman Corporation. Section 6
summarizes observations and conclusions.

2. Methodology for generating a particle stress response surface

The objective of this section is to describe the development of a response surface from which
the crack incubation driving force, i.e. tensile stress, can be determined for arbitrary particle
configurations observed in 7075-T651. An extensive series of FE analyses is performed on a
baseline model. Each analysis has a unique combination of three variables: grain orientation,
particle aspect ratio and applied strain level. Together, these FE analyses cover the breadth of
these three variables for the material and load histories studied herein. The resulting particle
tensile stresses from these analyses are consolidated into a response surface.

2.1. Finite element model: geometry, boundary conditions and verification

The baseline structural model chosen for this study is an idealization of the interaction of a single
particle with its surrounding matrix. As can be seen in figures 1 and 2, particle sizes and shapes
are highly varied, as are their locations within grains. In a rolled 7075-T651 microstructure,
constituent particles are elongated in the RD. Given the statistical objective of this study and
initial hypotheses that absolute particle size and aspect ratio will be important geometrical
variables, a simple shape that can account for these variables is desirable. Therefore, particle
shape is idealized as ellipsoidal with the major axis aligned with the RD. It could be argued
that such a simple particle geometry ignores the potential for higher stress amplification from
irregular geometry, that is, such a simplification would skew the statistics by missing the
particles most highly stressed because of local stress concentrations due to their geometry.
However, all particles have some form of local stress concentrator, yet very few of them crack.
Therefore, it is surmised that highly local stress concentration cannot be a statistically dominant
influence. This is likely due to the diminution effect of highly local plastic deformation
(Gao et al 2004).
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Figure 4. Typical surface mesh on an example baseline structural model.

Further, in the baseline model, the idealized particle is on a RD–ND surface at a stress
concentrating location. This location accounts for the fact that fatigue cracks most often begin
at structure-scale geometric stress-risers. These produce gradients in local fields wherein
highest values are most often on surfaces. Even in the absence of stress gradient influence, Mei
and Morris (1993), for example, showed that, in an otherwise uniform stress field, inclusions
experience higher stress on a free surface than in the interior.

Finally, in the baseline model, the idealized particle is centered on a RD–ND surface of
a single grain, idealized as a cube. This simplification assumes that particles are very small
compared with their containing grain, and that the statistics of particle cracking are dominated
by intra-granular particles. Therefore, the baseline structural model is a semi-ellipsoidal
surface particle in a cubic grain, figure 4. In the analyses to populate the response surface,
the particle is modeled as a linear elastic, isotropic solid and the grain as a rate-dependent,
face-centered cubic (FCC) crystal plastic solid. This model has no inherent material length
scale, so the absolute size of the baseline model is irrelevant and chosen for convenience. The
constitutive model of the grain is detailed in section 2.2.

The boundary conditions applied to the model are intended to emulate strain fields in a
grain located on the surface at a notch tip of a double edge-notched (DEN) specimen. To obtain
an accurate description of these strain fields, engineers at Northrop Grumman Corp. created an
elasto-plastic FE model of a DEN specimen (Fridline 2007). The strain at the highly stressed
notch tip was computed after applying cyclic load boundary conditions, figure 5, indicative of
the experiment discussed later, in section 5. A maximum notch strain of 1% in the RD with a
corresponding R value of 0.07 was computed. Based on this analysis, displacement boundary
conditions were applied to the surfaces of the baseline model such that the strain in the RD was
1%. Since the baseline model represents a grain embedded within a larger structure, the TD
and ND components of strain in the baseline model are typically non-zero. Specifically, the
out-of-plane boundary conditions on surfaces with normals in the TD or ND are between the
two extremes of traction-free and fixed in the direction of the face normal. Thus, two sets of
boundary conditions that represent these extremes envelope the actual conditions. In an initial
sensitivity study, the RD normal tensile stress at point A in a particle, figure 4, was computed
to be about 8% higher with the latter boundary conditions applied and particle aspect ratios
RD : TD : ND = 11 : 3.5 : 3.5 for one particular grain orientation. At this time, it is unknown
which boundary condition case better represents an embedded grain statistically. Therefore,
all subsequent FE analyses used in the development of the response surface were conducted for
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Figure 5. (a) Double edge-notch specimen; W = 19 mm, H = 12.7 mm, r = 2.4 mm,
h = 5.7 mm. (b) FE computed notch strain and remotely applied cyclic loading. (Courtesy of
Northrop Grumman Corp.)

both the unconstrained and constrained cases. Resulting differences in the particle cracking
frequency, due to the two boundary conditions, are presented in section 4.

Additional assumptions involved in the generation of the particle stress response surface
using the baseline model are

(i) Structural models are initially stress-free;
(ii) The particle and matrix are perfectly bonded, and;

(iii) Particle tensile stress is accurately obtained when only the influence of the surrounding
grain is considered.

The first assumption is made because it is expected that the residual stresses are negligible
when compared with the stresses induced by mechanical loading for hot-rolled materials. The
second assumption is conservative, since any debonding would result in reduced tensile stress
in the particle. The third assumption is the subject of an in-depth study which will be presented
in a later publication.

A verification study was conducted to determine the level of FE mesh refinement required
in the response surface generation. Mei and Morris (1993) developed a semi-analytical
technique for computing the stress field in and around ellipsoidal particles under conditions of
linear elasticity for geometry and boundary conditions that are equivalent to the baseline model.
To compare their semi-analytical solution with the present FE results, the baseline model was
assigned linear elastic, isotropic material properties for both the grain and the particle, where
the particle elastic modulus was 3 times that of the grain, to match one of the solutions from
Mei and Morris. The macroscopic elastic modulus of 7075-T651, 72 GPa, was assigned to the
grain and, as a result, a modulus of 216 GPa was assigned to the particle. The particle was
defined to be hemispherical, i.e. aspect ratio RD : TD : ND = 1 : 1 : 1. Also, following Mei and
Morris, unit traction was applied uniaxially in the RD. The baseline model was then analyzed
using 3 levels of mesh refinement: 6000; 12 000 and 25 000 degrees of freedom (dofs). The
stress values were queried at a subsurface distance of 0.05 µm, following Mei and Morris.
Figure 6, a plot of the RD stress components from point A to point B, figure 4(a), illustrates
that with a minimum of 25 000 well-graded dofs, convergence of the FE computed stress to
the analytical stress is acceptable. Mesh densities significantly greater than the finest level
plotted in figure 6 were used in the FE analyses for response surface generation. A similar
convergence study was performed for an additional baseline model with the FCC constitutive

7



Modelling Simul. Mater. Sci. Eng. 16 (2008) 065007 J E Bozek et al

Figure 6. Mesh refinement verification results, comparing present FE results with a semi-analytical
solution for a hemispherical surface inclusion in an infinite half-space (Mei and Morris 1993). Path
A–B shown in figure 4.

model for the grain. The difference in stress at point A was less than 5% between FE models
with about 10 000 and 100 000 dofs.

An in-house FE analysis code, finite element all wheel drive (FEAWD), was used to
perform these analyses. The code has a parallel driver, which coordinates the partitioning,
formulation, assembly and solution of non-linear FE equations. It is based on standard packages
including MPI (Pacheco 1997), ParMetis (Karypis et al 2003), PETSc (Balay et al 2006) and
the Cornell Fracture Group’s FemLib library (Cornell Fracture Group 2007), which contains
an implementation of the crystal plasticity model used during response surface generation.
Ten-noded, hybrid, tetrahedral elements were used exclusively in all models.

It was shown by Mei and Morris that the RD component of stress is nearly constant
throughout a hemispherical surface particle (within 5%) when a linear elastic, isotropic model is
applied to both the grain and the particle. Because the particles considered here are significantly
stiffer than the surrounding grain, the particle is subjected to higher stress. However, this is
necessarily true only when the baseline model is undergoing linear elastic deformation, which
is different from the FCC crystal plasticity model used to generate the response surface. In
this latter case, depending on the surrounding grain’s orientation, the particle can actually be
relieved of stress after the onset of slip. For some orientations, this occurs because the grain
loses its ability to transfer load to the particle. During loading, plastic slip first occurs along
the particle–grain interface; the location on the interface where this first occurs is dependent on
the surrounding grain’s orientation. It can be expected that the orientation of the surrounding
grain in the baseline model will affect the location of maximum stress in the particle. However,
throughout the generation of the response surface, the RD component of particle stress was
queried at point A, figure 4. This was to stay consistent with observations that when particles
crack, they tend to crack near the mid-plane, near point A.

2.2. Finite element model: constitutive behavior

The response of the 7075-T651 matrix material is governed by a crystal elasto-viscoplastic
formulation that captures the relevant microstructural mechanisms. The overall formulation
follows the work of Matous and Maniatty (2004) and is summarized here for completeness.
At the grain scale, the deformation response to stress is assumed to follow a standard
multiplicative decomposition, consisting of an elastic/lattice deformation and viscoplastic slip
along crystallographic slip systems, which is accommodated by dislocation motion and is
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volume preserving (Lee 1969). Summarizing,

F = FeFp, (1)

det(Fp) = 1, (2)

L = Ḟ
p
Fe−1

+ FeL̂
p
Fe−1

, (3)

L̂
p = Ḟ

p
Fp−1 =

Ns∑
α=1

γ̇ αPα, (4)

where Fe and Fp correspond to the elastic/lattice and plastic deformation gradients,
respectively; L is the velocity gradient; L̂

p
denotes the plastic velocity gradient on the relaxed,

intermediate configuration; γ̇ α is the rate of shearing on slip system α; Ns denotes the total
number of slip systems and Pα = sα ⊗ mα is the Schmid tensor. In addition, sα and mα are the
slip direction and slip plane normal for the α slip system, respectively, and ⊗ indicates dyadic
product. The twelve primary {1 1 1}〈1 1 0〉 slip systems for FCC crystals are considered here.

For the elastic response, a linear relationship, with cubic symmetry, is assumed between the
second Piola–Kirchhoff stress, Ŝ, and the Green elastic strain, Ê

e
, on the relaxed configuration,

which can be expressed as

Ŝ = det(Fe)Fe−1
σFe−T = Ĉ : Ê

e = 2µÊ
e

+ λtr(Ê
e
)I − 2η� : Ê

e
, (5)

Ê
e = 1

2
(FeT

Fe − I), (6)

where σ is the Cauchy stress, Ĉ is the fourth order elasticity tensor, I is the second order
identity tensor and the fourth order tensor � with respect to the lattice coordinates is simply

�îĵ k̂l̂ = 1, if î = ĵ = k̂ = l̂, or

�îĵ k̂l̂ = 0 otherwise, (7)

where the hat indices indicate the lattice configuration, which may coincide with the relaxed
configuration. The three elasticity parameters µ, λ and η are related to the stiffness matrix
elasticity coefficient as µ = C44, λ = C12 and 2η = 2C44 + C12 − C11.

For the plastic response, a power law relates the rate of shearing to the resolved shear
stress, τα , on the α slip system,

γ̇ α = γ̇0
τα

gα

∣∣∣∣τ
α

gα

∣∣∣∣
1

m−1

, (8)

where γ̇0 is a reference shearing rate, m is the strain rate sensitivity and gα is the resistance to
slip on the α slip system. The resolved shear stress on the α slip system can be related to the
stress and elastic deformation through

τ α = (FeT
FeŜ) : Pα. (9)

To complete the model, it remains to define the evolution of the resistance to slip, i.e. hardening,
on the slip systems. 7075-T651 is a precipitation strengthened alloy, and the hardening is due
to Orowan’s (1948) mechanism of dispersion hardening. This mechanism is associated with
dislocations bowing out between and forming loops about precipitates. The η′ precipitates,
which form as disks (thickness about 15 nm and diameter about 45 nm assumed here) on the
{1 1 1} planes, are the primary strengthening phase (Li et al 1999c). Hart (1970) proposed
a model for dispersion hardening due to short range stresses for spherical precipitates and
Mori and Tanaka (1973) proposed a model based on average internal stresses. For spherical
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precipitates, these models give similar predictions. More recently, models based on the Mori–
Tanaka approach have been proposed in the context of crystal plasticity formulations (Schmitt
et al 1997, Han et al 2004). A model building on that developed in Schmitt et al (1997), but
that allows for saturation, is defined here. First, the resistance to slip, gα , in equation (9) is
defined to evolve according to

ġα = G0

(
gs − gα

gs − g0

) Ns∑
β=1

Hαβ |γ̇ β |, (10)

where g0 is the initial resistance to slip, gs is the saturation value of g, G0 is associated with
the rate of hardening and Hαβ is the slip interaction matrix that defines the relative strength of
self and latent hardening on the slip systems. Here it is assumed that the hardening is due to
internal stresses arising from the incompatibilities between the plastic strain field due to slip
and the elastic precipitates. If one assumes that the elastic properties of the matrix are the
same as those of the inclusion and approximate an inclusion as elliptical, then, using Eshelby’s
theory (Mura 1987), the change in stress near the inclusion due to an increment in plastic
deformation is

∆Ŝ = Ĉ : (	 − 
) : (−D̂
p
�t), (11)

where 	 is the Eshelby tensor, 
 is the fourth order identity tensor, D̂
p

is the symmetric part
of L̂

p
and (−D̂

p
�t) can be thought of as the eigenstrain in the precipitate. The assumption that

the elastic properties of the matrix and inclusion are the same is a reasonable approximation
since the η′ precipitates are precursors to MgZn2 η precipitates, and the elastic properties of
MgZn2 (hexagonal) and Al are relatively close. Assuming the precipitates form with equal
likelihood on the four {1 1 1} planes, then the Eshelby tensor, 	, can be taken as the average
Eshelby tensor for these four cases. Now, computing the increment in resolved shear stress on
the slip systems using equation (9) and substituting the symmetric part of equation (4) for D̂

p
,

we obtain

∆τα = (FeT
Fe)Ĉ :


(
 − 	) :

Ns∑
β=1

γ̇ βMβ�t


 : Pα, (12)

where Mβ is the symmetric part of Pβ . If one assumes the elastic deformations are small and
neglect the higher order term, i.e. let FeT

Fe ≈ I, making use of the symmetry of Ĉ, and let this
increment in stress be associated with the increase in hardening, then

Ns∑
β=1

Hαβ |γ̇ β | = ξ

Ns∑
β=1

|Mα : [Ĉ : (
 − 	)] : Mβ ‖ γ̇ β |, (13)

can be used to define Hαβ , where ξ is a scalar coefficient that is defined to make the diagonal
elements of Hαβ equal to one. The values for Hαβ along with the slip system numbering
scheme used for reference are given in table 1.

The 7075-T651 constitutive model was calibrated against experimental data provided by
Jordan et al (2007). The FE model used for calibration comprised 299 hexahedral grains. The
grains were constructed with an aspect ratio of RD : TD : ND = 25 : 4 : 1, which approximates
the observed aspect ratio of 50 : 4 : 1. The rolling dimension was reduced to facilitate the
creation of a FE model with a sufficiently large number of grains. Grain orientations for
the calibration model were assigned based on OIM measurements of 7075-T651. Material
parameters are listed in table 2.

The mechanical properties of the particles were determined with an atomic force
microscope (AFM) equipped with a nanoindenter. For the particles of interest, Al7Cu2Fe,
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Table 1. Hardening interaction matrix and slip system numbering.

Slip system # ID 1 2 3 4 5 6 7 8 9 10 11 12

(1 1 1) [1 1̄ 0] 1 1.0 0.50 0.50 0.50 0.59 0.088 0.088 0.50 0.59 0.18 0.088 0.088
(1 1 1) [1̄ 0 1] 2 0.50 1.0 0.50 0.59 0.50 0.088 0.18 0.088 0.088 0.088 0.59 0.50
(1 1 1) [0 1 1̄] 3 0.50 0.50 1.0 0.088 0.088 0.18 0.088 0.59 0.50 0.088 0.50 0.59
(1̄ 1 1) [1 0 1] 4 0.50 0.59 0.088 1.0 0.50 0.50 0.59 0.50 0.088 0.088 0.18 0.088
(1̄ 1 1) [1̄ 1̄ 0] 5 0.59 0.50 0.088 0.50 1.0 0.50 0.088 0.088 0.18 0.59 0.088 0.50
(1̄ 1 1) [0 1 1̄] 6 0.088 0.088 0.18 0.50 0.50 1.0 0.50 0.59 0.088 0.50 0.088 0.59
(1 1̄ 1) [1̄ 0 1] 7 0.088 0.18 0.088 0.59 0.088 0.50 1.0 0.50 0.50 0.50 0.59 0.088
(1 1̄ 1) [0 1̄ 1̄] 8 0.50 0.088 0.59 0.50 0.088 0.59 0.50 1.0 0.50 0.088 0.088 0.18
(1 1̄ 1) [1 1 0] 9 0.59 0.088 0.50 0.088 0.18 0.088 0.50 0.50 1.0 0.59 0.50 0.088
(1̄ 1̄ 1) [1̄ 1 0] 10 0.18 0.088 0.088 0.088 0.59 0.50 0.50 0.088 0.59 1.0 0.50 0.50
(1̄ 1̄ 1) [1 0 1] 11 0.088 0.59 0.50 0.18 0.088 0.088 0.59 0.088 0.50 0.50 1.0 0.50
(1̄ 1̄ 1) [0 1̄ 1̄] 12 0.088 0.50 0.59 0.088 0.50 0.59 0.088 0.18 0.088 0.50 0.50 1.0

Table 2. Material parameters for 7075-T651.

m 0.005
g0 220 MPa
γ̇0 1.0 s−1

G0 120 MPa
gs 250 MPa
γ̇s 5.0 e10 s−1

µ 28.3 GPa
λ 60.9 GPa
η 5.10 GPa

a mean value of 160.9 GPa (standard deviation of 7.56 GPa) was measured for Young’s
modulus. This compares reasonably well to a slightly smaller mean value found by Oswald
(2003). Poisson’s ratio of 0.3 was assumed.

2.3. Particle tensile stress under cyclic loading

This section addresses the evolution of particle tensile stress under cyclic loading. The load
history studied here is constant amplitude, with a maximum notch strain of 1%, figure 5. The
measured stress is σp, the RD tensile stress at point A in the particle, figure 4(a).

In figure 7, the evolution of σp during such cyclic loading of a typical model is shown.
During the first half-cycle of loading, plastic flow occurs in the matrix adjacent to the particle.
Upon unloading in the second half-cycle, the permanent deformations in the matrix cause
a state of residual compression in the particle. During subsequent reloading, the residual
compressive stress in the particle must be overcome before the particle experiences tensile
stress. Therefore, the net tensile stress in the particle at the peak of the second loading cycle
is lower than that for the first cycle. Since the load history is constant amplitude, subsequent
loading cycles do not lead to an increase in σp.

Based on these results, all models used in the generation of the response surface were
subjected to 1% monotonic strain. This simplification implies that if particles crack, they do
so in the first loading cycle. This is in agreement with experimental observations, which have
shown that about 50–85% of all particles that are going to crack do so in the first load cycle,
as discussed in section 5.
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Figure 7. Computed σp versus loading cycles for a typical single grain/single particle model under
constant amplitude loading with a maximum strain of 1% and an R value of 0.07.

2.4. Creating the particle tensile stress response surface

To populate the particle tensile stress response surface, 1296 FE analyses were conducted for
each of the two boundary conditions considered, where each analysis corresponds to a specific
combination of grain orientation, particle aspect ratio and applied strain level. Lagrange
interpolation functions were used to create a response surface from which σp can be interpolated
given any arbitrary combination of these three variables. In this section, the dependence of the
response surface on each individual variable and the functions used for interpolation between
the stored results are discussed.

2.4.1. Dependence of particle tensile stress on grain orientation. Grain orientation is
represented here as a Rodrigues vector, (r1, r2, r3). The Rodrigues space extends to infinity,
but for crystals possessing sufficient symmetries, any orientation can be represented by its
symmetric equivalent near the origin. For FCC crystals, the fundamental region of the
underlying symmetry group is a truncated cube in Rodrigues space (Heinz and Neumann
1991), figure 8(a). The six cube face centers of this FCC fundamental region are a distance
of

√
2 − 1 from the origin, while the eight planes truncating the corners of the cube are 1/

3
√

3
from the origin.

The FCC fundamental region was discretized into 444 linear tetrahedral elements with 144
vertices. The surface mesh for this discretization is shown in figure 8(b). Each vertex in this
discretization corresponds to a modeled grain orientation. For each modeled grain orientation,
σp was computed using the model discussed in sections 2.1–2.3.

The computed dependence of σp on grain orientation can be visualized by color contouring
the FCC fundamental region. The σp distribution for a particle aspect ratio of RD : TD : ND =
11 : 3.5 : 1, unconstrained boundary conditions and an applied strain of 1% is shown in figure 9.
Since the microstructural anisotropy is taken into account in the material model, an anisotropic
response is observed. It is clearly seen that grain orientation affects σp significantly: the
maximum computed stress is about 30% higher than the minimum. In general, σp for the
constrained boundary condition was 20 to 30% higher than for the corresponding orientation
with the unconstrained boundary condition. This is to be expected because, under constrained
boundary conditions, a higher stress is needed in the RD direction for the same level of applied
strain in that direction. For a simple case of uniform geometry and linear elastic response,
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Figure 8. (a) Fundamental region for FCC symmetry in Rodrigues space. (b) FE discretization of
the fundamental region with 444 linear tetrahedral elements and 144 vertices.

Figure 9. Computed σp in FCC fundamental region with a particle aspect ratio of RD : TD : ND =
11 : 3.5 : 1 and an applied strain of 1%, unconstrained boundary conditions.

Table 3. Computed results for three sample characteristic orientations for the unconstrained
baseline model with a particle aspect ratio of RD : TD : ND = 11 : 3.5 : 1 and an applied strain
of 1%.

Orientation label Rodrigues parameters (r1, r2, r3) σp (MPa)

High stress (−0.2071, 0.4142, −0.0858) 1302
Intermediate stress (0.0858, 0.2071, −0.2071) 1180
Low stress (0.0, 0.0, −0.4142) 991

one would expect the increase in stress to be in direct proportion to Poisson’s ratio. For the
present case, with a variable geometry hard inclusion and elasto-crystal-plastic response, the
observed increase in σp is reasonable. For use in the next two sections, three characteristic
grain orientations are selected from those analyzed. These are denoted the high, intermediate
and low stress orientations. The corresponding orientation parameters and σp values are given
in table 3.

2.4.2. Dependence of σp on aspect ratio. In this section, the relationship between σp and
particle aspect ratio is investigated. Since results for each of the 144 orientations cannot be
shown here, the three characteristic orientations given in table 3 are considered. During an
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Figure 10. (a) Variation of particle aspect ratio, RD : ND (TD : ND = 1). (b) Dependence of σp on
particle aspect ratio RD : ND, which is chosen equal to RD : TD, and grain orientation. (c) Variation
of particle aspect ratio, RD : TD (RD : ND = 10 : 1). (d) Dependence of σp on particle aspect ratio
RD : TD and grain orientation. (e) Variation of particle aspect ratio, TD : ND (RD : ND = 10 : 1).
( f ) Dependence of σp on particle aspect ratio TD : ND and grain orientation. Unconstrained
boundary conditions.

initial investigation, RD : ND, RD : TD and TD : ND aspect ratios of the ellipsoidal particles
ranging from 1 : 1 to 10 : 1, 2 : 1 to 10 : 1 and 1 : 1 to 5 : 1, respectively, were modeled.
The computed dependence of σp on the particle aspect ratios, for the unconstrained boundary
condition, is shown in figure 10. Similar results were experienced for the constrained boundary
condition. The computed σp increases as the RD : ND and RD : TD aspect ratios increase and
as the TD : ND aspect ratio decreases. The independent effect of particle aspect ratio on stress
can account for a maximum σp 100% greater than the minimum for a given orientation. The
combined effect of both the grain orientation and the particle aspect ratio on the tensile stress
can produce differences of nearly 200%.

Based on these preliminary studies, it was found that σp behaves approximately
quadratically as a function of each aspect ratio. For this reason, the σp response surface was
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Figure 11. Example computed σp versus εapp. Particle aspect ratios RD : ND = 11 : 1 and
TD : ND = 3.5 : 1. Unconstrained boundary conditions.

Figure 12. Piecewise linear approximation between σp and εapp. Unconstrained boundary
conditions.

populated using nine different aspect ratios, enough for quadratic interpolation as discussed in
section 2.4.4.

2.4.3. Dependence of σp on applied strain level. In addition to grain orientation and particle
aspect ratio, the applied strain level is another key parameter in determining σp. Let the
particle aspect ratio be fixed at RD : TD : ND = 11 : 3.5 : 1 and consider the three characteristic
orientations introduced in table 3. As the applied strain level is monotonically increased,
a nearly bi-linear response in σp is computed, figure 11. The results suggest that σp remains
almost constant after the elasto-plastic transition for the low stress case but increases at almost
the elastic slope for the high stress case. The transition point corresponds to the initiation of
plastic slip in the grain. The relationship between σp and applied strain, εapp, can be written as

σp = σT

εT
εapp, εapp < εT,

σp = k(εapp − εT) + σT, εapp � εT, (14)

where (εT, σT) represents the transition point and k denotes the slope after the transition,
figure 12.

Note that for a given combination of grain orientation and particle aspect ratio, σp can be
approximated as a function of εapp using equation (14). This provides the basis for the stress
response surface discussed in the following section.
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Figure 13. Nine-noded quadratic quadrilateral element used to interpolate σp for particle aspect
ratio (RD : ND, TD : ND).

2.4.4. Response surface for σp. A response surface for σp is created as a two-stage
interpolation scheme using standard FE interpolation. The interpolation is performed first
in orientation space and then in aspect ratio space. Using the information described in
sections 2.4.1–2.4.3, the response surface captures the dependence of σp on grain orientation,
particle aspect ratio and εapp.

A total of 1296 separate FE simulations were performed to populate the response surface
for each of the two boundary conditions considered. This consisted of 144 grain orientations
performed on each of the nine particle aspect ratios considered. Each individual analysis
resulted in an approximately bi-linear stress–strain relationship, equation (14). The FE
interpolation in orientation space is performed on the finite element mesh of the fundamental
region, figure 8(b), while the interpolation in aspect ratio space is performed on a nine-noded
quadrilateral (Q9), figure 13. The Q9 was chosen to represent the quadratic relationship
between σp and aspect ratio, as previously discussed in section 2.4.2.

The use of the response surface can be summarized in the following manner. Given an
arbitrary set of inputs of applied strain level, εapp, grain orientation, R, and particle aspect
ratio, AR, σp is determined as follows:

(i) Locate the tetrahedral element, T , in the FCC fundamental region mesh, figure 8(b), which
contains R;

(ii) Determine the four corner nodes of T ;
(iii) Obtain the stress at each corner node using εapp and equation (14);
(iv) Interpolate stress values using the shape functions of T and R:

σj =
4∑

i=1

Ni(R)σi (15)

(v) Repeat steps (i) through (iv) for the nine different aspect ratio values, populating the nine
nodes shown in figure 13;

(vi) Finally, interpolate σp using the Q9 shape functions and AR:

σp =
9∑

j=1


j(AR)σj (16)
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Figure 14. Cross-section of a semi-elliptical surface particle, with major and minor radii, ap and
bp, containing a pre-existing, semi-elliptical surface crack, with major and minor radii, af and bf .

where Ni(R) are the standard four-noded tetrahedral element shape functions and 
j(AR) are
the standard Q9 shape functions.

A methodology for computing σp in an ellipsoidal particle has now been presented. To
complete the criterion for particle cracking, given a particle in a distribution of particles,
the particle strength must also be known. The following section details the process and
assumptions of predicting the particle strength, which results from both experimentation and
LEFM calculation.

3. Estimation of particle tensile strength

Direct measurements of Al7Cu2Fe particle strength are not available to the best knowledge of
the authors. Therefore, this section describes a technique for estimating particle strength, σcr.
The following assumptions are made:

(i) If a particle cracks, it does so in the first half-cycle of loading;
(ii) σcr is a function of particle size, due to the presence of inherent particle flaws;

(iii) An inherent surface flaw exists that lies perpendicular to RD, figure 14;
(iv) The inherent flaw size is much smaller than the particle size;
(v) The shape of this inherent flaw is semi-elliptical, figure 14;

(vi) af and bf are proportional to ap and bp; and,
(vii) LEFM conditions apply.

As stated in section 2, assumption (i) is supported by experimental observation. Assumption (ii)
has been commonly used in previous works (Murakami and Endo 1994, Curtin 1994). The flaw
is assumed to be oriented perpendicular to the direction of maximum tensile stress, assumption
(iii), because this is the orientation that yields the highest Mode I stress intensity factor.
Assumption (iv), that af � ap, is supported by Ghosh and Moorthy (1998). Furthermore,
since these flaws are undetectable at the microstructural scale, their actual shape and size is
unknown. Thus, for simplicity, the flaw shape is assumed to be semi-elliptical and af and bf are
assumed to be proportional to ap and bp, assumptions (v) and (vi), respectively. Specifically,
the proportionality assumption can be expressed as

af = Cap, bf = Cbp, (17)

where C is a material dependent parameter that offers a simplified approximation of the flaw
size distribution in the alloy. The question arising from the proportionality assumption, (vi),
is whether the effect of the actual flaw distribution in the particles can be captured by a single
parameter. This question is revisited in section 3.1, below. Finally, assumption (vii) was made
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because the particles are in a brittle state, with a very low measured toughness. Since LEFM
conditions, a semi-elliptical shape and C � 1 are assumed, the initial flaw configuration,
figure 14, can be approximated as a semi-elliptical surface crack in an infinite plate with a
well-known critical Mode I stress intensity factor solution (Raju and Newman 1979),

KIC = σcr

√
πF(af , bf). (18)

Solving (18) for σcr and substituting (17) into (18) yields the strength equation used herein,

σcr = KIC√
πF(af , bf)

= KIC√
πCF(ap, bp)

. (19)

As indicated in section 4.2, a distribution of σcr can be calculated given distributions of KIC,
C, ap and bp. Values of KIC for twelve Al7Cu2Fe second-phase particles were estimated from
a Vickers hardness test with a micro-hardness indenter following the procedure established by
Lawn (1993). Using this technique, cracks were easily formed under minimal load, but there
was wide variation in length and symmetry. These variations directly affect the application of
KIC in this analysis as the accuracy of the measurements was less than desired. However, a
mean value of KIC was determined to be 0.14 MPa

√
m with a standard deviation of 0.07 MPa√

m. As particle size increases, for any value of C, the strength decreases; therefore, larger
particles are more likely to crack than smaller particles. This is consistent with observations
(Brockenbrough et al 1994, Gruenberg et al 1999).

3.1. Calibration of the particle tensile strength parameter, C

The parameter C was calibrated for one microstructure sample, figure 15(a), with a single
cracked particle, observed on the surface at a notch tip of a DEN specimen. For this sample,
the experimentally recorded local texture, microstructure geometry and applied strain at the
time of particle cracking were replicated in a FE model, figure 15(b). The model size is that
of the observation area, 50 µm in the RD and 30 µm in the ND. The microstructure was not
observed in the third dimension, the TD. Therefore, a 2.5-dimensional replication model was
created: the geometry was extruded 7 µm in the TD and all grains were assigned the orientations
observed on the free surface. Observations of the microstructure were made only prior to and
after the first half-cycle, and it was found in the latter observation that the particle had cracked.
Thus, it was assumed that the particle cracked at full load, 1% strain in the RD. The boundary
conditions for the replication model were identical to those discussed in the baseline model, for
both the constrained and unconstrained cases. The constitutive models applied to the particle
and grains are those described in section 2.2. For the resulting FE model, a mesh convergence
study was run for the two boundary conditions considered, figure 16. Three meshes (0.7 million
dofs, 1.3 million dofs and 4.2 million dofs) were run for each of the two boundary conditions.

The maximum particle stress for the two boundary conditions was computed to be located
at point P, figures 15(b) and 16. The stress found here for the most refined mesh, 1583 MPa
and 1351 MPa for the constrained and unconstrained boundary conditions, respectively, is the
assumed σcr for this particle. The shape of the particle used to obtain the value of σcr obtained
here is a rough approximation of the assumed ellipsoidal particle. If 2ap = 3.48 µm is taken
to be the particle diameter on the free surface, figure 16(a), then the value of ap is 1.74 µm. By
using these values for σcr and ap, and a mean KIC of 0.14 MPa

√
m with a standard deviation

of 0.07 MPa
√

m, and assuming semi-circular shape crack, equation (19) was solved for C to
get corresponding values: 0.0027 with a standard deviation of 0.0013 for the constrained case,
and 0.0037 with a standard deviation of 0.0018 for the unconstrained boundary condition.
Obviously, the value of C depends on the boundary condition applied because the parameter
is being calibrated for only a single microstructural sample. This difference in C values will

18



Modelling Simul. Mater. Sci. Eng. 16 (2008) 065007 J E Bozek et al

Figure 15. (a) SEM/OIM image of a 7075-T651 microstructure on the RD–ND free surface.
(Courtesy of Northrop Grumman Corp.) (b) FE mesh for the replication model, where colors
indicate unique regions: grains and a particle.

result in a corresponding difference in predicted particle cracking frequency, as discussed in
the next section.

Two questions remain: is a single C parameter able to capture the underlying strength
distribution of the particles? And, if so, what is the range of C values for Al7Cu2Fe? There are
various ways in which the strength distribution of included particles could be computed, all of
which present very difficult validation and/or correlation problems, especially at the scale of
particle sizes. Since data are limited for this study, the methodology presented in the paper is
to be considered as a possible framework in which to address the estimation of the critical flaw
size for a particle. The single C parameter was chosen as a way to represent weakest link theory.
A larger particle is expected to contain a larger flaw; hence, the proportionality assumption.
However, a significant contributing factor to this choice for the model is simplicity. Even so,
additional observations are needed to assess the acceptability of the distribution for C.

Another way to characterize the strength distribution is to use the classical implementation
of the Weibull distribution for strength. One of the earliest efforts utilizing the weakest link
characteristics for the Weibull distribution to model size effect was done by Coleman (1958).
Just a few of the many papers considering size effect with the Weibull distribution are Stanley
and Margetson (1977), Matsuo and Sato (1979), Trustrum et al (1979) and Sutcu (1988).
Different authors use different forms of the Weibull distribution; however, a general form that
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Figure 16. (a) Tensile stress, σRD, plot for a coarse mesh for the unconstrained boundary condition.
(b) Tensile stress, σRD, plot for a coarse mesh for the constrained boundary condition.

encompasses most is as follows:

F(σ) = P {S � σ } = 1 − exp

{
−

∫ ∫ ∫
V

[(σ − σf)/σ0]m dx dy dz

}
, (20)

where S is the failure stress, σ is the applied stress, σf is the minimum stress, σ0 is the
scale parameter, m is the shape parameter and V is the total volume being considered. This
distribution describes the failure probability, but it does not indicate where the damage is
located. Using this approach for the particles introduces several additional complications,
not the least of which is an appropriate characterization of the volume of a particle. The
micrographs, figures 1 and 2, clearly infer that the volume is extremely irregular. Furthermore,
the statistical estimation of the additional parameters is non-trivial. While this methodology
may be more appealing philosophically, it is by no means easy to implement and the additional
assumptions needed to estimate the failure probability may introduce even more unmanageable
error.

The approximate statistical properties for C determined by the methodology presented
are as follows: average = 0.0044 and standard deviation = 0.0022. Assuming that C can
be characterized adequately by a two-parameter Weibull distribution, and assuming that the
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average and standard deviation above are reasonable, then the parameters for the Weibull
distribution would be as follows: shape parameter = 2.10 and scale parameter = 0.0050. The
distribution for the flaw size, af , could be computed directly using equation (18) and standard
probability methods because af is simply the product of two random variables. Again, this
alternative approach will be considered in further depth in future papers in the series, when
additional experimental data become available. Future work will use multiple microstructural
samples to further calibrate the C parameter and validate whether the use of a single parameter
can approximate the underlying alloy flaw distribution.

The relationship shown in equation (19) governs only the statistical resistance side of
the particle cracking criterion. An input to equation (19) with a value of C and a measured
distribution of ap and bp values produces an output distribution of σcr values. However, it
has been shown in section 2 of this paper that texture, aspect ratio and strain level govern the
statistical driving force side of the equation: a large particle with a large inherent flaw might
find itself in a relatively low tensile stress state and not crack. The process for comparing these
distributions of strength and stress is presented in the next section.

4. Prediction of particle cracking frequency

In this section, a method for predicting cracking of both individual particles and distributions
of particles is discussed. The particle cracking prediction utilizes both the particle tensile stress
response surface, section 2, and the estimation of particle strength, section 3. The predicted
frequency of particle cracking is compared with the experimentally observed frequency in
section 5.

4.1. Predicting cracking of a single particle

Particle cracking is governed by a comparison of the RD tensile stress at point A in the particle,
σp, with the particle strength σcr; if the former exceeds the latter, the particle will crack. The
process for determining whether a particle cracks is shown schematically in figure 3. The
input variables include applied strain level, grain orientation, particle aspect ratio, particle size,
particle fracture toughness and the material inherent flaw size parameter, C. The procedure
can be summarized as follows:

(i) Use the stress response surface to interpolate σp from the input applied strain level, grain
orientation and particle aspect ratio;

(ii) Use equation (19) to evaluate σcr from the input variables of particle size, particle fracture
toughness and C;

(iii) Predict particle cracking if σp � σcr.

4.2. Estimating the frequency of particle cracking

Different volumes of 7075-T651 undergoing the same processing steps exhibit statistical
variability in microstructural features. This variability affects the material performance
directly, causing scatter in both σp and σcr for individual particles.

The process described in section 4.1 provides a link between the statistical variability of
microstructural features and the probability of particle cracking. This process can be viewed
as a function, which can be evaluated on measured distributions of particle size and aspect
ratio, and grain orientation to obtain the frequency of particle cracking.

Based on known distributions for particle size, aspect ratio and texture (Campman 2005,
Harlow et al 2006, Rollett et al 2006), several statistically accurate realizations were generated,

21



Modelling Simul. Mater. Sci. Eng. 16 (2008) 065007 J E Bozek et al

Figure 17. Histograms of (a) σp and (b) σcr generated from a 10 000 particle realization, with
the applied strain εapp equal to 1%, the fracture toughness equal to 0.14 MPa

√
m and C equal to

0.0037.

each of which contained 10 000 particles and grain orientations. The observation of particle
sizes was experimentally limited to particles with area, in the RD–ND plane, greater than
6 µm2; therefore, this paper does not consider particles with areas less than 6 µm2. The applied
strain was fixed at 1%, the fracture toughness at 0.14 MPa

√
m and C at 0.0037, the mean value

computed for the unconstrained boundary conditions. Hence, no variation in the fracture
toughness or in the C parameter was considered. The particle cracking frequency is defined
as follows:

particle cracking frequency = number of cracked particles

total number of particles
. (21)

Figure 17 shows the resulting histograms for σp, based on unconstrained boundary conditions,
and σcr for one such 10 000 particle realization.

Figure 18 shows the histogram of the difference between particle strength and stress
�σ = σcr − σp based on unconstrained boundary conditions. The subset of the histogram
containing those particles with �σ < 0 corresponds to the cracked particles. Hence, the
normalized area of the particles with �σ < 0 is an approximation of the probability of particle
cracking. For example, for the sample shown in figure 18, the frequency is 2.3%.

22



Modelling Simul. Mater. Sci. Eng. 16 (2008) 065007 J E Bozek et al

Figure 18. Histogram of the difference between particle strength and stress �σ = σcr − σp. The
subset of the histogram where �σ < 0 corresponds to the cracked particles.

Twenty 10 000 particle realizations were processed for each of the boundary conditions
considered for the particle stress response surface in this manner, and these produced a mean
particle cracking frequency of 2.2%, with a standard deviation of 0.16% for the unconstrained
boundary condition and 4.9% with a standard deviation of 0.27% for the constrained boundary
conditions. This resulted in an overall mean particle cracking frequency of 3.6% with a
standard deviation of 1.4%. Of the forty particle realizations that were processed, the minimum
frequency found was 1.9% and the maximum was 5.3%. The two boundary conditions were
considered in order to place upper and lower bounds on the range of predicted particle cracking
frequency.

5. Preliminary validation

The discussion to this point has set forth a methodology for predicting Fe-bearing particle
cracking in a 7075-T651 microstructure. A prediction of particle cracking can now be made
for an individual particle or a distribution of particles. Two validation experiments, separate
from the calibration experiment discussed in section 3, were performed expressly for the
validation of this methodology and are discussed in this section. A comparison of the particle
cracking frequency observed in these experiments is made with the prediction in section 4.2.

The DEN specimen geometry and area observed microscopically during the two validation
experiments are shown in figure 19. At one edge-notch in each DEN specimen, an area of
0.75 mm2 was observed to record the frequency of particle cracking during the application
of cyclic loading. Using the cyclic load and specimen dimensions shown in figure 5, with
a maximum notch strain of 1%, particle cracking was intermittently recorded within the
observation area.

The observed particle cracking data for both DEN specimens are given in table 4. In
specimen #1, there were 792 Fe-bearing particles in the observed area of which 59 particles
were cracked before loading the specimen and an additional 446 particles were below the
minimum size of 6 µm2. The remaining 287 particles were tracked throughout loading and
observations were recorded at the intervals given in column 1 of table 4; after reaching the
first peak load, observations were recorded through 3000 load cycles at a reduced observation
frequency. This was done to obtain information about particle cracking frequency versus time
of occurrence within the observed area. Similarly, for specimen #2, 631 particles were observed
with 42 particles cracked before loading the specimen and an additional 346 particles below
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Figure 19. DEN specimen geometry showing the location and size of the area observed during the
recording of particle cracking frequency for both DEN specimens.

Table 4. Accumulated percentage of Fe-bearing particles that cracked under load during the first
half-cycle of loading for two DEN specimens.

Load (cycles) Specimen #1 (%) Specimen #2 (%)

0.3 0.0 0.0
0.4 6.6 0.8
0.5 7.3 1.2

the minimum size of 6 µm2. The remaining 243 particles were tracked throughout loading
at the same intervals as specimen #1. For specimen #1, 84% of the particles that eventually
cracked due to cyclic loading did so by the end of the first load cycle, and 50% in specimen #2.
All of the particles that would eventually crack had cracked by 300 load cycles. The observed
percentages of particles cracking due to loading, 7.3% for specimen #1 and 1.2% for specimen
#2, are in good agreement with the predicted mean value of 3.6% using the response surface
methodology developed herein. The combined percentage of observed particles that cracked
during the first load cycle for both specimens was about 4.5%.

6. Observations and conclusions

This is the first in a series of papers on a computational simulation system capable of
reproducing the mechanics and statistics found in the MSFC formation phase for 7075-T651.
Throughout this series, wherever possible, statistically accurate morphologies and textures are
explicitly included in all three-dimensional FE models. This paper addresses the first stage of
MSFC formation: predicting the statistics of crack incubation. A mechanics-based prediction
of particle cracking can now be made using distributions of particle size and aspect ratio, and
grain texture. The observed statistics of incubation must be accurately predicted to simulate
properly the stochastic nature of subsequent stages of MSFC formation. Future papers will
address the two subsequent stages, nucleation and microstructurally small crack propagation,
and provide extensive validation of the implemented criteria.

The principle adopted herein is that a particle cracks if σp, the particle tensile stress in
the RD at point A, figure 4(a), exceeds σcr, the particle strength. A response surface was
generated, for the two separate boundary conditions that bound the possible range of particle
stress, using 1296 three-dimensional elasto-viscoplastic FE analyses for each condition, from
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which σp can be obtained for any combination of strain level, grain orientation and particle
aspect ratio. Seven key assumptions were made for the baseline model used in the development
of the response surface:

(i) Structural models are initially stress-free;
(ii) Boundary conditions were applied for unconstrained and constrained tension in the RD;

(iii) Maximum particle tensile stress occurs

a. During the first load cycle;
b. At the particle’s free-surface centroid, point A;

(iv) The particle and matrix are perfectly bonded;
(v) Particle tensile stresses are accurately obtained when

a. Idealizing the particle as semi-ellipsoidal, and;
b. Only the influence of the surrounding grain is considered.

The value of σcr was determined based on measured fracture toughness, particle size and an
inherent flaw size material constant, C, equation (19). Seven key assumptions were made for
the estimation of σcr:

(i) If a particle cracks, it does so during the first cycle of loading;
(ii) σcr is a function of particle size, due to the presence of inherent particle flaws;

(iii) An inherent surface flaw exists that lies perpendicular to the loading direction, figure 14;
(iv) The inherent flaw size is much smaller than the particle size;
(v) The shape of this inherent flaw is semi-elliptical, figure 14;

(vi) af and bf are proportional to ap and bp; and,
(vii) LEFM conditions apply.

From the development of the response surface, important findings are as follows:

(i) The orientation of the surrounding grain causes a variability of up to 30% in σp;
(ii) The aspect ratio of the particle accounts for variability of up to 100%;

(iii) The combined effects of grain orientation and particle aspect ratio cause variability of up
to 200%.

From the estimation of the particle tensile strength, important findings are as follows:

(i) σcr is particularly sensitive to C;
(ii) The calculated mean value of C was 0.0037, with a standard deviation of 0.0018 for the

unconstrained boundary condition, and 0.0027, with a standard deviation of 0.0013 for
the constrained boundary condition.

The value of C was determined based on the results of one replication model. Future
work will produce more replication models to improve these estimates and to validate whether
a single parameter can adequately approximate the actual flaw distribution. The results of the
single C parameter simulations will be compared with results using a Weibull distribution for
strength.

The process for the prediction of particle cracking, as discussed in section 4, can be viewed
as a Boolean function that is evaluated on measured distributions to obtain the frequency of
particle cracking. A series of 10 000 simulated particle realizations was processed and a
frequency of particle cracking of 2.2% with a standard deviation of 0.16% was predicted for
unconstrained boundary conditions and a mean of 4.9% with a standard deviation of 0.27% for
constrained boundary conditions. This resulted in an overall mean predicted particle cracking
of 3.6% with a standard deviation of 1.4%. The predicted particle cracking frequency was
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in good agreement with the average experimentally observed particle cracking frequency of
about 4.5%. However, the two individual experiments produced particle cracking frequencies
of 7.3% and 1.2%, respectively. These values are outside the maximum and minimum
observed particle cracking frequency for the twenty 10 000 particle realizations processed,
5.3% and 1.9%, respectively. The variation in the experimentally observed particle cracking
frequencies could be a result of the microstructural configuration in the limited sample size
of 589 observed particles. The two populations of experimentally tracked particles, 346 and
243 particles, respectively, are not statistically significant compared with the realization size
of 10 000 particles. Future work will determine the variation in predicted particle cracking
frequency including variation in C and KIC. The exclusion of variation in C and KIC in this
paper may contribute to the reasons why the experimental observations fell outside the bounds
established in section 4.

When simulating the MSFC formation phase, inserting all particles into a microstructural
model for these stages is computationally intractable and physically unnecessary. The
capability to predict which particles will crack can be used as a filter. This filter helps
substantially reduce the number of particles that need to be included in the microstructural
models and forms the basis of the future work on the subsequent stages of MSFC, crack
nucleation and microstructurally small crack propagation.
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