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Abstract

This paper presents an adaptive mesh control procedure suitable for use
with higher-order finite element methods to solve viscous flow problems. The
procedure presented is an appropriate combination of anisotropic and bound-
ary layer mesh adaptation that accounts for the need to use curved mesh
edges and faces to maintain the required geometric approximation and mesh
gradation within the boundary layers. The paper first discusses the mesh
adaptation tools needed to create effective adapted meshes for higher-order
viscous flow simulations. Consideration is then given to an overview of the
individual mesh adaptation components that are combined to create such
meshes. Finally, example results are given to demonstrate the importance of
the techniques in accurate computation of physical quantities of interest and
to also show the effectiveness of the developed procedures in dealing with
domains of arbitrary geometric complexity.
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1. Introduction

It is well known that the use of high-order discretization methods pro-
vide higher rates of solution convergence [1, 2] and when these methods are
used in conjunction with properly constructed meshes improved levels of
accuracy can be obtained for a given amount of computational effort. An
often overlooked aspect of the use of high-order spatial discretizations is the
requirement that the mesh representation to the geometry maintains the ap-
propriate level of approximation to ensure the convergence and accuracy of
the resulting solution. More specifically in the case of curved domains, this
requires that properly curved mesh entities be used when higher than linear
spatial discretizations are employed [3, 4]. Methods to execute mesh adapta-
tion (refinement and coarsening) when curved elements are used has received
some recent attention [5, 6].

In many classes of problems anisotropically adapted meshes are highly
desirable since they can provide a given level of accuracy with one, or more,
orders fewer elements when compared to isotropically adapted meshes [7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17]. In some cases it is also desirable to maintain
some degree of structure to the mesh in critical regions so that specific levels
of mesh gradation and/or control of element configuration can be maintained.
Viscous flow simulations are a good example of such cases where it is found
that carefully defined and controlled layered elements in meshes are most
effective in resolving boundary layers [18, 19, 20, 21, 22, 23].

This paper presents a curved mesh adaptation procedure that is well
suited for use in the adaptive solution of viscous flow problems on unstruc-
tured anisotropic meshes that include carefully controlled boundary layer
elements which are also adapted. The next section (Section 2) introduces
the key mesh adaptation components that must be properly integrated to-
gether to create the required meshes. Section 3 discusses each of the com-
ponents focusing on specific developments required to ensure they can effec-
tively work together. The results section first demonstrates the application
of these methods on a simple geometry where it is possible to quantitatively
show the importance of adapted meshes with curved boundary layer elements
using quadratic spatial discretizations. The results section also shows a more
practical example considering general three-dimensional domain as encoun-
tered in real cases to which current methods are applied to demonstrate their
applicability.
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2. Adaptive mesh control for viscous flow simulations

The goal of this work is to provide mesh adaptation procedures for higher-
order viscous flow simulations on general three-dimensional curved geome-
tries. The initial mesh in such simulations is automatically generated without
detailed or expert level knowledge about specific problem case, and subse-
quently controlled through mesh adaptivity. Since the mesh element shape
and configuration requirements in an adapted mesh are (at least) partly a
function of the equation discretization methods used, there is a need to match
to the capabilities of the mesh generation and adaptation methods that are
going to be applied. The results presented in the paper employ a stabilized
finite element formulation that can include linear, quadratic and cubic basis
functions [24, 25]. The general requirements placed on the meshes under
this formulation that is designed to yield a high level of accuracy for a given
amount of computational effort include:

• Mesh anisotropy to bound the number of entities in the mesh, where the
degree of anisotropy can range from none (isotropic) in some portions of
the domain to aspect ratios, as measured by longest edge length divided
by shortest height, of six or more orders of magnitude for thin boundary
layers occurring near walls in high Reynolds number flows [26, 27].
Extreme levels of anisotropy is typically required in limited portions of
the domain (such as in close proximity to viscous walls), while aspect
ratios on the order of 100 or more can be common in larger portions of
the domain (for example, in solution features of shear layers or shock
waves).

• Mesh structure to control the configuration and variation of element
sizes in multiple directions, particularly in critical boundary layer re-
gions. In the case of the stabilized finite element methods used here,
this consideration is not important for determination of the overall
flow field, but is of importance in the calculation of the local param-
eters constructed in terms of derivatives of the field, e.g., wall shear
stresses [16, 23].

• Mesh representation to ensure that the mesh entities (edges and faces)
provide an appropriate geometric approximation to the underlying do-
main geometry. In the cases where higher than linear basis functions
are used, the mesh edges and faces on curved domain boundaries need
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to be curved using the same order to which the equations are dis-
cretized [3, 5].

The current state of the procedure presented requires that the initial mesh
must be generated with a basic knowledge of those areas where extreme mesh
anisotropy might be needed along with strong control of the element config-
uration and size variations or gradation. It also requires that the locations
of such needs are constrained to be in close proximity of the domain bound-
aries. This is accomplished by the appropriate combination of a generalized
boundary layer mesh generation procedure with an automatic unstructured
anisotropic mesh generator [20, 28]. Given a CAD representation of the
domain with basic boundary layer mesh specification the initial mesh is au-
tomatically generated. Since the mesh adaptation procedure is capable of
anisotropically adapting in both the layered part and in the unstructured
portion of the mesh, the only input required in initial mesh generation is the
identification of portions where boundary layers may turn out to be impor-
tant. With such information at hand, the structure associated with boundary
layer elements can be maintained in desired areas when needed. Note that
it is not a problem to request boundary layer elements where they are not
needed as the adaptive procedures will determine that and in essence undo
the layered part on the specific portions of the boundary that do not need
them.

Given this starting point, the mesh adaptation procedure presented here
consists of the following components:

• Error indication procedures capable of defining the desired anisotropic
mesh size field. This step consists of estimating and/or obtaining an
indication of the discretization error based on the quality of the com-
puted solution (for example, see [1, 2, 29]).

• Mesh adaptation procedures that can modify the given mesh to match
the requested anisotropic mesh size field. To support a full range of
simulation types, the process of mesh adaptivity should also include in-
cremental transfer of any needed solution fields on to modified mesh as
it is adapted. Such a process of field transfers is generally more efficient
and accurate than executing a global field transfer as an independent
step after the mesh is fully adapted.

• In those cases where curved mesh edges and faces are required on curved
boundaries, procedures that can ensure the curved elements to remain
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valid during mesh adaptation. As it will become clear in the next
section, the basic operations of mesh adaptation and mesh curving must
specifically consider whether the elements being modified are inside or
outside of the layered part of the mesh.

3. Mesh adaptation components

3.1. Unstructured anisotropic mesh adaptivity

Many physical problems of interest, especially in the field of fluid mechan-
ics, involve anisotropic solution features, for example, boundary layers which
form near the walls in viscous flows or shock waves in high speed flows. Such
solution features are most effectively resolved using mesh elements which are
properly oriented with a significant degree of anisotropy, i.e., different resolu-
tion in different local directions. Moreover, a prior knowledge of such features
is often not available which creates a need for automatic and adaptive con-
struction of anisotropic meshes. Mesh metric size field based anisotropic
adaptive methods for real geometries have been developed with substantial
progress [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The mesh metric field in the
examples presented in this paper are based on examination of the Hessian of
the solution field [13, 16].

The function of mesh adaptation is to convert a given mesh into the
desired mesh consistent with the anisotropic mesh size field provided. To
specify an anisotropic size distribution, a mesh metric field is defined with the
help of second-order tensors, referred as mesh metric tensor. A mesh metric
tensor prescribes the desired anisotropy at a point (e.g., see [30]). It is defined
as a positive-definite symmetric matrix M, whose associated quadratic form
〈X,MX〉 = 1, defines a mapping of an ellipsoid in the physical space into
a unit sphere in the transformed/metric space, see Figure 1. In other words,
any vector X at point P assumes a unit value where distances are measured
in the metric space. The current adaptive procedure accepts a discretized
anisotropic mesh size field as input and applies mesh modification operations
on the mesh entities to force them to match the specified mesh sizes [13].
The stated goal of the adaptive meshing technique is to yield a mesh with
regular elements in the metric space where each mesh edge e must satisfy:
〈e,Me〉 = 1 (in practice this criteria is relaxed to ensure that a mesh can be
created, see [13]). The mesh modification logic includes the single step mesh
modification operators of edge split, edge collapse, edge swap, face swap
or region collapse and methods to ensure newly defined mesh vertices are
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Transformation

Physical space : X':M:X = 1

Metric space : x'.x = 1

Figure 1: The transformation associated with a mesh metric tensor.

placed on the curved boundaries [12]. The procedure also includes selected
compound operations such as edge split or swap followed by a collapse which
have been found to be effective in modifying the mesh to satisfy the given
anisotropic mesh size field.

The mesh modification procedure consists of interacting high level com-
ponents: refinement, swapping, coarsening and projection of new boundary
vertices. Simply put, refinement is applied when given mesh entities are
larger than indicated by the local anisotropic mesh size field in specific direc-
tions. Refinement is always executed to ensure that the mesh is fine enough
to satisfy the mesh size field. Swapping is useful to improve the alignment
of mesh entities in the mesh to better match the local anisotropic mesh size
field. Coarsening is applied when the current mesh entities are smaller than
that required by the local mesh size field in specific directions. When mesh
edges and faces on curved domain boundaries are refined, the new vertices
are projected onto the curved boundaries. Since the projection process can
create elements that do not match the mesh size field, or become invalid, the
projection can force the local application of additional mesh modification
operations [12]. The mesh modification procedure includes specific ordering
and selection of operations to be able to most effectively satisfy the mesh
metric field. The resulting adaptively defined anisotropic meshes have been
used in a wide variety of physical problems [10, 11, 14, 15, 16, 17].

3.2. Boundary layer mesh adaptation

In the case of viscous flow simulations, better results for key quantities of
interest in regions of boundary layers, like wall shear stress, can be obtained
with the help of meshes with layered and graded elements near the viscous
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walls. Favorable attributes of such meshes are high-aspect ratio, orthogonal,
layered and graded elements near the walls for realistic geometries. Although
it is not difficult to make an a priori specification of those portions of the
domain boundary where such boundary layer meshes may be desired, knowl-
edge of the required mesh resolution within those boundary layers for real
cases is unknown a priori. To address this issue of boundary layers a mesh
adaptation process that incorporates the capacity to preserve the layered
structure when adapting the boundary layer mesh has been developed [16].
This procedure works in conjunction with the fully unstructured, anisotropic
adaptive meshing technique discussed in the previous subsection.

The inherent structure in the boundary layer mesh allows it to be decom-
posed as a product of a layer surface (2D) mesh and a growth/thickness (1D)
mesh that creates a stack of elements above each mesh face on the surface.
Each stack is a set of elements in layers bounded by three segments of edges,
referred to as growth curves moving into the domain form the vertices of
a surface mesh face in a direction normal, or nearly normal, to the surface
(see Figure 2). The stacks of elements are to remain as stacks during the
boundary layer mesh adaptation process. Thus, the process of boundary
layer mesh adaptation is decomposed into the two steps of surface adapta-
tion and thickness adjustment that preserve the topological structure of the
stacks of layered elements.

Layer Surface

Layer Thickness

Wall

First Layer

Second Layer

Growth

Curve

Boundary Layer

     Interface

Unstructured Interior

Volume Mesh

Figure 2: Decomposition of a boundary layer mesh.

This two step boundary layer adaptation procedure is governed by the
mesh size field and applies similar concepts as the general unstructured
anisotropic meshes. The local mesh modification operations of edge split,
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edge collapse and edge swap are utilized to perform the surface mesh adap-
tation while node movement is applied to adjust the layer thicknesses. In
case of surface mesh modification any operation is carried out such that it
is propagated through the stack of boundary layer elements and affects all
the layer surfaces along with the interface elements in the same way. For
example, see Figure 3 where layer edge split operation is carried out on all
the layers, including the interface elements. The figure depicts a stack before
and after the application of layer edge split operation where three boundary

Split stack 

of edges

Before Split After Split

Figure 3: Stack of boundary layer and interface elements before (left) and after (right) the
application of layer edge split operation (interface elements are offset from the boundary
layer elements).

layer elements, i.e., two regular prisms and one transition pyramid, and one
interface tetrahedron are subdivided. In the case of thickness adjustment the
desired normal mesh resolution for each layer, and hence total thickness, is
achieved by node movement (even for the top most node of the stack) while,
currently, maintaining the number and topology of the layers as depicted in
Figure 4.

Thickness Adjustment

Figure 4: Schematic for thickness adjustment of a boundary layer mesh.

For geometries of interest that contain sharp and tight corners, care is
required to produce elements of acceptable shape and to prevent element
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overlap. Such cases are handled by terminating stacks of boundary layer
elements through smoothly trimming them at the corners. Consideration is
also given during the adaptation process to newly created vertices at curved
boundaries such that they are projected on to the correct model surfaces. For
more details on boundary layer mesh adaptivity see [23]. For curved domains,
higher-order methods further require use of curved mesh entities with shapes
that better represent the underlying geometry. The structure in boundary
layer meshes, where there are highly anisotropic elements with short edges
normal to the model surface, places additional control requirements on the
curved mesh adaptation process as discussed in next section. Such an in-
tegration step of using mesh curving procedure on adapted boundary layer
meshes has been lacking in previous studies.

3.3. Adaptation of curved meshes including layered elements

Higher-order discretization methods require mesh representation in terms
of curved element shapes on curved domain boundaries to maintain the ap-
propriate level of convergence and accuracy of the resulting solution [3]. The
most effective approach to construct such (curved) meshes is to start from
linear straight-sided meshes that are altered by assigning higher-order shape
to the mesh edges and faces at the curved boundaries. Since the simple as-
signment of higher-order shape to mesh entities often leads to invalid (see
Figure 3.3), or undesirably shaped (curved) elements, a mesh modification
based mesh curving procedure is required to ensure that valid and acceptable
meshes with curved mesh entities are produced [5].

To maintain the validity of curved mesh entities the current algorithm
ensures that each curved element has positive determinant of Jacobian in
its closure. Since higher-order methods such as finite elements use basis
functions and integration schemes of their choice, an effective algorithm to
verify the validity of curved meshes that is independent of the basis functions
or integration rules is desirable. A global validity check algorithm of Bézier
higher-order elements is employed that takes advantage of the convex hull
property to ensure positive determinant of Jacobian [5].

For example, given a qth order Bézier mesh tetrahedral region as,

x(ξ) =
∑

|i|=q

B|i|(ξ)b|i|ξ
|i| (1)

where, ξ = (ξ1, ξ2, ξ3, ξ4) are the parametric coordinates with ξ1+ξ2+ξ3+ξ4 =
1, |i| = i + j + k + l, B|i| = q!

i!j!k!l!
and ξ|i| = ξi

1
ξj
2
ξk
3
ξl
4
. b|i| are the control
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(a) Initial straight-sided mesh
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0

G1
0
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1

M1
2

(d) Swap and curve M1

3
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rect invalid element M2

0

Figure 5: Curve the mesh entities that lie on curved domain boundaries.
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points used to define the shapes of the Bèzier. The Jacobian matrix of
the geometric mapping with respect to the independent set of parametric
coordinates (ξ1, ξ2, ξ3) is,

J =

[

∂x

∂ξ

]

=







∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3
∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3
∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3






(2)

where x = (x1, x2, x3) Therefore, the determinant of the Jacobian J is,

det(J) = (
∂x

∂ξ1

×
∂x

∂ξ2

) · (
∂x

∂ξ3

) (3)

where ∂x

∂ξi

are the three partial derivatives of xq which are (q − 1)th order
Bézier functions. Therefore, the resulting determinant of Jacobian is a Bézier
polynomial function with order 3(q − 1),

det(J) =
∑

|i|=r

C|i|c|i|ξ
|i| (4)

where r = 3(q − 1). C|i| and c|i| can be expressed using the coefficients
B|i| and b|i| present in Eq. 1. The convex hull property of Bézier polynomial
indicates that the polynomial is bounded by its minimal and maximal control
points [31]. So,

min(c|i|) ≤ det(J) ≤ max(c|i|) (5)

Therefore, a curved tetrahedral region is valid in its closure as long as its
min(c|i|) > 0.

The basic steps involved in the process of correcting an invalid element
are:

• Determination of key mesh entities in the closure of an invalid element
needs to be considered in order to correct it through suitable local
mesh modifications. The computation of the determinant of Jacobian
to detect invalid elements can provide useful information to determine
key mesh entities and appropriate operations to correct the invalidity.
The invalid elements are defined as those curved elements that have at
least one zero or negative coefficient, c|i| ≤ 0 as shown in Eq. 4. The
key mesh entities are defined as ones (with control points) that lead to
negative determinant of Jacobian within the element.
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• Application of a set of local mesh modifications to eliminate any given
invalid curved element. The type of operations applied and the order
of application is a function of the key mesh entities determined in the
first step. The set of mesh modification operators employed in this step
include edge split, edge swap, edge collapse, region collapse, double
split with a collapse, and edge re-shape. All operations include specific
consideration of the existence of curved mesh entities making them
more complex than any corresponding straight edged mesh modification
operation. The validity check algorithm discussed above is used to
determine whether a curved local mesh modification operation can be
applied. Those operations are essential to ensure the reliability of the
mesh curving procedure to create valid curved elements.

In the case of meshes with highly anisotropic boundary layer elements, the
application of the general unstructured mesh curving procedures not only re-
sults in invalid mesh but also destroys the boundary layer stack structure (as
shown in Figures 6(b) and 6(e)). Thus, there are additional control require-
ments to generate valid curved elements and at the same time preserve the
structure in the boundary layer mesh. Mesh curving procedure for boundary
layer meshes is executed in the following three steps:

• Curving of straight-sided boundary layer elements including mesh en-
tities on the domain boundaries and those in the stack of layers (see
Figures 6(c) and 6(f)).

• Curving of the remaining (non-boundary layer) mesh edges/faces that
lie on curved domain boundaries.

• Application of a fixed set of local mesh modification operators (as dis-
cussed above) to incrementally correct the invalid elements created in
the previous two steps.

The first two steps require defining higher-order shapes for mesh entities
throughout the boundary layer stack. Bernstein polynomials are used to ef-
fectively construct Bézier hierarchic higher order shapes for topological mesh
entities on the model boundaries and those within the boundary layers [5].
The procedure starts from curving the mesh entities on the domain bound-
aries and those within the above stack of layer elements. The control points
of the edges in the stack of layer elements are moved based on control points
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Figure 6: Smoothly curving a stack of boundary layer elements.
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of the base edge at the boundary where consideration is given to the change
in length of the edges being curved to alter the degree of curving of interior
entities. Figures 6(c) and 6(f) show stack of smoothly curved boundary layer
elements created by using this method.

Figures 7 and 8 demonstrate the application of the boundary layer curv-
ing procedure. Figure 7 shows a straight-sided boundary layer mesh which
has been curved with/without considering the stack of layer elements. Fig-
ure 7(c) also demonstrates that only curving the mesh entities at domain
boundaries leads to invalid elements whereas Figure 7(d) shows that prop-
erly curving the stack of layer elements avoids this problem. Figure 8 further
demonstrates the effectiveness of curving a stack of layer elements (including
in the clip view).

4. Flow applications

This section first demonstrates the application of meshing techniques de-
scribed in the previous section on an example with flow in a simple geometry
of straight pipe. This simple case is selected because it allows to quantita-
tively access the importance of adapted meshes with curved boundary layer
elements using quadratic spatial discretizations. A more practical example
of cardiovascular flow in a subject-specific healthy human abdominal aorta
is then considered where current methods are applied to demonstrate their
applicability to general three-dimensional domains encountered in real prob-
lems.

4.1. Flow in a straight pipe

A steady fully-developed incompressible laminar flow within a straight
pipe is considered where exact solution of paraboloid flow profile is well
known (commonly referred to as Hagen-Poiseuille flow). The length of the
pipe considered is L = 10cm and radius is r = 1cm. A paraboloid profile with
a unit peak is prescribed at the inlet while no-slip conditions are assumed
on the outer cylindrical wall and the outflow has a zero natural pressure
condition. The viscosity and density are assumed to be µ = 0.01dynes s/cm2

and ρ = 1g/cm3, respectively. The velocity field only has a single non-
zero component (the axial component) and this component is constant in
axial direction due to fully developed nature of the flow, thus varying only
radially. Therefore, the wall shear stress magnitude assumes a constant value
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(a) Geometric model (b) Straight-sided BL mesh

(c) Curved mesh (without curving
of stacks)

(d) Curved BL mesh (with curving
of stacks)

Figure 7: Spine fluid flow model: (a) geometric model, (b) straight-sided mesh, (c) curved
mesh and (d) curved boundary layer (BL) mesh.
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(a) Zoom of straight-sided
BL mesh near stenosis

(b) Zoom of curved BL
mesh near stenosis

(c) Clip view of
straight-sided BL
mesh at stenosis

(d) Clip view of
curved BL mesh at
stenosis

(e) Surface of curved BL mesh

Figure 8: Straight-sided and curved boundary layer meshes for porcine aorta with a steno-
sis bypassed by a graft.
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of tw = 2µ = 0.02dynes/cm2 over the entire cylindrical wall creating a axial
force of f = A tw = 2πrL 2µ = 1.256637 dynes (due to viscous shear stress).

Flow computations are performed using a stabilized, semi-discrete finite
element method for the incompressible Navier-Stokes equation governing vis-
cous flows. In particular, we employ the streamline upwind/Petrov-Galerkin
(SUPG) stabilization method introduced in [32] to discretize the governing
equations. The stabilized finite element formulation currently utilized has
been shown to be robust, accurate and stable on a variety of flow problems
(see for example [24, 33]). Same order basis functions, both for the pressure
and the velocity fields, are used in these computations (note that equal-order
interpolation for both fields is possible as SUPG stabilized formulation is em-
ployed).

Three different solution strategies are exercised based on combinations of
order employed for element shape (referred as q, where q = 1 implies straight-
sided elements whereas q = 2 implies quadratic curved elements) and basis
functions (referred as p, where p = 1 is linear and p = 2 is quadratic). The
three cases are q1− p1, q1− p2 and q2− p2 where the first two combinations
use straight-sided elements and the last one with q = 2 uses quadratic curved
elements. Further, in order to perform quantitative comparison four adapted
boundary layer meshes with different resolutions are used in each solution
strategy. These meshes are constructed through anisotropic adaptation such
that mesh resolution (or element size) in the axial direction is constant and
much higher than the uniform resolution in the cross-section (for details
on mesh adaptivity see [16]). The four meshes considered are successive
sub-division of edges in the cross-section with the coarsest mesh containing
roughly 10 mesh edges across a diameter with h = 0.2 as shown in Figure 9
and thus, subsequent meshes have size of h = 0.1 (20 edges across diameter),
h = 0.05 (40 edges across diameter) and h = 0.025 (80 edges across diameter).
Since the flow is fully developed in nature, the element size along the axis is
fixed at haxial = 2.5 (i.e., 4 edges along the axis).

Table 1 provides the computed values of the axial force over four adapted
boundary layer meshes for each solution strategy. The relative error in the
computed axial force (ei = |fi − fexact|/fexact) is provided in Table 2 and
also shown in Figure 10. Note that the axial force is due to the wall shear
stresses that in turn involves derivatives of velocity field and thus, its optimal
rate of convergence is proportional to the discretization order used in numer-
ical methods such as finite elements. Figure 10 clearly shows the advantage
of using curved elements in adapted boundary layer meshes as it allows to
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Figure 9: Coarsest adapted boundary layer mesh (h = 0.2) used in straight pipe example.
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(for reference ideal slope lines for first- and second-order discretizations are provided).
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Table 1: Axial force computed over straight-sided and curved meshes.

Mesh Solution strategy q1 − p1 q1 − p2 q2 − p2
MeshA0 (h = 0.200) 1.136180 1.278480 1.262070
MeshA1 (h = 0.100) 1.195020 1.263310 1.255590
MeshA2 (h = 0.050) 1.226073 1.259196 1.256472
MeshA3 (h = 0.025) 1.241358 1.257607 1.256597

Table 2: Relative error in axial force computed over straight-sided and curved meshes.

Mesh Solution strategy q1 − p1 q1 − p2 q2 − p2
MeshA0 (h = 0.200) 9.586e-2 1.738e-2 4.323e-3
MeshA1 (h = 0.100) 4.903e-2 5.310e-3 8.332e-4
MeshA2 (h = 0.050) 2.432e-2 2.036e-3 1.315e-4
MeshA3 (h = 0.025) 1.216e-2 7.716e-4 3.218e-5

reach the optimal rate of convergence whereas the rate of convergence for a
straight-sided mesh with quadratic basis functions is sub-optimal (for refer-
ence ideal slope lines for first- and second-order discretizations are provided
in Figure 10).

4.2. Blood flow in a healthy human abdominal aorta

This example is considered to demonstrate the applicability of current
adaptive meshing techniques for high-order simulations of viscous flows in
practical problems of interest. Cardiovascular flow in a subject-specific case
of healthy human abdominal aorta is considered. The anatomic model of the
subject-specific abdominal aorta with various branches is shown in Figure 11.
The main trunk is approximately 30cm long with a diameter of 2.5cm at the
inlet (which is non-circular). The length of the branches varies from 1.8cm to
5cm whereas their diameter lies roughly between 0.3−0.8cm. The waveform
of the volumetric flow rate at the inlet is shown in the inset within Figure 11,
which is derived from the imaging data [34], with a time period tp = 1.05s;
and a peak and trough of around 150cc/s and 10cc/s, respectively. The inset
also shows two instants: peak systole, which is the heart contraction phase,
and early diastole, which is the dilatation phase. No-slip conditions are as-
sumed on the vessel walls and impedance boundary conditions are prescribed
at the outlets [35] (where an electric circuit analog of an impedance, i.e., a
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Figure 11: Anatomic model of a healthy human abdominal aorta with various branches.
The inset shows the volumetric flow rate at the inlet (the two dots in the inset correspond
to instants of peak systole and early diastole).
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measure of opposition to motion by a system, is applied to relate downstream
pressure with the flow rate). The viscosity and density are assumed to be
µ = 0.04dynes s/cm2 and ρ = 1.06g/cm3, respectively.

Similar to the previous example, we employ the streamline upwind/Petrov-
Galerkin (SUPG) stabilization method introduced in [32] to discretize the
governing equations. As the blood flow is unsteady in nature, a second-order
generalized-α time integrator [36] is used that turns the system of non-linear
ordinary differential equations obtained via spatial discretization in a non-
linear system of algebraic equations. This system is in turn linearized with
Newton’s method to obtain a linear algebraic system of equations that is
solved using a custom linear algebra solver [37]. In such cases, typically four
to five cardiac cycles are simulated to obtain a periodic flow in time. Current
computations used 105 time steps in a cardiac cycle with equal time step size
of 0.01s.

(a) Zoom of straight-sided BL
adapted mesh near celiac

(b) Zoom of curved BL adapted
mesh near celiac

Figure 12: Surface of straight-sided and curved adapted boundary layer (BL) meshes near
celiac branch in case of a healthy human abdominal aorta.

Adapted boundary layer meshes obtained after two iterations of flow com-
putations and mesh adaptation are shown in Figures 12, 13 and 14. In all
figures, curved adapted mesh with quadratic elements is shown along with
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(a) Zoom of straight-sided BL
adapted mesh near iliac

(b) Zoom of curved BL adapted
mesh near iliacs

Figure 13: Surface of straight-sided and curved adapted boundary layer meshes near iliac
branches in case of a healthy human abdominal aorta.

(a) Clip view of straight-sided BL
adapted mesh at celiac

(b) Clip view of curved BL adapted
mesh at celiac

Figure 14: Clip view of straight-sided and curved adapted boundary layer meshes in case
of a healthy human abdominal aorta.
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straighted-sided one for comparison. Figures 12 and 13 show the surface of
the adapted mesh near arterial branches of celiac and iliac (as labeled in
Figure 11) whereas Figure 14 provides a clip view to show the interior mesh
within the domain. The mesh representation with improved level of geomet-
ric approximation can be clearly seen in case of curved adapted boundary
layer mesh using quadratic elements. This case demonstrates the applica-
bility of current meshing techniques to general three-dimensional domains
encountered in real problems.

5. Closing remarks

This paper presented a meshing technique that applies mesh curving pro-
cedure on adapted boundary layer meshes to allow for higher-order analysis of
viscous flows. The procedures developed account for the layered structure of
anisotropic elements in the boundary layer meshes to be able to construct ele-
ments with proper configuration and gradation. The benefits of using curved
boundary layer adapted meshes were quantitatively demonstrated on derived
near-wall quantities of interest, such as shear force or wall shear stress, for an
example considering flow in a simple geometry of straight pipe. The current
techniques were then applied to a more practical example of cardiovascular
flow in a subject-specific healthy human abdominal aorta to demonstrate
the effectiveness of techniques to general three-dimensional domains for real
problems.
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