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Abstract Higher-order finite element method requires

valid curved meshes in three-dimensional domains to

achieve the solution accuracy. When applying adaptive

higher-order finite elements in large-scale simulations,

complexities that arise include moving the curved mesh

adaptation along with the critical domains to achieve

computational efficiency. This paper presents a procedure

that combines Bézier mesh curving and size-driven mesh

adaptation technologies to address those requirements. A

moving mesh size field drives a curved mesh modification

procedure to generate valid curved meshes that have been

successfully analyzed by SLAC National Accelerator

Laboratory researchers to simulate the short-range wake-

fields in particle accelerators. The analysis results for a

8-cavity cryomodule wakefield demonstrate that valid

curvilinear meshes not only make the time-domain simu-

lations more reliable, but also improve the computational

efficiency up to 30%. The application of moving curved

mesh adaptation to an accelerator cavity coupler shows a

tenfold reduction in execution time and memory usage

without loss in accuracy as compared to uniformly refined

meshes.

Keywords Mesh adaptation � Bézier mesh curving �
Higher-order finite elements

1 Introduction

Higher-order finite elements [1], which are well known for

the faster rates of convergence in terms of computational

efficiency, can provide an effective approach to perform

large-scale simulations. When applying higher-order finite

elements to three-dimensional curved domains, the ele-

ments must be properly curved to maintain the rate of

convergence [2]. The common approach to construct such

curved meshes is to apply a straight-sided mesh generation

procedure [3, 4] and then curve the mesh edges and faces

on the curved domain boundaries to proper orders. This

approach is able to take advantage of the conventional

unstructured mesh generators to deal with the complexity

of model geometry. However, the resulting meshes often

become invalid because curving the straight-sided mesh

entities to model boundaries can lead to negative deter-

minant of Jacobian in the closures of curved elements.

Effective and efficient correction of those invalid elements

is critical in curvilinear mesh construction and for its usage

with higher-order finite elements.

The researchers in SLAC National Accelerator Labo-

ratory have successfully taken advantage of higher-order

finite elements to perform electromagnetic simulations in

designing next generation linear accelerators, for example,
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short-range wakefield calculations [5–7]. Those simula-

tions require sufficient refinement around a beam region to

resolve local high frequencies, while the rest of the domain

can have a large mesh size. This refinement region must

move along with the beam through the curved domains in

the time-dependent simulations to achieve acceptable

computational efficiency. When considering that the

domains are curved and higher-order finite elements are

used, the refined meshes must also be curved to provide a

sufficiently geometric approximation to effectively achieve

the desired level of accuracy. The uniform refinement using

smaller mesh size throughout the entire domain can pro-

duce over-refined meshes outside of the critical beam

domains, while larger mesh size can generate too coarse

meshes that often become invalid during the curving pro-

cedure. As an example, Fig. 1 shows a beam region

(300 lm) in a linear collider (ILC) coupler short-range

wakefield simulation whose beam pipe radius is 39 mm.

The mesh will have over 100 million tetrahedral elements

if the beam size is used to generate uniform-refined mesh.

Those lead either to unfeasible large problem size, inac-

curate results, or possible failure of the simulations.

To enable such higher-order finite elements in large-

scale simulations, a moving curved mesh adaptation pro-

cedure that combines a general Bézier mesh curving [8, 9]

and size-driven mesh adaptation [10, 11] is presented. The

application of curved local mesh modification operations

and proper mesh size control are essential in ensuring the

resulting curved meshes are valid with the least number of

elements for the desired accuracy.

The outline of this paper is as follows. Section 2

describes a Bézier mesh curving procedure to construct

valid curvilinear meshes for three-dimensional curved

domains. The procedure employs Bézier polynomials to

represent the higher-order geometric shapes for curved

mesh entities. The extension of size-driven mesh adapta-

tion procedure to account for curved elements is discussed

in Sect. 3. Analysis results applied by SLAC for linear

accelerator design are shown in Sect. 4.

2 Mesh curving

A flexible distributed mesh data structure [12] is employed

to support the moving curved mesh adaptation. The mesh

data structure applies a general topology and classification

of the entities with respect to the geometric model entity

that the mesh entity is on [13]. Md
i and Gd

i are used to

describe the mesh and model topological entity of dimen-

sion d, d = 0, 1, 2, 3 represent mesh and model vertex,

edge, face, and region, respectively.

The mesh approximation of the curved geometric

domains is maintained by assigning appropriate Bézier

higher-order geometric shapes to mesh edges and faces on

curved domain boundaries. The topology-based Bézier

mesh geometry shape is constructed using Bernstein

polynomials that possess a number of advantageous prop-

erties including [14]:

• the convex hull property—a Bézier curve, surface, or

volume is contained in the convex hull formed by its

control points;

• computationally efficient algorithms for degree eleva-

tion and subdivision are available that can be used to

refine the shape’s convex hull as well as adaptively

refine the mesh’s shape.

Those properties are useful to form the validity check

algorithm for Bézier higher-order curved elements and to

determine local mesh modification operations to most

effectively correct invalid elements due to the curving of

mesh entities to the model boundaries. The resulting curved

meshes guarantee that each element has positive determi-

nant of Jacobian in its closure that cannot be accomplished

by other standard finite element basis, such as Lagrange

basis.

2.1 Topology-based Bézier higher-order shape

representation

Bernstein polynomials provide an effective means to define

Bézier hierarchic higher-order shapes for topological mesh

entities in their parametric coordinates. A qth order Bézier

mesh entity can be represented as [9],

xðnÞ ¼
X

jij¼q

BjijðnÞbjijnjij ð1Þ

where B|i|n
|i| are the Bernstein polynomials defined in the

mesh entity parametric coordinate system as shown in

Table 1. Note that the independent parametric coordinates

for a topological mesh edge, face and tetrahedron should be
Fig. 1 Beam region in an ILC coupler short-range wakefield

simulation
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n1, (n1, n2) and (n1, n2, n3), respectively. Therefore,

n2 = 1 - n1, n3 = 1 - n1 - n2 and n4 = 1 - n1 - n2 - n3.

b|i| are the control points used to define the curved shapes of

the Bèzier mesh edges, faces and regions. Figure 2 shows

the control points for a quadratic curved mesh edge, tri-

angle face and tetrahedral region.

Given a straight-sided mesh and its associated geometry

CAD model, the control points for those mesh entities on

the curved model edges/faces are determined based on the

Bézier curve and surface interpolation method by evalu-

ating the model geometry at a set of discrete parametric

locations. Common approaches often use the uniformly

distributed parametric points. However, alternative meth-

ods, such as chord length method or curvature-based

procedure, can be used to improve the geometric approx-

imation [14]. For a curved mesh with a different initial

shape representation method, the control points are com-

puted by converting the given shapes to Bézier form. As an

example, a Lagrange quadratic mesh edge with three

interpolating control points l1, l2 and l3 can be converted to

a Bézier shape defined as x = b20n1
2 ? 2b11n1(1 - n1) ?

b02(1 - n1)2. The Bézier control points can be computed

as follows:

xðn1 ¼ 0Þ ¼ b02 ¼ l1

xðn1 ¼ 1=2Þ ¼ b20

4
þ b11

2
þ b02

4
¼ l2

xðn1 ¼ 1Þ ¼ b20 ¼ l3

ð2Þ

Therefore, b02 = l1, b20 = l3 and b11 = (4l2 - (l1 ? l3))/2.

For other forms such as spline/Nurbs shapes, the conver-

sion to Bézier requires careful construction of the mapping

equations.

2.2 Validity check of Bézier higher-order curved

elements

When applying adaptive higher-order finite element

method in which the approximation basis is often

increased, the integration rules must be properly improved

to ensure that the numerical integration error does not

become the dominant error. The improvement of the inte-

gration rules requires evaluating the determinant of Jaco-

bian at new integration locations. Without knowledge that

the determinant of Jacobian is positive throughout the

element closure a priori, the curved elements must compute

the determinant of Jacobian at those new locations. In the

case that negative determinants of Jacobian occur, the

curved elements are invalid and must be corrected. To

avoid the constant rechecking of the validity of a curved

element for different integration rules, a general algorithm

independent of the basis functions, the polynomial orders

or the applied integration rules is desired. The convex hull

property of Bézier polynomials is used to check the validity

of curved elements that ensure the determinant of Jacobian

is always positive in the element closures [8].

Given a qth order Bézier tetrahedron described in Eq. 1,

the Jacobian matrix of the geometric mapping with respect

to the independent parametric coordinates (n1, n2, n3) is,

J ¼ ox

on

� �
¼

ox1

on1

ox1

on2

ox1

on3

ox2

on1

ox2

on2

ox2

on3

ox3

on1

ox3

on2

ox3

on3

2
64

3
75 ð3Þ

where x = (x1, x2, x3). Therefore, the determinant of the

Jacobian J is,

detðJÞ ¼ ox

on1

� ox

on2

� �
� ox

on3

� �
ð4Þ

where ox
oni

are the three partial derivatives of x which are

(q - 1)th order Bézier functions. Therefore, the resulting

determinant of Jacobian is a Bézier polynomial function

with order 3(q - 1),

detðJÞ ¼
X

jij¼r

Cjijcjijn
jij ð5Þ

where r = 3(q - 1). C|i| and c|i| can be expressed using the

coefficients B|i| and b|i| in Eq. 1. As an example, the

quadratic tetrahedral region shown in Fig. 2 can be

expressed as,

x ¼ B2000b2000n
2
1 þ B0200b0200n

2
2 þ B0020b0020n

2
3

þ B0002b0002n
2
4 þ B1100b1100n1n2 þ B1010b1010n1n3

þ B1001b1001n1n4 þ B0110b0110n2n3

þ B0101b0101n2n4 þ B0011b0011n3n4 ð6Þ

When considering that n4 = 1 - n1 - n2 - n3, B2000 =

B0200 = B0020 = B0002 = 1 and the rest coefficients B0s
equal to 2, therefore,

Table 1 n, |i|, B|i| and n|i| for topology mesh entity

n |i| B|i| n|i|

Edge (n1, n2) |i| = i ? j q!
i!j! ni

1n
j
2

Triangle (n1, n2, n3) |i| = i ? j ? k q!
i!j!k! ni

1n
j
2n

k
3

Tet ðn1; n2; n3; n4Þ |i| = i ? j ? k ? l q!
i!j!k!l! ni

1n
j
2n

k
3n

l
4

b11

b20

b02

b200

b110

b020

b002

b011

b101

b2000

b1100

b0200

b0110

b0020

b0002

b1001 b0011

b1010
b0101

Fig. 2 Bézier control points for a curved mesh edge, face and region
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ox

on1

¼ 2 ðb2000 � b1001Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
a1

n1 þ ðb1100 � b0101Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
b1

n2

8
><

>:

þðb1010 � b0111Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
c1

n3 þ ðb1001 � b0002Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
d1

n4

9
>=

>;

ox

on2

¼ 2 ðb1100 � b1001Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
a2

n1 þ ðb0200 � b0101Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
b2

n2

8
><

>:

þðb0110 � b0011Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
c2

n3 þ ðb0101 � b0002Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
d2

n4

9
>=

>;

ox

on3

¼ 2 ðb1000 � b1001Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
a3

n1 þ ðb0110 � b0101Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
b3

n2

8
><

>:

þðb0110 � b0020Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
c3

n3 þ ðb0011 � b0002Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
d3

n4

9
>=

>;

ð7Þ

The determinant of Jacobian is a cubic Bernstein

polynomial and the coefficients C|i| and c|i| are listed in

Table 2. ai, bi, ci and di are the vectors defined by the

corresponding control points shown in Eq. 6.

The convex hull property of Bézier polynomial indi-

cated that the polynomial is bounded by its minimal and

maximal control points [14]. So,

minðcjijÞ � detðJÞ�maxðcjijÞ ð8Þ

Therefore, a curved tetrahedral region is valid in its

closure as long as its min(c|i|) [ 0.

2.3 Effective procedure to generate valid curvilinear

meshes

The mesh curving procedure can start with a straight-sided

mesh or a curved mesh with invalid elements. In the case

that a straight-sided mesh is given, the procedure computes

the Bézier control points for the mesh edges/faces on

curved domain boundaries and curves them incrementally.

For a given curved mesh with different representation

higher-order shapes, for example, Lagrange interpolation,

the shapes are converted to Bézier form and the invalid

elements are detected and corrected incrementally. Central

to both of the approaches is the selection of effective local

mesh modification operations to eliminate the invalid ele-

ments till the resulting curvilinear meshes are valid.

The computation of the determinant of Jacobian to

detect invalid elements can provide useful information

to determine key mesh entities and appropriate operations

to correct the invalidity. The invalid elements are defined

as those curved elements having at least one negative

coefficient, c|i| B 0, as shown in Eq. 5. The key mesh

entities are defined as those whose control points appear in

the computation of the negative coefficients c|i|. As an

example, Fig. 3 shows an invalid quadratic tetrahedral

region and the computation of the determinant Jacobian

shows that coefficient c3000 \ 0. Based on Eq. 8 and

Table 2, the control points b2000, b1100, b1010 and b1001 have

been used to compute the c3000 which indicate that

M0
0 ;M

1
0 ;M

1
1 and M1

2 are key mesh entities and applying

local mesh modifications on any of them can effectively

make c3000 positive and the curved element valid.

The set of curved local mesh modifications applied to

create valid curvilinear meshes include edge split, edge

swap, edge collapse, region collapse, double split ? col-

lapse, and edge reshape as shown in Fig. 4, [9]. Comparing

to the straight-sided mesh, the validity check algorithm

discussed in Sect. 2.2 is used to determine whether a

curved local mesh modification operation can be applied.

Those operations are essential to ensure the reliability of

the mesh curving procedure to create valid curved

elements.

The procedure processes one curved mesh entity at a

time as follows [8]:

• determine the key mesh entities to apply local mesh

operations based on the negative coefficients, c|i| B 0,

in computing the determinant of Jacobian;

Table 2 C|i| and c|i| for det(J) of a quadratic tetrahedral region

|i| C|i| c|i|

3000 8 ða1 � a2Þ � a3

0300 8 ðb1 � b2Þ � b3

0030 8 ðc1 � c2Þ � c3

0003 8 ðd1 � d2Þ � d3

2100 8 ða1 � b2 þ a2 � b1Þ � a3

1200 8 ða1 � b2 þ a2 � b1Þ � b3

- - -

b2000

b1100 b1010

b1001

M0
1 M1

1

M2
1

M0
0

Fig. 3 The computation of det(J) indicates that the mesh entities

M0
0 ;M

1
0 ;M

1
1 and M1

2 are key mesh entities
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• determine if the invalidity is caused by pairs of

neighboring mesh faces or edges classified on the

boundary such that angles of 180� are created. In those

cases, c|i| B 0 only happens at i, j, k, l = r. Apply

either split (see Fig. 4a) or swap operations (see

Fig. 4b) to introduce additional entities to subdivide

those larger angles and correct the invalid curved

element;

• Determine if the invalidity is caused by pairs of

opposite mesh edges coming too close to each other in

one curved region, where c|i| B 0 happens at i; j; k; l6¼r:

Apply either region split (see Fig. 4d) or split ? col-

lapse (see Fig. 4e) to remove the invalid curved

element;

• if neither of above two steps is successful, examine the

applications of the remaining operations (see Fig. 4c, f)

to correct the invalid curved elements;

• if the invalid curved element cannot be corrected using

those local mesh operations, refinement is applied and

all newly created invalid curved mesh entities will be

added to the list to be processed. Subdivision creates

more options for applying operations later.

This last refinement step is critical to ensure that all

invalid elements can always be corrected as the refinement

can produce finer elements and more possibilities to per-

form local operations. Most of the examples tested by this

iterative procedure often only require one or a couple

refinements to make the resulting mesh valid. Figure 5

shows the straight-sided and curved mesh for a 3D-curved

model to demonstrate the effectiveness of the developed

procedure. The mesh has 139 regions and 31 curved

regions are invalid. Twenty local mesh modifications are

applied to correct those invalid elements. Curved meshes

for more complex domains used by SLAC for electro-

magnetic linear accelerator analysis are shown in Sect. 4.

M0
1

M0
0

edge to be split

new vertex

(a)

M1
1

1
0M

new edge

edge to be swap

(b)

M1
1

M1
0

new edge

edge to be collapsed

(c)

M1,
3 M2

3

M0
3

two remaining regions

region to be collapsed

(d)

M0
0 new vertex

M0,
1 M1

1 two edges 

(e)

M0
1

0
1M

new curved shape 

edge to be reshaped

(f)

Fig. 4 3D-curved local mesh modification operations. a Edge split,

b edge swap, c edge collapse, d region collapse, f split ? collapse,

g edge reshape

b

Fig. 5 Straight-sided mesh (left) and curved mesh (right) for a 3D

curved domain
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3 Moving curved mesh adaptation in 3D-curved

domains

The developed size driven mesh adaptation procedure [10]

has been successfully applied in cardiovascular blood flow

simulations [15], metal-forming process [16], wave prop-

agation simulations [17], etc. where the results demon-

strated substantial computational efficiency can be

improved using the isotropic or anisotropic adapted meshes

to effectively resolve solution fields. The procedure has

been extended to deal with curved meshes for higher-order

finite elements in large-scale simulations. The extended

procedure maintains the existing functionalities developed

for straight-sided meshes, such as vertex-based size field

specifications and selective local mesh modification

applications [10]. In addition, the following two steps have

been added in the case that the mesh is curved.

• The validity check algorithm described in Sect. 2.2

must be applied when the affecting cavities for a local

mesh modification operation have curved mesh entities.

This step ensures that resulting curved meshes are valid

after applying the selected local mesh operation.

• Any newly created mesh entities on the curved domain

boundaries must be properly curved to the model

boundaries which ensures that the geometric approxi-

mation of the resulting adapted meshes is maintained.

As an example, Fig. 6 shows how the procedure to split

a quadratic curved mesh edge M1
0 which is classified on

the curved model edge G1
0: The two newly created mesh

edges M1
1 and M1

2 are also curved to the model edge G1
0:

In size-driven mesh adaptation procedure, a mesh metric

field, which can be either isotropic or anisotropic, is

defined to specify the desired size of elements. The metric

field is used to compute the edge length and directions of

the current mesh with respect to this metric. A series of

controlled mesh modification steps are applied to obtain a

new mesh that satisfies the specified mesh metric field that

consist of the following three steps [11]:

• coarsening stage to eliminate the mesh edges that are

shorter than the desired edge length in the metric field.

This stage is accomplished by applying collapse

operation on the identified shorter edges one at a time;

• refinement stage to reduce the maximal mesh edge

length to reach the desired edge length in the metric

field. Edge-based refinement templates and application

of local mesh modification to project the newly created

mesh vertices to the curved boundaries are iteratively

applied until the adapted mesh satisfies the mesh size

metric field requirements [10];

• shape improvement stage to improve the quality of the

resulting mesh using swap and/or vertex reposition

operations.

For large-scale adaptive simulations, discretization error

estimation is applied to construct size fields to control the

mesh adaptation [15-17] in which the adapted meshes can

conform to the size requirements. However, there are cer-

tain situations where other factors may also be applied to

set the size field. For example, the size information being

given for the short-range wakefield simulations performed

by SLAC is supplemented to have a refined mesh in areas

where beams currently reside. The specification of this

refinement information is dictated by the initial locations of

the beam and the desired mesh size around the beam which

is often at least one order of magnitude smaller than the

rest of the domains. The larger size difference between the

finer beam domain and the coarse domain can lead to bad

quality resulting meshes. The left mesh in Fig. 7 shows an

adapted curved mesh which uses sizes 1 and 10 to control

the fine and coarse mesh in the model. The abrupt size field

change causes meshes at the fine and coarse mesh interface

not acceptable that clearly demonstrated that the control of

the mesh gradation is needed.

The procedure described in [18] is adopted to define a

smooth mesh size transition over the mesh. Central to the

algorithm is that the ratio between the larger mesh size to

the smaller mesh size at the two bounding mesh vertices of

any mesh edge is under a prescribed factor b, where b[ 1.

Let M1
i be a mesh edge, M0

j1
and M0

j2
are its two

bounding mesh vertices, the given mesh sizes at each

vertex are hj1 and hj2 which represent the desired edge

lengths at those two vertices. We require that

M1
1 M2

1M0
1

M0
0

G0
1

G0
1

edge to be split
new edges

new vertex

Fig. 6 Before (left) and after (right) refine of a quadratic curved

mesh edge M1
0 on model edge G1

0: New mesh edges M1
1 ;M

1
2 have been

appropriately curved to the model boundaries

Fig. 7 Curved meshes without (left) and with (right) mesh size

gradation control
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max
hj1

hj2

;
hj2

hj1

� � 1

L M1
1ð Þ � b ð9Þ

where LðM1
1Þ represents the length of the mesh edge M1

i

with respect to the mesh size field as defined as,

LðM1
1Þ ¼ jjM1

i jj
Z1

0

1

HðtÞdt ð10Þ

where jjM1
i jj denotes the length of the mesh edge and H(t)

is a monotonic interpolation function along the mesh edge

such that Hð0Þ ¼ hj1 and Hð1Þ ¼ hj2 : For the piecewise

linear mesh size field used in this paper to track the

moving mesh adaptation in curved domains, the function

H(t) is,

HðtÞ ¼ hj1 þ ðhj2 � hj1Þt ð11Þ

Therefore, Eq.10 gives,

LðM1
1Þ ¼ jjM1

i jj
logðhj1=hj2Þ

hj1 � hj2

; hj1 6¼ hj2 ð12Þ

Therefore, for any mesh edge which is not satisfied in

Eq. 9, the larger mesh size of its bounding mesh vertices is

decreased to minðhj1 ; hj2ÞbLðM1
i Þ to meet Eq. 9. The process

is iteratively performed over the mesh when all of the mesh

edges satisfy Eq. 9. For the mesh shown in Fig. 7b, b is

adopted as 2.0. More moving adaptive curved meshes are

shown in Sect. 4.

4 Analysis results

4.1 Finite-element time-domain method for

electromagnetics

A brief introduction of finite-element time-domain (FETD)

method for electromagnetic simulation is given in this

section. Ampere’s and Faraday’s laws along with consti-

tutive relations yield the inhomogeneous vector wave

equation for the electric field,

r� 1

l
r� E

� �
þ e

o2

ot2
E ¼ � o

ot
J ð13Þ

To avoid time differentiation of electric current density J, it

can be integrated in time to obtain the following equation,

r� 1

l
r�

Z t

�1

Eds

0

@

1

Aþ e
o2

ot2

Z t

�1

Eds ¼ �J ð14Þ

where E is the electric field intensity, J is the electric

current density, and e and l are the electric permittivity

and magnetic permeability.

With finite-element spacial discretization,
R t

�1 Eds in

Eq. 14 is expanded by a set of hierarchical Nedelec [19]

basis functions Ni(x),

Z t

�1

Eðx; sÞds ¼
X

i

eiðtÞ � NiðxÞ ð15Þ

The vector wave equation is discretized to a set of

second-order ordinary differential algebraic equations,

M
d2e

dt2
þKe ¼ f ð16Þ

where matrices M, K, and vector f are

Mij ¼
Z

X

eNi � NjdX ð17Þ

Kij ¼
Z

X

1

l
r� Nið Þ � r � Nj

� 	
dX ð18Þ

f i ¼
Z

X

Ni � JdX ð19Þ

The Newmark-beta scheme, which is unconditionally

stable when beta is larger than or equal to 0.25, is used to

approximate the above second-order differential equations

of field Eq. 16. The resulting implicit time marching

scheme is given as follows,

MþbðDtÞ2K

 �

enþ1¼ 2M�ð1�2bÞðDtÞ2K

 �

en

� MþbðDtÞ2K

 �

en�1�ðDtÞ2 bfnþ1þð1�2bÞfnþbfn�1
� 	

ð20Þ

Note that the electric field E and the magnetic flux density

B are then easily obtained from the solution vector e,

Fig. 8 The mesh for one cavity (top), close-up mesh before (bottom
left) and after (bottom right) correcting the invalid curved elements

marked as yellow
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EðxÞ ¼ RioteiNiðxÞ ð21Þ
BðxÞ ¼ �Rieir� NiðxÞ ð22Þ

4.2 Valid curvilinear meshes for FETD

electromagnetic simulations

SLAC performs simulations for the wakefield effects of an

eight-cavity cryomodule for the proposed International ILC

using the FETD method, which applies a set of higher-

order hierarchical Nedelec basis functions [19] for the

finite element spacial discretization that requires the

meshes to be curved. A curvilinear mesh with 2.974 mil-

lion quadratic isoparametric tetrahedral elements is used in

this FETD simulation. The initial curvilinear mesh uses

Lagrange interpolation to represent the higher-order shapes

for those curved mesh edges that have been converted to

Bézier representations using Eq. 2. 515 invalid curved

elements were detected and have been corrected using the

procedure discussed in Sect. 2. The valid curved mesh was

exported by converting the Bézier shapes back to Lagrange

shapes to be suitable for the analysis simulation system.

Figure 8 shows the curved mesh for one cavity of the

model and the close-up mesh before and after curving.

Figure 9 shows how an edge collapse operation is applied

to correct an invalid curved element during curving

process.

The mesh produced about 20 million degrees of free-

dom. The simulation used 256 multi-stream processors on

the Cray-X1E at Oak Ridge National Laboratory.

It took a total runtime of 300 wall hours through mul-

tiple jobs with checkpointing for a complete run and half

terabtye of data were generated. Figure 10 shows a snap-

shot of the electric field distribution excited by a beam in

the ILC cryomodule.

The statistics for correcting the invalid curved regions is

presented in Table 3. The data shows that the procedure

used about 10 min to correct the invalid regions on a single

processor Linux workstation. The corrected curvilinear

mesh not only leads to a stable time-domain simulation, but

also reduces the execution time per time step by up to 30%

due to better conditioned matrices, which is 90 wall hours

runtime efficiency improvement on the parallel computers.

4.3 Moving curved mesh refinements for short-range

wakefield calculations

A series of moving adapted meshes in a curved domain were

generated using the procedure described in Sect. 3 for short-

range wakefield calculations by SLAC. Figure 11 shows the

geometric model that has some complex components in the
Fig. 9 Local mesh cavity before (left) and after (right) applying edge

swap to correct the invalid element

Fig. 10 A snapshot of the electric field distribution excited by a beam

in an eight-cavity cryomodule for the proposed international linear

collider

Table 3 Statistics for correcting the 2.97 M mesh with 515 invalid

curved regions

Time usage (s)

Import the mesh 381.162

Create invalid region list 45.106

Correcting invalid regions 256.182

Export the mesh 64.911

Local mesh operations

Edge collapse 253

Region collapse 17

Edge swap 76

Double edge split ? collapse 13

Recurving 32

Fig. 11 Geometric model for the short-range wakefield simulation
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middle of the domain. The initial location of the beam is at

the left end of the domain, the desired mesh size inside beam

region is 1 and the size for the rest of the domains is 10.

Figure 12 shows the moving adapted curvilinear meshes up

to step 5. Figure 13 shows the interior adapted mesh at step

5. The Mesh size gradation control procedure discussed in

Sect. 3 is applied with b = 2.0. Figure 15 shows the

number of elements at each step that indicates that these

adaptively refined meshes have around 1-1.15 million

elements when compared with the uniform refined mesh

with 6.5 million elements if the mesh size inside the beam

domain is applied in the entire domain. The increase in the

number of elements in the middle of the domain is due to the

complex geometries as shown in Fig. 11. Figure 14 shows

the short-range wakefiled simulation using the moving

curved adapted meshes. The results show a tenfold reduction

in execution time and memory usage without loss in accu-

racy as compared to uniformly refined meshes.

5 Closing remarks

This paper has presented a procedure to track moving

adaptive mesh refinement in curved domains that is capable

of generating suitable curvilinear meshes to enable large-

scale accelerator simulations. The procedure combined a

general mesh curving tool and size-driven mesh adaptation

to produce valid curved meshes with substantially fewer

elements and the analysis results demonstrated such

meshes improved the computational efficiency and reli-

ability. Future work will focus on the scalable parallel-

ization of all steps for petascale simulations.
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