
29

An Interoperable, Data-Structure-Neutral
Component for Mesh Query
and Manipulation

CARL OLLIVIER-GOOCH, University of British Columbia
LORI DIACHIN, Lawrence Livermore National Laboratory
MARK S. SHEPHARD, Rensselaer Polytechnic Institute
TIMOTHY TAUTGES, Argonne National Laboratory
JASON KRAFTCHECK, University of Wisconsin
VITUS LEUNG, Sandia National Laboratory
XIAOJUAN LUO, Rensselaer Polytechnic Institute
and
MARK MILLER, Lawrence Livermore National Laboratory

Much of the effort required to create a new simulation code goes into developing infrastructure for
mesh data manipulation, adaptive refinement, design optimization, and so forth. This infrastruc-
ture is an obvious target for code reuse, except that implementations of these functionalities
are typically tied to specific data structures. In this article, we describe a software component—
an abstract data model and programming interface—designed to provide low-level mesh query
and manipulation support for meshing and solution algorithms. The component’s data model
provides a data abstraction, completely hiding all details of how mesh data is stored, while its
interface defines how applications can interact with that data. Because the component has been
carefully designed to be general purpose and efficient, it provides a practical platform for imple-
menting high-level mesh operations independently of the underlying mesh data structures. After

This work was funded by the U.S. Department of Energy under the Scientific Discovery through
Advanced Computing (SciDAC) program and by the Canadian Natural Sciences and Engineering
Research Council under a Special Research Opportunities grant.
Authors’ addresses: C. Ollivier-Gooch, University of British Columbia; email: cfog@mech.ubc.ca;
L. Diachin, Lawrence Livermore National Laboratory; M. S. Shephard, Rensselaer Polytechnic In-
stitute; T. Tautges, Argonne National Laboratory; J. Kraftcheck, University of Wisconsin; V. Leung,
Sandia National Laboratory; X. Luo, Rensselaer Polytechnic Institute; M. Miller, Lawrence Liver-
more National Laboratory.
c© 2010 Association for Computing Machinery. ACM acknowledges that this contribution was

authored or co-authored by a contractor or affiliate of the [U.S.] Government. As such, the Gov-
ernment retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial ad-
vantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permission@acm.org.
c© 2010 ACM 0098-3500/2010/09-ART29 $10.00 DOI: 10.1145/1824801.1824807.

http://doi.acm.org/10.1145/1824801.1824807.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 2 · C. Ollivier-Gooch et al.

describing the data model and interface, we provide several usage examples, each of which has
been used successfully with multiple implementations of the interface functionality. The overhead
due to accessing mesh data through the interface rather than directly accessing the underlying
mesh data is shown to be acceptably small.

Categories and Subject Descriptors: D.2.12 [Software]: Interoperability; D.2.13 [Software]:
Reusable Software—Reusable libraries; I.6.7 [Simulation and Modeling]: Simulation Support
Systems—Environments

General Terms: Design, Performance

Additional Key Words and Phrases: Data structure independence, mesh-based simulations, mesh
modification, software components

ACM Reference Format:
Ollivier-Gooch, C., Diachin, L., Shephard, M. S., Tautges, T., Kraftcheck, J., Leung, V., Luo, X.,
and Miller, M. 2010. An interoperable, data-structure-neutral component for mesh query and
manipulation. ACM Trans. Math. Softw. 37, 3, Article 29 (September 2010), 28 pages.
DOI = 10.1145/1824801.1824807. http://doi.acm.org/10.1145/1824801.1824807.

1. INTRODUCTION

Developing new simulation software for problems described by partial differ-
ential equations has become a relatively common but nonetheless laborious
task. Much of the effort required to create a new simulation code goes into
developing infrastructure for mesh and geometry data manipulation, equation
discretization, adaptive refinement, design optimization, and so forth. Because
this infrastructure is common to many simulations, reusable software for these
tasks could be shared across many simulation codes and could significantly re-
duce both the time, effort, and expertise required to develop and maintain new
simulation codes.

Currently, libraries are the most common mechanism for software reuse in
scientific computing, including highly successful examples for numerical linear
algebra [Balay et al. 1997; 2004; EISPACK 2004; LAPACK 2004; LINPACK
2004] and parallel partitioning and load balancing [Devine et al. 2002; Boman
et al. 2007; ParMETIS 2008; Walshaw and Cross 2007; Jostle 2002]. A key
drawback in using libraries as a mechanism for software reuse is the difficulty
in modifying an application already using one library so that it can use another.
At a minimum, all symbol names from one library must be changed to names
from the other. However, the difficulties really only begin there. Libraries
of similar purpose often package functionality in very different ways. Conse-
quently, data structures shared between application and library and even the
control flow between application and library may need to be totally redesigned.
This need to redesign an application (or portions of it) so that it can reuse
some other piece of software is often termed an impedance mismatch. The
greater the impedance mismatch, the more effort is required to resolve it. This
time-consuming redesign process can be a significant diversion from the central
scientific investigation, so many application researchers are reluctant to under-
take it. As a result, improvements in algorithms often take years to migrate
from the research community into application simulations.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 3

Components represent a higher level of abstraction than libraries. To quote
from the Common Component Architecture Forum (CCA) Web site [CCA Forum
2004]:

A component is a software object, meant to interact with other components,
encapsulating certain functionality or a set of functionalities. A component
has a clearly defined interface and conforms to a prescribed behavior com-
mon to all components within an architecture....
The component interface is a set of methods supported by a component,
and type definitions for the data used for arguments to those methods. An
interface itself is a type and can be an argument for a component method.

Essentially, a component defines both a specification for an Application Pro-
gramming Interface (API) and an abstract data model defining the semantics
of the data that is passed through the interface. Returning to the familiar ex-
ample of linear algebra, a numerical linear algebra component would define
a standard interface for operations such as dot products, matrix-vector multi-
plication, and linear system solution. Its abstract data model would include
objects such as vectors and matrices. A key advantage to components is that
any application using a component can, without modification, use another im-
plementation of that same component, because all compliant implementations
necessarily have equivalent functionality. In other words, software reuse can
be achieved with no additional effort.

This article describes a meshing component intended to support low-level
mesh access and manipulation. In addition, this component is designed to
support the requirements of solver applications, including the ability to de-
fine mesh subsets and to attach arbitrary user data to mesh entities. Finally,
our mesh component interface is intended to be both language and data struc-
ture independent. In summary, the mesh component we present is intended
to support low-level interaction between applications programs (both meshing
and solution applications) and external mesh databases regardless of the data
structures and programming language used by each.

The most prominent example of prior research in defining interfaces for
meshing is the Unstructured Grid Consortium (UGC), a working group of the
American Institute for Aeronautics and Astronautics’s Meshing, Visualization,
and Computing Environments Technical Committee [UGC Consortium 2005].
The first release of the UGC interface [UGC Consortium 2002] was aimed at
high-level mesh operations, including mesh generation and quality assessment.
Recognizing a need for additional and lower-level functionality, the UGC has
developed an interface for defining generic high-level services, as well as a low-
level query and modification interface for mesh databases aimed exclusively at
meshing operations [Steinbrenner et al. 2005]; results of such queries in the
UGC interface are explicitly expressed as integer indices into data arrays, with
obvious implications for how implementations of that interface must store data.
The low-level UGC interface is similar in scope to our API, although we have
deliberately been more general in providing support for functionality required
by solvers and in emphasizing data structure neutrality.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 4 · C. Ollivier-Gooch et al.

In addition, several efforts have been made to define common interfaces to
mesh data in the context of writing meshes to disk files. Two examples are
the HDF Mesh API [HDF5 2008; HDF5 Mesh API 2007] and the CFD General
Notation System (CGNS) [CFD General Notation System 2004; Legensky et al.
2002]. These efforts are similar in spirit, though they are either not complete
enough (e.g., provide no mechanism to annotate mesh with other data) or ad-
dress mesh data with a different level of abstraction than that chosen in our
work.

1.1 A Simple Use Case for a Mesh Component

As an example of how a typical scientific computing application might benefit
from using a mesh component, let us consider a finite element solver (FESolve)
for some partial differential equation, and how this application might evolve
over time.1 Let us assume that when first developed, FESolve is a simple finite
element solver, using linear elements. At runtime, FESolve loads a mesh from
a file and does some preprocessing of the mesh to compute geometric quantities
(such as integration points and weights) and perhaps to compute some mesh
topological relationships that weren’t in the file. Then, FESolve iterates over
the elements in the mesh, computing the residual and the stiffness matrix for
each, and assembling these into a global linear system. This system is solved,
and the solution is updated at every node. This iteration process may be re-
peated several times, for example, for time-dependent or nonlinear problems.

After FESolve has been in use for some time, its developers decide that mesh
adaptation is required to improve solution accuracy and/or efficiency. With
current approaches to developing mesh infrastructure software, they have two
fundamentally different choices. One choice is to select some existing mesh
adaptation code written by some other researcher(s) and integrate it with FE-
Solve by resolving whatever impedance mismatch may exist. In many cases,
this will require replacing the entire mesh database and infrastructure in FE-
Solve with new software infrastructure from the mesh adaptation code, includ-
ing updating FESolve to access data in a totally different way. The other choice
is to ignore all existing mesh adaptation implementations and develop, from
scratch, an implementation that is specifically tailored to fit into FESolve’s cur-
rent architecture. Of course, there are hybrid solutions which combine these
two approaches.

A standard mesh component provides a third, less painful way to make this
transition. Let us assume that there exists a stand-alone service that provides
key mesh adaptation operations such as element division and coarsening. A
mesh component interface can serve as the intermediary between the provider
of mesh data (in this case, FESolve) and users of mesh data (in this case, the
mesh adaptation service). The interface specifies a set of fundamental mesh
query and manipulation operations. In essence, a mesh component interface
proclaims “If you are going to ask me about a mesh, these are the questions
you can ask and this is how you ask them” or “If you are going to operate on

1While different applications will surely have different requirements for interacting with unstruc-
tured mesh data, many, if not most, applications will follow roughly this same outline.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 5

a mesh, these are the operations you can perform and this how you perform
them.” The component’s data model specifies how mesh data is encapsulated.

When using a standard mesh component and a compliant adaptation service,
the developers of FESolve are now required only to provide implementations of
the component functionality used by the adaptation code. That is, if the mesh
adaptation code uses only a handful of the queries and operations in the mesh
component interface, then only this handful of functions needs to be added to
FESolve. Once done, FESolve’s data, in its own internal data structures, can
be used directly by the mesh adaptation code without further integration. As
a bonus, in implementing part of the mesh component interface, the FESolve
development team will have done some of the work required to integrate other
useful advanced capabilities available through the mesh component.

1.2 The ITAPS Mesh Component

In this article, we will describe a newly developed component intended to pro-
vide support for the mesh access and manipulation requirements of practi-
cal, large-scale scientific computing applications. This component, developed
as part of a larger project by the Interoperable Tools for Advanced Petascale
Simulation (ITAPS) center to develop interoperable software tools for meshes,
domain geometry, and solution representation [Chand et al. 2008], is called
iMesh. Note the words “support for”: the iMesh component is not intended to be
a general interface to all possible meshing operations, but rather to define the
operations required at a mesh database level so that high-level operations—
including mesh generation, mesh improvement, mesh adaptation, parallel par-
titioning, load balancing, and design optimization—can be implemented as
services that store and manipulate mesh data by using the iMesh component
and mesh databases that implement the component’s functionality. To be gen-
uinely useful to real applications and real application developers, the compo-
nent must be as follows.

—General Purpose. Most common mesh operations must be implementable
based on the iMesh component,

—Efficient. Data access using the iMesh component and its implementations
must not come at too high a cost in overhead,

—Flexible. Different applications may want to use different approaches for the
same task, and

—Interoperable. Implementations of the component must be truly interchange-
able, and services designed to use the component should work on a plug-and-
play basis, regardless of data structures and programming language.

Section 2 describes the design principles we followed to ensure that the iMesh
component met these goals. We first defined a data model (see Section 3):
meshing operations require information about mesh entities (like vertices, tri-
angular faces, and hexahedral regions), collections of entities, and metadata
associated with mesh entities. Using this data model, we then defined an API
that would support general meshing and mesh-related solver operations (see
Section 4). In addition to defining the iMesh component interface, we have also

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 6 · C. Ollivier-Gooch et al.

developed implementations of it based on existing mesh databases and used
these implementations for various meshing and PDE solution tasks; several
examples will be given in Section 5. The article will conclude with discussion of
lessons learned from developing this component, of the current status of soft-
ware using the iMesh component, and of future prospects for extension and
application of the iMesh component.

2. DESIGN PRINCIPLES

In Section 1.2, we summarized our goals for the iMesh component. As design of
the component interface continued, we found that several principles recurred
frequently in guiding our design decisions as we worked towards these goals.
Specifically, we found that we made decisions to produce an interface that was
as follows.

Comprehensive. Clearly, a minimal requirement is that most typical mesh
operations must be possible, either intrinsically through the iMesh component
API or by building on it.

Runtime efficiency. For the iMesh component to be useful for applications,
it must have low overhead. Specifically, the component interface must be de-
signed so that an iMesh implementation can provide data access and manipu-
lation nearly as rapidly as native access to the same mesh database. Examples
of the application of this principle in the iMesh component interface are the
availability of both single-entity and array-of-entities access to mesh data, ei-
ther of which may be more efficient depending on the circumstances.

Ease of use. To lower the barrier for adoption of the interface, it must be rel-
atively easy for programmers to use. This implies the interface must be rela-
tively compact but also provide direct access to commonly used constructs, even
at the expense of additional functions in the interface. For example, we recog-
nize that certain types of metadata (specifically, double, integer, and entity
handle metadata) will be very common and more easily handled both by iMesh
implementations and applications if there are specific functions for these types.
However, to preserve flexibility in such cases, we also provide general access
mechanisms; for the metadata example, generic data is described using byte
strings. Contrariwise, where this can be done without loss of functionality, we
prefer to use a single, more general function rather than a collection of specific
functions to reduce the number of functions programmers must learn and use;
for example, all requests for entities adjacent to a given entity use the same
function, rather than having separate functions for each possible adjacency.

Flexibility. We recognize that different applications may choose to express
the same semantic content in different ways. Where feasible, the iMesh in-
terface supports this. For example, one application may choose to represent
boundary condition data by metadata attached to particular mesh entities; an-
other may represent the same information by collecting these entities into a
set and annotating the set instead. As another example, some applications
may choose to access data entity by entity while others may prefer array access
to data.
ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 7

Extensibility. We have designed the interface to allow extensions to the low-
level mesh access functionality that the interface defines. For example, ongo-
ing work for a parallel extension to the iMesh interface leverages serial iMesh
functionality for parallel usage.

Interoperability. In the long term, success of the iMesh component will de-
pend on how well the component truly supports interoperability. This is the
key to being able to leverage the effort in development of both implementa-
tions and services as well as conversion of applications to use the interface.
Interoperability, in turn, requires not only the use of a standard interface, but
also data structure and programming language neutrality. Also, interoperabil-
ity can be enhanced by eliminating gray areas, where component behavior is
implementation dependent.

3. DATA MODEL

In the iMesh data model, all mesh primitives—vertices (0D), edges (1D), faces
(2D), and regions (3D)—are referred to as entities. Entity sets are collections
of mesh entities and other sets. All topological and geometric mesh data,2 as
well as all other entity sets, are contained in a root entity set. To provide a
scope for mesh data and to allow representation of multiple meshes, each root
set is treated by the iMesh data model as an instance, which is analogous to a
C++ object, though it need not be implemented this way (in this analogy, the
iMesh interface definition is, loosely, a C++ class). In many implementations,
the instance will be a database or collection of containers storing all of the mesh
entities with other entity sets containing handles for these entities rather than
copies of all entity data. Any iMesh data object (an entity or any entity set
including the root set) can have one or more tags associated with it, so that
arbitrary data can be attached to the object. To preserve data structure neu-
trality, all iMesh data objects are identified by opaque handles. The interface
makes no assumptions about the way these handles represent data; in partic-
ular, pointer and integer handles are treated identically in the interface and
have been used in implementations.

3.1 Mesh Entities

All the primitive constituents of a mesh are defined by the iMesh data model as
entities. iMesh entities are distinguished by their entity type (vertex, edge, face,
or region: effectively, their topological dimension) and topology (for example,
triangle, quadrilateral, or tetrahedron). Each topology has a unique entity
type associated with it. Examples of entities include vertices, edges, triangular
or quadrilateral faces in 2D or 3D, and tetrahedral or hexahedral regions in
3D; a complete catalog of entities supported by iMesh is shown in Figure 1.
Higher-dimensional entities are defined by lower-dimensional entities using a
canonical ordering.

2Geometric mesh data is geometric data required to define shapes of mesh entities. This is distinct
from geometric model data, which defines the shape of the problem domain.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 8 · C. Ollivier-Gooch et al.

Fig. 1. Entities supported by the iMesh component. Canonical edge ordering is indicated in the
sketch; canonical face ordering is given in the table. Polygons and polyhedra intrinsically have no
canonical ordering.

Adjacencies describe how mesh entities connect to each other. For an entity
of dimension d, a first-order adjacency request returns all of the mesh entities
of dimension q which are on the closure of the entity for downward adjacency
(d > q), or for which the entity is part of the closure for upward adjacency
(d < q), as shown in Figure 2(a) and 2(b). For an entity of dimension d, second-
order adjacencies describe all of the mesh entities of dimension q that share
any adjacent entities of dimension b , where d �= b and b �= q. Second-order
adjacencies can be derived from first-order adjacencies. Note that in the iMesh
data model, requests such as all vertices that are neighbors to a given vertex
are requests for second-order adjacencies. Figure 2(c) highlights all edges ad-
jacent to vertices adjacent to the shaded face.
ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 9

Fig. 2. Examples of adjacency relationships between mesh entities.

3.2 Entity Sets

The iMesh data model allows arbitrary groupings of entities, called entity sets.
Each entity set may be a true set (in the set-theoretic sense) or it may be a
(possibly nonunique) ordered list of entities; in the latter case, entities are re-
trieved in the order in which they were added to the entity set. An entity set
may or may not be a simply connected computational mesh; entity sets that are
simple meshes have obvious application in multiblock and multigrid contexts,
for instance. Entity sets (other than the root set) are populated by addition or
removal of entities from the set. In addition, set Boolean operations (subtrac-
tion, intersection, and union) on entity sets are also supported.

Two primary relationships among entity sets are supported. First, entity
sets may contain one or more entity sets (by definition, all entity sets belong to
the root set). An entity set contained in another may be either a subset or an
element (each in the set-theoretic sense) of that entity set. The choice between
these two interpretations is left to the application; the iMesh component does
not impose either interpretation. Set contents can be queried recursively or
nonrecursively; in the former case, if entity set A is contained in entity set B,
a request for the contents of B will include the entities in A (and the entities
in sets contained in A). Second, parent/child relationships between entity sets
are used to represent logical relationships between sets, including multigrid
and adaptive mesh sequences. These logical relationships naturally form a
directed, acyclic graph.

Examples of entity sets include the ordered list of vertices bounding a geo-
metric face, the set of all mesh faces that lie on that geometric face, the set of
regions assigned to a single processor by mesh partitioning, and the set of all
entities in a given level of a multigrid mesh sequence.

For use with most solution applications, information in the root set or one or
more of its constituent entity sets is typically a valid mesh for some scientific
computing task, examples of which include:

—a nonoverlapping, connected set of iMesh entities; for example, the struc-
tured and unstructured meshes commonly used in finite element simulations
(simple mesh);

—overlapping grids in which a collection of simple meshes are used to represent
some portion of the computational domain, including chimera, multiblock,

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 10 · C. Ollivier-Gooch et al.

and multigrid meshes (multiple mesh). The interfaces presented here handle
these mesh types in a general way; higher-level services may be added later
to support specific functionalities needed by these meshes. In this case, each
of the simple meshes is a valid computational mesh, stored as an entity set;

—adaptive meshes in which all entities in a sequence of refined (simple or mul-
tiple) meshes are retained in the root set. The most highly refined adaptation
level typically comprises a simple or multiple mesh. Typically, different lev-
els of mesh adaptation will be represented by different entity sets, with many
of the entities shared by multiple entity sets;

—Smooth Particle Hydrodynamic (SPH) meshes, which consist of a collection
of iMesh vertices with no connectivity or adjacency information.

Meshing applications will typically have a valid computational mesh as their
end product, though during processing the mesh database will often not be in
this state.

3.3 Tags

Tags are used as containers for user-defined data that can be attached to iMesh
entities and entity sets. Different values of a particular tag can be associated
with different entities or sets; for instance, a boundary condition tag will have
different values for an inflow boundary than for a no-slip wall, and no value
at all for faces in the interior of the mesh. In the general case, iMesh tags
do not have a predefined type and allow the user to attach arbitrary data to
mesh entities; this data is stored and retrieved by implementations as a byte
pattern. To improve performance and ease of use, we support three specialized
tag types: integers, doubles, and entity handles. These typed tags enable an
iMesh implementation to correctly save and restore tag data when a mesh is
written to a file.

4. INTERFACE FUNCTIONALITY

The iMesh interface supports a variety of commonly needed functionalities for
mesh and entity query, mesh modification, entity set operations, and tags. All
data passed through the interface is in the form of opaque handles to objects
defined in the data model. In this section we describe the functionality avail-
able through the iMesh interface.3 For a reference implementation and simple
usage examples, see the ITAPS Web site [ITAPS Software 2007].

4.1 Global Queries

Global query functions can be categorized into two groups: (1) database func-
tions, that manipulate the properties of the database as a whole and (2) set
query functions, that query the contents of entity sets as a whole; these func-
tions require an entity set argument, which may be the root set. These func-
tions are summarized in Table I.

3Note that these descriptions do not include detailed syntax, which can be found in the interface
user guide [Chand et al 2007a; 2007b]. Also, note that all function names in the interface are
prepended by iMesh ; this prefix is omitted in the tables in this article for compactness.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 11

Table I. Functions for Global Queries (all function names are prepended with iMesh)

Function Description

newMesh Creates a new, empty mesh instance
dtor Destroys a mesh instance
load Loads mesh data from file into entity set
save Saves data from entity set to file
getRootSet Returns handle for the root set
getGeometricDim Returns geometric dimension of mesh
setGeometricDim Sets geometric dimension of mesh (must not contain data yet)
getDfltStorage Tells whether implementation prefers blocked or interleaved

coordinate data
getAdjTable Returns table indicating availability and cost of entity adjacency data
setAdjTable Specifies requirements for entity adjacencies and iterators
areEHValid Returns true if EH remain unchanged since last user-requested

status reset

getNumOfType Returns number of entities of type in ES
getNumOfTopo Returns number of entities of topo in ES
getEntities Returns all entities in ES of the given type and topology
getVtxArrCoords For all input vertex handles, return coords; storage order can be

user-specified.
getAdjEntIndices Given ES and optionally a type or topology, return: EH’s in ES of the

specified type or topology; EH’s adjacent to those entities with a
specified type, as a list of unique handles; and for each entity in the
first list, the adjacent entities specified as indices into the second list.

Database functions include functions to create and destroy mesh instances;
note that the create function only sets up data structures for the mesh instance,
which must be filled by reading data from a file or by creating a mesh entity by
entity. The load and save functions read and write mesh information from files;
file format and read/write options are implementation dependent. As mesh
data is loaded, entities are stored in the root set, and can optionally be placed
into a subsidiary entity set as well. iMesh implementations must be able to
provide coordinate information in both blocked (xxx. . .yyy. . .zzz. . .) and inter-
leaved (xyzxyzxyz. . .) formats; an application can query the implementation to
determine the implementation’s preferred storage order.

For a particular implementation, not all first-order adjacencies are necessar-
ily available. For instance, in a classic finite element element-node connectivity
storage, requests for faces or edges adjacent to an entity may return nothing,
because the implementation has no stored data to return. For first-order ad-
jacencies that are available in the implementation, the implementation may
store the adjacency information directly, or compute adjacencies by either a lo-
cal traversal of the entity’s neighborhood or by global traversal of the entity set.
Each iMesh implementation must provide information about the availability
and relative cost of first-order adjacency queries. Also, a service or application
may specify which adjacencies it requires and what entity types it will iterate
over; this information, which can be updated by the service or application as
its needs change, can be used by implementations to optimize internal storage
for minimum memory use and efficient data retrieval.

Set query functions allow an application to retrieve information about en-
tities in a set. The entity set may be the root set, which will return selected

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 12 · C. Ollivier-Gooch et al.

Table II. Functions for Single Entity Queries (all function names are prepended with iMesh)

Function Description

initEntIter Create an iterator to traverse entities of type and topo in ES;
return true if any entities exist

getNextEntIter Return true and a handle to next entity if there is one; false otherwise
resetEntIter Reset iterator to restart traverse from the first entity
endEntIter Destroy iterator

getEntType Return type of entity
getEntTopo Return topology of entity
getVtxCoord Return coordinates of a vertex
getEntAdj Return entities of given type adjacent to EH
getEnt2ndAdj Return entities of given type adjacent to entities of a second type adjacent

to EH

Table III. Functions for Block Entity Queries (all function names are prepended with iMesh)

Function Description

initEntArrIter Create a block iterator to traverse entities of type and topo in ES
getNextEntArrIter Return true and a block of handles if there are any; false otherwise
resetEntArrIter Reset block iterator to restart traverse from the first entity
endEntArrIter Destroy block iterator

getEntArrType Return type of each entity
getEntArrTopo Return topology of each entity
getEntArrAdj Return entities of type adjacent to each EH
getEntArr2ndAdj Return entities of given type adjacent to entities of a second

type adjacent to each EH

contents of the entire database, or may be any subsidiary entity set. For ex-
ample, functions exist to request the number of mesh entities of a given type
or topology; the types and topologies are defined as enumerations. Applica-
tions can request handles for all entities of a given type or topology or handles
for entities of a given type adjacent to all entities of a given type or topology.
Also, vertex coordinates are available in either blocked or interleaved order.
Coordinate requests can be made for the arrays of vertex handles returned
by an adjacency call. Finally, for entities of a given type and topology, their
adjacent entities of a given type can be returned, along with an array of com-
pressed sparse row style indices into the array of entities of that type returned
by getEntities.

4.2 Entity- and Array-Based Query

The global queries described in the previous section are used to retrieve infor-
mation about all entities in an entity set. While this is certainly a practical
alternative for some types of problems and for small problem size, larger prob-
lems or situations involving mesh modification require access to single enti-
ties or to blocks of entities. The iMesh interface supports traversal and query
functions for single entities and for blocks of entities; the query functions sup-
ported are entity type and topology, vertex coordinates, and entity adjacencies.
Blocks of data are passed through the interface using arrays of entity handles.
Tables II and III summarize these functions.
ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 13

Table IV. Functions for Single Entity Mesh Modification (all function names are prepended
with iMesh)

Function Description

createVtx Create vertex at given location
setVtxCoords Changes coordinates of existing vertex
createEnt Create entity of given topology from lower-dimensional entities; return

entity handle and creation status
deleteEnt Delete EH from the mesh

Table V. Functions for Block Mesh Modification (all function names are prepended
with iMesh)

Function Description

createVtxArr Create vertices at given location
setVtxArrCoords Changes coordinates of existing vertices
createEntArr Create entities of given topology from lower-dimensional entities;

return entity handle and status
deleteEntArr Delete each EH from the mesh

4.3 Mesh Modification

The iMesh interface supports mesh modification by providing a minimal set of
operators for low-level modification; both single entity (see Table IV) and block
versions (see Table V) of these operators are provided. High-level functionality,
including mesh generation, quality assessment, and validity checking, can in
principle be built from these operators, although in practice such functionality
is more likely to be provided using intermediate-level services that perform
complete unit operations, including vertex insertion and deletion with topology
updates, edge and face swapping, and vertex smoothing.

Geometry modification is achieved through functions that change vertex lo-
cations. Vertex locations are set at creation, and can be changed as required,
for instance, by mesh smoothing or other vertex movement algorithms.

Topology modification is achieved through the creation and deletion of mesh
entities. Creation of higher-dimensional entities requires specification, in
canonical order, of an appropriate collection of lower-dimensional entities. For
instance, a tetrahedron can be created using four vertices, six edges, or four
faces, but not from combinations of these. Upon creation, adjacency informa-
tion properly connecting the new entity to its closure is set up by the imple-
mentation. Some implementations may allow the creation of duplicate entities
(for example, two edges connecting the same two vertices), while others will
respond to such a creation request by returning a copy of the already-existing
entity.

Deletion of existing entities is typically done from highest to lowest dimen-
sion. The iMesh interface also allows the deletion of an entity with existing up-
ward adjacencies (for instance, an edge that is still in use by one or more faces
or regions); in this case, downward adjacency requests may be nonsensical.

4.4 Entity Sets

Entity set functionality in the iMesh interface is divided into three parts: basic
set functionality, hierarchical set relations, and set Boolean operations.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 14 · C. Ollivier-Gooch et al.

Table VI. Functions for Basic Entity Set Functionality (all function names are prepended
with iMesh)

Function Description

createEntSet Creates a new entity set (ordered and non-unique if isList is true)
destroyEntSet Destroys existing entity set
isList Return true if the set is ordered and non-unique

getNumEntSets Returns number of entity sets contained in SH
getEntSets Returns entity sets contained in SH
addEntSet Adds entity set SH1 as a member of SH2
rmvEntSet Removes entity set SH1 as a member of SH2
isEntSetContained Returns true if SH2 is a member of SH1

addEntToSet Add entity EH to set SH
rmvEntFromSet Remove entity EH from set SH
addEntArrToSet Add array of entities to set SH
rmvEntArrFromSet Remove array of entities from set SH
isEntContained Returns true if EH is a member of SH
isEntArrContained Check an array of entities for membership in SH

Basic set functionality, summarized in Table VI, includes creating and de-
stroying entity sets; adding and removing entities and sets; and several entity
set specific query functions.4 Entity sets can be either ordered and nonunique,
or unordered and unique; an ordered set guarantees that set query results
(including traversal) will always be given in the order in which entities were
added to the set. The ordered/unordered status of an entity set must be speci-
fied when the set is created and can be queried.

Entity sets are created empty. Entities can be added to or removed from the
set individually or in blocks; for ordered sets, the last of a number of dupli-
cate entries will be the first to be deleted. Also, entity sets can be added to or
removed from each other; note that, because all entities and sets are automat-
ically contained in the root set from creation, calls that would add or remove
an entity or set from the root set are not permitted. An entity set can also be
queried to determine the number and handles of sets that it contains, and to
determine whether a given entity or set belongs to that set.

Hierarchical relationships between entity sets are intended to describe, for
example, multilevel meshes and mesh refinement hierarchies. The directional
relationships implied here are labeled as parent-child relationships in the
iMesh interface. Functions are provided to add, remove, count, and identify
parents and children and to determine if one set is a child of another; see
Table VII.

Set Boolean operations (intersection, union, and subtraction) are also de-
fined by the iMesh interface; these functions are summarized in Table VIII.
The definitions are intended to be compatible with their C++ Standard
Template Library (STL) counterparts, both for semantic clarity and so that
STL algorithms can be used by implementations where appropriate. All set
Boolean operations apply not only to entity members of the set, but also to set
members. Note that set hierarchical relationships are not included: the set

4Note that the global mesh query functions (Section 4.1) and traversal functions (Section 4.2)
defined earlier can be used with the root set or any other entity set as their first argument.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 15

Table VII. Functions for Entity Set Relationships (all function names
are prepended with iMesh)

Function Description

addPrntChld Create a parent (SH1) to child (SH2) relationship
rmvPrntChld Remove a parent (SH1) to child (SH2) relationship
isChildOf Return true if SH2 is a child of SH1
getNumChld Return number of children of SH
getChldn Return children of SH
getNumPrnt Return number of parents of SH
getPrnts Return parents of SH

Table VIII. Functions for Entity Set Boolean Operations
(all function names are prepended with iMesh)

Function Description

subtract Return set difference SH1-SH2 in SH
intersect Return set intersection of SH1 and SH2 in SH
unite Return set union of SH1 and SH2 in SH

resulting from a set Boolean operation on sets with hierarchical relationships
will not have any hierarchical relationships defined for it, regardless of the in-
put data. For instance, if one were to take the intersection of two directionally
coarsened meshes (stored as sets) with the same parent mesh (also a set) in
a multigrid hierarchy, there is no reason to expect that the resulting set will
necessarily be placed in the multigrid hierarchy at all. On the other hand, if
both of these directionally coarsened meshes contain a set of boundary faces,
then their intersection will contain that set as well.

While set Boolean operations are completely unambiguous for unordered en-
tity sets, ordered sets make things more complicated. For operations in which
one set is ordered and one unordered, the result set is unordered; its contents
are the same as if an unordered set were created with the (unique) contents
of the ordered set and the operation were then performed. In the case of two
ordered sets, the iMesh specification tries to follow the spirit of the STL defin-
ition, with complications related to the possibility of multiple copies of a given
entity handle in each set. We recognize that these rules are somewhat arbi-
trary, but have been unable to find a more systematic way of defining these
operations for ordered sets. In the following discussion, assume that a given
entity handle appears m times in the first set and n times in the second set.

—For intersection of two ordered sets, the output set will contain min (m, n)
copies of the entity handle. These will appear in the same order as in the
first input set, with the first copies of the handle surviving. For example,
intersection of the two sets A = {abacdbca} and B = {dadbac} will result in
A

⋂
B = {abacd}.

—Union of two ordered sets is easy: the output set is a concatenation of the
input sets: A

⋃
B = {abacdbcadadbac}.

—Subtraction of two ordered sets results in a set containing max (m − n, 0)
copies of an entity handle. These will appear in the same order as in the
first input set, with the first copies of the handle surviving. For example,
A − B = {abc}.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 16 · C. Ollivier-Gooch et al.

Table IX. Basic Tag Functions (all function names are prepended with iMesh)

Name Description

createTag Creates a new tag of the given type and number of values
destroyTag Destroys the tag if no entity is using it or if force is true

getTagName Returns tag ID string
getTagSizeValues Returns tag size in number of values
getTagSizeBytes Returns tag size in number of bytes
getTagHandle Return tag with given ID string, if it exists
getTagType Return data type of this tag

getAllTags Return handles of all tags associated with entity EH
getAllEntSetTags Return handles of all tags associated with entity set

Table X. Setting, Getting, and Removing Tag Data (all function names are prepended with
iMesh)

Function Description

setData The value in tag TH for entity EH is set to the first tagValSize bytes
of the array<char> tagVal

setArrData The value in tag TH for entities in EHarray[i] is set using data
in the array<char> tagValArray and the tag size

setEntSetData The value in tag TH for entity set SH is set to the first tagValSize
bytes of the array<char> tagVal

set[Int,Dbl,EH]Data The value in tag TH for entity EH is set to the int, double,
or entity handle in tagVal; array and entity set versions
also exist.

getData Return the value of tag TH for entity EH
getArrData Retrieve the value of tag TH for all entities in EH array, with data

returned as an array of tagVal’s
getEntSetData Return the value of tag TH for entity EH
get[Int,Dbl,EH]Data Return the value of tag TH for entity EH; array and entity set

versions also exist.

rmvTag Remove tag TH from entity EH
rmvArrTag Remove tag TH from all entities in EH array
rmvEntSetTag Remove tag TH from entity set SH

Regardless of whether the entity members of an entity set are ordered or un-
ordered, the set members are always unordered and unique, with correspond-
ingly simple semantics for Boolean operations.

4.5 Tags

Tags are used to associate application-dependent data with a mesh, entity, or
entity set. Basic tag functionality defined in the iMesh interface is summarized
in Table IX, while functionality for setting, getting, and removing tag data is
summarized in Table X.

When creating a tag, the application must provide its data type and size,
as well as a unique name. For generic tag data, the tag size specifies how
many bytes of data to store; for other cases, the size tells how many values
of that data type will be stored. The implementation is expected to manage
the memory needed to store tag data. The name string and data size can be
retrieved based on the tag’s handle, and the tag handle can be found from its
name. Also, all tags associated with a particular entity can be retrieved; this
can be particularly useful in saving or copying a mesh.
ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 17

Table XI. Error Handling Functionality (all function
names are prepended with iMesh)

Name Description

getDescription Retrieves error description

Initially, a tag is not associated with any entity or entity set, and no tag
values exist; association is made explicitly by setting data for a tag-entity pair.
Tag data can be set for single entities, arrays of entities (each with its own
value), or for entity sets. In each of these cases, separate functions exist for
setting generic tag data and type-specific data. Analogous data retrieval func-
tions exist for each of these cases.

When an entity or set no longer needs to be associated with a tag (for in-
stance, a vertex was tagged for smoothing and the smoothing operation for this
vertex is complete) the tag can be removed from that entity without affecting
other entities associated with the tag. When a tag is no longer needed at all
(for instance, when all vertices have been smoothed) the tag can be destroyed
through one of two variant mechanisms. First, an application can remove this
tag from all tagged entities, and then request destruction of the tag. Simpler for
the application is forced destruction, in which the tag is destroyed even though
the tag is still associated with mesh entities, and all tag values and associations
are deleted. Some implementations may not support forced destruction.

4.6 Error Handling

Like any API, the iMesh interface is vulnerable to errors, either through
incorrect input or through internal failure within an implementation. For
instance, it is an error for an application to request entities with conflicting
types and topologies. Also, an error in the implementation occurs when mem-
ory for a new object cannot be allocated. The iMesh interface defines a number
of standard error conditions which could occur in iMesh functions, either be-
cause of illegal input or internal implementation errors; each of these error
conditions has an accompanying description which can be retrieved by calling
iMesh getDescription summarized in Table XI.

4.7 Compliance Testing

To ensure consistency between implementations and to assist users developing
partial implementations based on their own mesh data structures, we have
developed a comprehensive compliance test suite for the iMesh interface. When
testing a full implementation of the interface, the test suite uses the iMesh
implementation to read a mesh file, then tests each interface function. These
tests are typically done by comparing information retrieved in multiple ways;
for instance, retrieving coordinate information in both blocked and interleaved
order, or retrieving adjacency information entity-by-entity or for all entities of
a given type. The set and tag functions can be easily tested by creating sets
or tags in the test code and querying the new sets and tags to verify their
correctness. We are currently working on a function-level compliance testing,
so that users wishing to use a single iMesh-based service can implement and
test only the functions required for that service. This fine-grained testing is

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 18 · C. Ollivier-Gooch et al.

much more difficult, because consistency between different calls can no longer
be relied on. The combination of these two test suites will ensure that different
iMesh implementations have the same behavior, and that applications can rely
on correct interaction with iMesh services.

4.8 Fortran Compatibility

For compatibility with the Fortran convention that functions returning val-
ues do not modify their arguments, no iMesh function returns a value. That
is, all iMesh functions are C void functions or Fortran subroutines. Also,
string arguments in the C API have an accompanying argument giving their
length; these string length arguments are added at the end of the argument list
in the order the strings appear. Fortran77 and Fortran90/95 compilers must
support the pass-by-value extension to be compatible with the iMesh API. For-
tran 2003 has C interoperability features that greatly simply matters; we pro-
vide a Fortran 2003 module definition and examples online [ITAPS Software
2007].

5. USAGE EXAMPLES

In this section, we provide several examples of using the iMesh component, in-
cluding finite element simulation, mesh modification, mesh partitioning, and
visualization. Each of these services has been demonstrated to work with mul-
tiple implementations of the iMesh component, and, where efficiency data are
available, the overhead of using the iMesh API rather than a native imple-
mentation is quite small. In addition to these examples of direct iMesh usage,
members of our consortium are collaborating with applications researchers to
introduce ITAPS software tools into applications in accelerator design, nuclear
fusion, groundwater simulation, combustion, and computational biology; these
efforts are not described in this article.

5.1 Existing iMesh Implementations

Before discussing applications of the iMesh interface, we will summarize the
status of the existing iMesh implementations. Our consortium has produced a
complete reference implementation of the iMesh interface as well as four com-
plete implementations based on our preexisting mesh databases, all of which
are available directly through our Web site [ITAPS Software 2007]; most also
have their own Web sites. Each of the five supports all standard finite element
topologies: hexahedra, tetrahedra, prisms, pyramids, triangles, and quadri-
laterals. Each has its own particular strengths and areas of most frequent
application.

—The reference implementation (RefImpl) is intended as a basic mesh data-
base with full support for all iMesh functionality. Users looking for a testbed
for experimenting with iMesh or for implementing meshing algorithms with-
out the difficulties of first writing a mesh database will find this implemen-
tation of particular interest.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 19

—The Flexible Mesh DataBase (FMDB) [Remacle and Shephard 2003] is de-
signed especially to handle adaptively changing mesh data, including flexi-
ble storage of adjacency information. Application usage of FMDB includes
Computational Fluid Dynamics (CFD), fusion, and accelerator simulations.

—The Mesh-Oriented datABase (MOAB) [Tautges et al. 2004] is particu-
larly efficient in its memory management. Application usage for MOAB in-
cludes nuclear reactor modeling, neutron transport, and accelerator design
optimization.

—The Generation and Refinement of Unstructured Mixed-element Meshes
in Parallel (GRUMMP) [Ollivier-Gooch 2005] toolkit is designed for trian-
gular/tetrahedral mesh generation, improvement, and adaptation, and is
particularly efficient in retrieving adjacency information. Application us-
age is primarily in CFD, especially aerodynamics and non-Newtonian fluid
dynamics.

—The Pacific Northwest National Laboratory’s NWGRID [Trease and Trease
2004] is intended for adaptive mesh refinement, especially for simplicial
meshes. Application usage includes computational biology, CFD, solid me-
chanics, and subsurface transport modeling.

5.2 A Simple Finite Element Solver

To demonstrate the cost of using the iMesh interface in a typical computa-
tional science application, we developed a simple finite element application
that solves a diffusion problem in two dimensions on the unit square.

∇(k∇u(x, y)) = f (1)

u(x = 0) = 0 u(x = 1) = 1 ux(y = 0) = 0 ux(y = 1) = 0 (2)

The finite element solver uses linear triangular elements and exact integration
rules. The finite element solver is written in C and uses PETSc to solve the
linear systems.

We focus our attention on setting up the linear system and consider four
different options for accessing the mesh data: (1) through array-based mech-
anisms defined in the iMesh interface, which should approximate the perfor-
mance of a native implementation; (2) through entity iterators; and (3) through
entity array iterators. Regardless of access method, we require for each vertex
its coordinates, a global id, and a boundary flag as stored attached to the ver-
tices as tags. For elements, we require downward adjacency information (face
to vertex) and store a global id and computed element area as tags. We make
use of the iMesh functions given in Table XII. In all cases, we must obtain
the root set from the iMesh instance and get the tag handles for the global ids,
boundary flags, and element areas. In the case of array access, we obtain a
lists of all the vertex and face entities in the mesh and can obtain the tag data
as arrays of size num vtx or num elem. We can obtain the vertex coordinate
information and element connectivity information using these entity arrays or,
as we did in this example, directly from the mesh data base. It is guaranteed
by the iMesh interface that the information returned using these array-based

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 20 · C. Ollivier-Gooch et al.

Table XII. iMesh Functions Used in the Simple Finite Element
Solver for Different Mesh Data Access

Array Access Entity Iterator Entity Array Iterator

getRootSet getRootSet getRootSet
getTagHandle getTagHandle getTagHandle
getVtxCoordIndex initEntIter initEntArrIter
getAllVtxCoords getNextEntIter getNextEntArrIter
getEntities getEntAdj getEntArrAdj
getIntArrData getVtxCoord getVtxArrCoords
getDblArrData getIntData getIntArrData

getDblArrData getDblArrData

Table XIII. Timing Results for the 2D Linear Finite Element Solver Using the SimpleMesh
Implementation of the iMesh Interface

Case SimpleMesh GRUMMP

Time (ms)
(T−Tarray)

Tarray × 100 Time (ms)
(T−Tarray)

Tarray × 100

Array-based 81.8 — 86.7 —
Entity Iterator 87.2 6.6% 110.6 27.6%
Entity Array Iterator (1) 87.6 7.1% 109.0 25.8%
Entity Array Iterator (3) 86.2 6.7% 102.5 18.2%
Entity Array Iterator (5) 85.3 4.3% 99.0 14.1%
Entity Array Iterator (10) 85.4 4.5% 97.4 12.3%
Entity Array Iterator (20) 84.4 3.3% 95.9 10.6%

calls will have a consistent ordering across all calls. The iMesh calls used for
the entity and entity array iterators provide the same functionality either en-
tity by entity or for arrays of entities. In each case, we initialize the iterator to
return mesh faces and get entity information through the getNextEnt(Arr)Iter
function. For each entity (array) returned, we obtain the downward vertex ad-
jacency information, the vertex coordinates, and needed global id, boundary,
and element area tag data.

This application has been timed with two iMesh implementations,
GRUMMP and SimpleMesh, a small-scale test implementation developed at
Lawrence Livermore; the application has also been tested successfully with
other iMesh implementations, although timings are not reported here. We ran
each case 40 times and report the average time required to set up the linear
system in milliseconds, along with the percentage increase in cost compared
to the use of problem-sized arrays, in Table XIII. In the case of the entity ar-
ray iterator, we used array sizes of 1, 3, 5, 10, and 20. This is a small prob-
lem size; the total number of elements in the mesh is 6077, so the largest
array iterator represents only about 0.3% of the total problem size. Not sur-
prisingly, the array-based access to the vertex and element information is the
fastest. Entity iterators are perhaps the most natural to program, but result
in the highest overhead costs due to the very large number of function calls
(10 + 3 · (ne + ne · nv) + 4 · nv), where ne is the number of elements and nv is the
number of vertices; for the SimpleMesh implementation, the overhead is only
6.6%, but for the GRUMMP implementation it is a much higher 27.6%. The en-
tity array iterator cases decrease in cost as the array size grows and number of
function calls decreases; in this case, the total number of iMesh function calls
ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 21

Fig. 3. Element shape optimization using Mesquite.

is 10 + 6 ∗ ne/ |WS| + 4 ∗ nv/ |WS|, where |WS| is the size of the work set; for both
implementations, the overhead is reduced by at least a factor of two compared
with entity iterators.

5.3 Mesh Quality Improvement via Vertex Movement

The MESh QUality Improvement Toolkit (Mesquite) [Brewer et al. 2003] im-
proves the accuracy of mesh-based simulations through optimization of the
mesh vertex locations. Mesquite can be used for element shape optimization, r-
adaptivity, mesh alignment, etc., and has been tested with the MOAB, FMDB,
GRUMMP, and NWGRID iMesh implementations.

As input Mesquite requires an iMesh instance and entity set handle des-
ignating the subset of the mesh over which to perform the optimization. If
the entity set handle is the root set, optimization is done for the entire mesh.
Further, Mesquite expects an integer tag indicating whether the correspond-
ing vertex may be moved during optimization. Generally, boundary vertices
are marked as fixed or otherwise constrained to the computational domain
boundary to ensure correct problem formulation. While there is some vari-
ation in iMesh functionality requirements in the different Mesquite solvers,
all Mesquite optimization algorithms require iteration over elements and ver-
tices contained in an entity set, element-vertex adjacency queries, entity set
creation and modification,5 vertex coordinate query and modification, and tag
data query. These capabilities are sufficient to support Mesquite’s global ele-
ment shape optimizer; a sample input mesh is shown in Figure 3(a) with the
corresponding output mesh in Figure 3(b). When optimizing a single vertex or
subsets of mesh vertices, iMesh implementation must also efficiently determine
the elements adjacent to a vertex. Output results were identical for both the
global and Laplacian smoothers, and for data access using Mesquite’s native
mesh representation and via the iMesh interface.

Mesquite is also capable of optimizing to obtain specific characteristics of the
mesh on an element-by-element basis using target matrices. These precalcu-
lated target matrices are stored as iMesh tag data on the mesh elements and

5This is an artifact of early versions of both Mesquite and the iMesh interface. The Mesquite-iMesh
interaction code could be updated to remove the need for this capability.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 22 · C. Ollivier-Gooch et al.

Fig. 4. Deforming boundary optimization using Mesquite.

Table XIV. CPU Time (seconds) for Optimization of 40,000 Element Meshes

Optimizer Internal iMesh
MOAB GRUMMP

Global shape optimization 45.38 45.16 45.16
Laplacian smoother 111.60 472.65 —
Target matrix optimization 79.30 82.65 89.38
Deforming boundary 12.73 15.48 21.59

retrieved during optimization. For example, Figure 3(c) is the result of opti-
mizing the same input mesh given previously, except that target matrices are
used to preserve the size and aspect ratio of the elements. Another example is
shown in Figure 4 in which element aspect ratio is preserved while updating
the mesh for a deforming mesh boundary. An initial anisotropic mesh, shown
in Figure 4(a), is used to calculate the target matrices. Figure 4(b) shows the
same mesh after boundary deformation, with some elements inverted due to
the change in location of the boundary vertices. This mesh (with the stored
target matrices) is the input to the Mesquite optimizer. The resulting mesh,
with the element anisotropy preserved, is shown in Figure 4(c).

Table XIV shows the impact of the iMesh interface and implementation on
optimizer performance.6 Each row of the table corresponds to one of the ex-
amples given before with the mesh interval size reduced by a factor of ten, re-
sulting in meshes with 40,000 elements. The global shape optimization results
demonstrate one of the advantages of using a mesh database library over a
custom storage scheme. The more compact representation of data in the iMesh
implementations results in a slight performance improvement over Mesquite’s
internal mesh representation. The Laplacian smoothing times emphasize the
overhead of a standard interface and generalized mesh database. The smooth-
ing calculation is trivial. The time spent in tens of millions of queries for small

6The iMesh implementation in GRUMMP does not yet support vertex-to-element adjacency queries
for surface meshes, so it was not possible to run this Laplacian smoothing example with the
GRUMMP iMesh implementation.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 23

Table XV. Performance for the iMesh Swap-
ping Service for a Supersonic Aircraft Mesh

(251,140 tetrahedra)

Native GRUMMP
(non-iMesh) iMesh

Swaps 25,448 28,629

Rate
(

1
sec

)
3,380 2,800

Memory (MB) 216 MB 292 MB

amounts of data (adjacencies, tag data, vertex coordinates, etc.) dominates the
runtime of the optimization. The latter two rows in Table XIV demonstrate the
runtime cost of accessing tag data. The time spent accessing other mesh data
is the same as for the global shape optimization case. The difference in runtime
for each mesh database is entirely a function of the time spent querying target
matrices stored in tag data.

5.4 Mesh Quality Improvement via Topology Optimization

Local mesh topology optimization can be a powerful tool for improving the
quality of unstructured meshes; however, mesh topology modification (often re-
ferred to as swapping) is difficult enough to implement that an iMesh-based
service that performs these operations would be useful for many applica-
tions. The classic face and edge swapping operations (see, for instance, Freitag
and Ollivier-Gooch [1997] for a description) have been implemented using the
iMesh API [Ollivier-Gooch 2006].

The swapping service represents a worst-case scenario for efficiency tests
for the iMesh interface, in that the service requires fine-grained access to and
modification of the mesh database using the interface. As such, the swapping
service makes a large number of calls through the interface, each returning a
small amount of data. Specifically, the swapping service uses the iMesh entity
iterators, adjacency queries, array-based vertex coordinate queries, checks for
entity type and topology, and entity creation and deletion functions. Optionally,
the swapping service can also be restricted to reconfigure only tetrahedra that
are members of a given set, requiring the ability to query set membership and
to assign new entities to sets. A second optional functionality is the ability
to accept a tag and tag value to indicate which faces within a set should be
considered for swapping.

The swapping service has been tested with three different iMesh implemen-
tations: GRUMMP, MOAB, and FMDB, and the results compared with an im-
plementation of the same algorithms using the GRUMMP back-end (referred
to as native). For testing purposes, we use a mesh for a supersonic aircraft
initially containing 251,140 tetrahedra. Because of differences in the order
in which faces are accessed, output meshes from the iMesh swapping ser-
vice are not identical but we have confirmed elsewhere [Ollivier-Gooch 2006]
that the meshes have statistically indistinguishable quality. Table XV com-
pares the number of swaps performed, the swapping rate, and the memory
used for the native swapping implementation and the swapping service us-
ing the GRUMMP iMesh implementation. The CPU time overhead for using

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 24 · C. Ollivier-Gooch et al.

the GRUMMP iMesh implementation rather than the native implementation
is about 20% for this case; the 40% overhead in memory usage is required to
support certain forms of entity creation that are not supported natively by the
mesh database. Preliminary timing results for the MOAB and FMDB data-
bases suggest that, for this service, good performance depends on careful at-
tention to optimization of frequently called iMesh functions, especially iterators
and adjacency retrieval; in some cases, design decisions in the mesh database
may also have a significant impact on performance.

5.5 A Partitioning Service

As a precursor to our ongoing work for a parallel extension to the iMesh in-
terface, an iMesh-based service that performs partitioning would be useful.
Partitioning distributes data over sets of processors and is needed by unstruc-
tured and/or adaptive parallel applications. Many of the partitioning methods
in Zoltan [Boman et al. 2007] have been made available in a service that uses
the iMesh API to access mesh data. The partitioners available can be grouped
into three categories: simple partitioners for testing and demonstration, geo-
metric or coordinate-based partitioners, and graph partitioning.

For the simple partitioners, the partitioning service uses the iMesh queries
for entities and number of entities. The partition service can operate at the
level of any mesh entity (i.e., vertex, edge, face, or region). The partitioning
service uses both single-entity and array-of-entities access to mesh data. For
the geometric partitioners, the partitioning service uses the iMesh single-entity
adjacency queries and array-based vertex coordinate queries. For graph parti-
tioning, the partitioning service uses the array-based adjacency queries.

The partition data is stored by both attaching an integer tag to each mesh
entity and collecting entities into sets with integer tags. Any previous partition
data is destroyed before new partition data is created. The partition service
uses entity set query, deletion, and creation functions as well as the ability to
assign new entities to sets and get, destroy, create, and set tag data.

The partitioning service has been tested and is interoperable with three
mesh database implementations available through the iMesh C interface:
MOAB, FMDB, and GRUMMP. Users need only link in the desired implementa-
tion; no other changes are necessary. A partitioning service interfacing directly
to MOAB performs only slightly faster than the partitioning service interfac-
ing to MOAB through iMesh. To partition a mesh with 1.4 million faces by
faces using recursive coordinate bisection, the MOAB native implementation
required 37.2 seconds, while using the ITAPS C interface to access the MOAB
data structures required 38.2 seconds (2.5% overhead).

5.6 Visualization Using the iMesh Interface

Visualization and interactive manipulation of meshes as well as fields defined
on meshes is important in many aspects of simulation software development.
Towards this end, we have developed a VisIt [Childs et al. 2005] plugin that
accesses mesh and solution data through an iMesh implementation. We have
demonstrated that the current plugin is interoperable across three different
ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 25

Fig. 5. An example of size field-based mesh adaptation.

iMesh implementations: GRUMMP, MOAB, and FMDB. The plugin uses array-
based vertex coordinate queries. Solution data is retrieved using iMesh tag
capabilities. In addition, the plugin uses recursive entity set queries to map
an iMesh entity set hierarchy to a roughly equivalent VisIt construct called a
subset inclusion lattice. This enables VisIt to provide intuitive GUI controls to
users in terms of subsets that are characteristic to various stages of their design
and analysis workflows. For example, users often need to focus their attention
on a specific part in the original CAD model, a specific regime in the material
model, or a specific discretization region in the numerical model. The ability for
users to interactively visualize, query, calculate, and otherwise analyze data in
terms of characteristic subsets such as these both within and across each stage
of a design and analysis workflow fundamentally enhances the flexibility of the
analysis activities possible within the VisIt visualization tool.

5.7 Size Field-Based Mesh Adaptation

Adaptive methods are central to ensuring the accuracy and reliability of sim-
ulation results. One approach to supporting mesh adaptation is to provide a
service that can take an existing mesh with a new mesh size field associated
with it and create the desired adapted mesh by applying appropriate mesh
modification operations. Such a service for anisotropic mesh adaptation has
been under development of a number of years [Li et al. 2005]. To ensure the
ability to deal with general curved geometries that can come from CAD sys-
tems, the service builds on a generalized interaction with the geometric model
[Beall et al. 2004] and ensures the mesh can properly represent the domain of
interest [Li et al. 2003]. This service has been used to construct adaptive simu-
lation procedures by combining it with finite element and finite volume solvers,
and associated error indicators. Since the mesh adaptation service works off a
general anisotropic mesh size field, error indicators that have been used in-
clude various combinations of analytic fields, anisotropic a posteriori correction
indicators, and geometric approximation considerations [Shephard et al. 2005;
Wan et al. 2005]. An example of a part before and after refinement using this
approach is shown in Figure 5.

The current version of the mesh adaptation service builds on the FMDB
mesh library that employs mesh topology like iMesh. Although it is possible to
replace all FMDB calls with iMesh calls in the mesh adaptation service code

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 26 · C. Ollivier-Gooch et al.

(an activity planned for the future), the size of the code and the desire to apply
the mesh adaptation to applications quickly prompted us to take an alterna-
tive initial approach. In this approach, meshes are accessed through the iMesh
functions and loaded into the FMDB structures. The mesh adaptation process
is carried out and the resulting mesh is then put back into iMesh form. This
approach has the disadvantage that at the beginning and end of the mesh adap-
tation process there are two copies of the mesh. However, since the size of the
mesh is typically small compared to the structures used during the implicit fi-
nite element and finite volume solvers being used to date, there have not been
memory limitations introduced by this process.

6. DISCUSSION AND CONCLUSIONS

In this article, we have described a new software component for mesh-based
applications, both meshing and solver applications. We have described in de-
tail the key features of this software component, called iMesh: its data model
(which defines the types of data that the component works with) and its inter-
face (which defines how applications can interact with mesh data).

Also, we have shown by example that iMesh component is flexible enough
for a wide range of applications, including finite element solvers, mesh im-
provement and adaptation, partitioning, and visualization. Our experience
with these examples shows that relatively complex mesh modification and so-
lution requirements can be met by the interface, with low impact on efficiency.
Specifically, for a simple finite element solver, overhead induced by using the
iMesh interface is less than 10%, especially when data for multiple entities is
retrieved through the mesh interface at once. For mesh smoothing, the over-
head rate varied significantly from case to case, depending on the amount of
work done by the smoothing code relative to the number of calls through the
mesh interface. For mesh swapping, another fine-grained use case for the mesh
component, overhead rates were about 20% compared with a native implemen-
tation of the same algorithms. Three higher-level services (mesh partition-
ing, visualization, and mesh adaptation) have also been tested across multiple
iMesh implementations. In each case, the services have proved to be interop-
erable, and the overhead in using the iMesh interface is acceptable. Overall,
our experience with these services confirms that relatively complex mesh op-
erations can be performed correctly using the iMesh interface. Also, we have
found clear examples of significant differences between mesh database designs
in overall runtime for a particular service.7

Several implementations of the iMesh component are currently available,
as are the services described in this article [ITAPS Software 2007]. An analo-
gous software component for geometric query and manipulation for mesh-based
applications has also been developed, and work is nearing completion on a par-
allel extension of the mesh component.

7Note that this is not contradictory with our finding of low overhead when comparing native and
iMesh-based implementations, as the overhead measurements compare an iMesh implementation
of a service to a non-iMesh implementation of that same functionality for a given mesh database.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

An Interoperable, Data-Structure-Neutral Component for Mesh Query · 29: 27

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of Kyle Chand and
Tamara Dahlgren (Lawrence Livermore National Laboratories); Seegyoung
Seol (Renssalaer Polytechnic Institute); Xiaolin Li and Brian Fix (Stony Brook
University); and Harold Trease (Pacific Northwest National Laboratory) to the
development of the ITAPS mesh component.

REFERENCES

BALAY, S., BUSCHELMAN, K., GROPP, W. D., KAUSHIK, D., KNEPLEY, M., MCINNES, L. C.,
SMITH, B., AND ZHANG, H. 2004. PETSc homepage. http://www.mcs.anl.gov/petsc.

BALAY, S., GROPP, W., MCINNES, L., AND SMITH, B. 1997. Efficient management of parallelism in
object-oriented numerical software libraries. In Modern Software Tools in Scientific Computing,
A. B. E. Arge and H. Langtangen Eds., Birkhauser Press, Basel, Switzerland, 163–202.

BEALL, M., WALSH, J., AND SHEPHARD, M. 2004. Accessing CAD geometry for mesh generation.
Engin. Comput. 20, 3, 210–221.

BOMAN, E., DEVINE, K., FISK, L. A., HEAPHY, R., HENDRICKSON, B., LEUNG, V., VAUGHAN, C.,
CATALYUREK, U., BOZDAG, D., AND MITCHELL, W. 1999–2007. Zoltan homepage.
http://www.cs.sandia.gov/Zoltan.

BREWER, M., DIACHIN, L. F., KNUPP, P., LEURENT, T., AND MELANDER, D. 2003. The Mesquite
mesh quality improvement toolkit. In Proceedings of the 12th International Meshing Roundtable.
Sandia National Laboratories, 239–250.

CCA FORUME. 2004. CCA Forum homepage. http://www.cca-forum.org/.
CFD GENERAL NOTATION SYSTEM. 2004. CFD general notation system homepage.

http://www.cgns.org/. Version 2.4.
CHAND, K., DIACHIN, L. F., FIX, B., OLLIVIER-GOOCH, C., SEOL, E. S., SHEPHARD, M. S., AND

TAUTGES, T. 2008. Toward interoperable mesh, geometry and field components for PDE simula-
tion development. Engin. Comput. 24, 2, 165–182.

CHAND, K., FIX, B., DAHLGREN, T., DIACHIN, L. F., LI, X., OLLIVIER-GOOCH, C., SEOL, E.,
SHEPHARD, M., TAUTGES, T., AND TREASE, H. 2007a. The ITAPS iBase Interface.
http://www.itaps-scidac.org/software/documentation/iBase userguide.pdf.

CHAND, K., FIX, B., DAHLGREN, T., DIACHIN, L. F., LI, X., OLLIVIER-GOOCH, C., SEOL, E.,
SHEPHARD, M., TAUTGES, T., AND TREASE, H. 2007b. The ITAPS iMesh Interface.
http://www.itaps-scidac.org/software/documentation/iMesh userguide.pdf.

CHILDS, H., BRUGGER, E., BONNELL, K., MEREDITH, J., MILLER, M., WHITLOCK, B., AND

MAX, N. 2005. A contract based system for large data visualization. In Proceedings of the IEEE
Visualization.

DEVINE, K., BOMAN, E., HEAPHY, R., HENDRICKSON, B., AND VAUGHAN, C. 2002. Zoltan data
management services for parallel dynamic applications. Comput. Sci. Engin. 4, 2, 90–97.

EISPACK. 2004. Eispack webpage. http://www.netlib.org/eispack/.
FREITAG, L. A. AND OLLIVIER-GOOCH, C. F. 1997. Tetrahedral mesh improvement using

swapping and smoothing. Int. J. Numer. Methods Engin. 40, 21, 3979–4002.
HDF5. 2008. Hierarchical data format (HDF5) homepage.

http://www.hdfgroup.org/HDF5/index.html.
HDF5 mesh API. 2007. HDF5 mesh API. http://www.hdfgroup.uiuc.edu/papers/prototypes/mesh/.
ITAPS SOFTWARE WEBPAGE. 2007. The interoperable technologies for advanced petascale simu-

lations (ITAPS) center. http://www.itaps-scidac.org.
JOSTLE. 2002. JOSTLE—Graph partitioning software.

http://staffweb.cms.gre.ac.uk/∼c.walshaw/jostle/.
LAPACK. 2004. Lapack webpage. http://www.netlib.org/lapack/.
LEGENSKY, S. M., EDWARDS, D. E., BUSH, R. H., POIRIER, D. M. A., RUMSEY, C. L., COSNER,

R. R., AND TOWNE, C. E. 2002. CFD general notation system (CGNS): Status and future direc-
tions. AIAA Paper 2002-0752. 40th AIAA Aerospace Sciences Meeting.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

29: 28 · C. Ollivier-Gooch et al.

LI, X., SHEPHARD, M., AND BEALL, M. 2003. Accounting for curved domains in mesh adaptation.
Int. J. Numer. Methods Engin. 58, 246–276.

LI, X., SHEPHARD, M., AND BEALL, M. 2005. 3D anisotropic mesh adaptation by mesh modifica-
tions. Comput. Methods Appl. Mech. Engin. 194, 48–49, 4915–4950.

LINPACK. 2004. Linpack webpage. http://www.netlib.org/linpack/.
OLLIVIER-GOOCH, C. 2006. A mesh-database-independent edge- and face-swapping tool. AIAA

Paper 2006-0533. 44th AIAA Aerospace Sciences Meeting.
OLLIVIER-GOOCH, C. F. 1998–2005. GRUMMP—Generation and refinement of unstructured,

mixed-element meshes in parallel. http://tetra.mech.ubc.ca/GRUMMP.
PARMETIS. 2006–2008. ParMETIS—Parallel graph partitioning and fill-reducing matrix order-

ing. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.
REMACLE, J.-F. AND SHEPHARD, M. 2003. An algorithm oriented mesh database. Int. J. Numer.

Methods Engin. 58, 349–374.
SHEPHARD, M., FLAHERTY, J., JANSEN, K., LI, X., LUO, X.-J., CHEVAUGEON, N., REMACLE,

J.-F., BEALL, M., AND O’BARA, R. 2005. Adaptive mesh generation for curved domains.
Appl. Numer. Math. 52, 2–3, 251–271.

STEINBRENNER, J., MICHAL, T., AND ABELANET, J. 2005. An industry specification for mesh gen-
eration software. In Proceedings of the 17th AIAA Computational Fluid Dynamics Conference.
American Institute for Aeronautics and Astronautics.

TAUTGES, T. J., MEYERS, R. E., MERKLEY, K., STIMPSON, C., AND ERNST, C. 2004. MOAB:
A mesh-oriented data base. In Sandia rep. SAND 2004-1592. Sandia National Laboratories.

TREASE, H. AND TREASE, L. 2004. NorthWest grid generation code.
http://www.emsl.pnl.gov/nwgrid/index nwgrid.html.

UGC CONSORTIUM. 2002. Unstructured grid consortium standards document.
http://www.aiaa.org/tc/mvce/ugc/ugcstandv1.pdf.

UGC CONSORTIUM. 2005. The unstructured grid consortium. http://www.aiaa.org/tc/mvce/ugc/.
WALSHAW, C. AND CROSS, M. 2007. Jostle: Parallel multilevel graph-partitioning software—An

overview. In Mesh Partitioning Techniques and Domain Decomposition Techniques, F. Magoules
Ed., Civil-Comp Ltd., 27–58.

WAN, J., KOCAK, S., AND SHEPHARD, M. 2005. Automated adaptive 3D forming simulation
process. Engin. Comput. 21, 1, 47–75.

Received January 2009; revised December 2009; accepted March 2010

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 29, Pub. date: September 2010.

