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ABSTRACT
I/O performance in large-scale HPC systems has not kept
pace with improvements in computational performance. This
widening gap presents an opportunity to introduce a new
layer into the HPC environment that specifically targets
this divide. A RAMDISK Storage Accelerator (RSA) is pro-
posed; a system leveraging the high-throughput and decreas-
ing cost of DRAM to provide an application-transparent
method for pre-staging input data and commit results back
to a persistent disk storage system.

The RSA is constructed from a set of individual RSA
nodes; each with large amounts of DRAM and a high-speed
connection to the storage network. Memory from each node
is made available through a dynamically constructed parallel
filesystem to a compute job; data is asynchronously staged
on to the RAMDISK ahead of compute job start and writ-
ten back out to the persistent disk system after job comple-
tion. The RAMDISK provides very-high-speed, low-latency
temporary storage that is dedicated to a specific job. Asyn-
chronous data-staging frees the compute system from time
that would otherwise be spent waiting for file I/O to finish
at the start and end of execution. The RSA Scheduler is
constructed to demonstrate this asynchronous data-staging
model.

1. INTRODUCTION
Filesystem I/O performance in large-scale HPC systems

has not kept pace with improvements in computational per-
formance [11, 23]. Datasets continue to grow linearly with
computational complexity and not with filesystem perfor-
mance. This results in a decreasing amount of the time
needed to run a compute job spent on the actual computa-
tion and an increasing amount spent waiting for I/O to fin-
ish [14]. As HPC systems continue towards Exascale there
is growing concern that the current approaches to obtain-
ing filesystem performance will not keep pace and that new
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architectures will be necessary [1, 4, 20].
We believe that an opportunity exists to introduce a new

system layer that decouples the disk storage system from
the compute system, one that is transparent to the compute
application itself. The proposed solution is the introduction
of a new component to the HPC systems architecture — the
RAMDISK Storage Accelerator (RSA).

A RAMDISK can be constructed using a parallel filesys-
tem by aggregating the DRAM available in a number of
commodity servers. This parallel RAMDISK is exported to
the compute system as if it were a traditional disk-backed
filesystem. The RAMDISK provides for very-high-speed,
low-latency access to temporary storage that is dedicated to
a specific compute job. By asynchronously constructing the
RAMDISK ahead of the start of the job execution, data is
staged-in and ready to be quickly accessed at a much higher
speed when the job begins. Similarly, by outputting data to
the RAMDISK and waiting until after job execution finishes
to asynchronously stage-out data to the disk storage system,
the compute system is released and able to begin executing
a separate job faster — freeing the system from from time
that would otherwise be spent waiting for file I/O to finish.

The RSA Scheduler implements this asynchronous stag-
ing and manages the RSA nodes. It is tasked with antici-
pating when the next job will start, dynamically allocating
RSA nodes to the job and provisioning a parallel RAMDISK
filesystem on top of it, staging data in and out from the
RAMDISK, and releasing resources after the data staging
out step completes.

1.1 Related Work
A recent development using DRAM to provide a par-

allel filesystem entitled RAMCloud [18] first appeared in
2009. The RAMCloud implementation is designed to hold
all filesystem data in memory and commits a copy of the
data to dedicated disk storage on-demand.

Asynchronous data staging, in a similar manner to that
implemented for the RSA, is also discussed in relation to dif-
ferent classes of disk storage as the Zest system [16]. In this
model, data is written to an accelerated disk storage layer
that directly pushes data back to a larger persistent stor-
age layer and acts as an accelerated buffer, rather than the
dedicated cache model of the RSA. Buffering mechanisms
have also been discussed at the I/O node level on a Blue
Gene/P system by using I/O node DRAM to provide tempo-
rary asynchronous file storage and allow the compute nodes
in the machine to continue job execution while data is com-



mitted back to primary storage [23]. The DataStager system
would provide a dynamic data staging platform using ded-
icated DataStager servers that share some similarities with
the RSA nodes presented here [1]. However, DataStager
relies on application modification to offload the I/O load,
whereas the RSA presents a standard POSIX file interface.
IOFSL [17] and ZOID [10] provide another approach to I/O
acceleration by relying on internal modifications to the I/O
nodes in large-scale compute systems to provide small-file
I/O aggregation and a faster path back to the parallel filesys-
tem.

The Scalable Checkpoint/Restart library provides another
method of accelerating I/O on large-scale systems, espe-
cially Blue Gene systems [15]. By using storage available
directly to each I/O node, in the form of SSDs, disk or
RAMDISKs, it is able to provide higher-speed short-term
caching of checkpoint data. The library is meant to operate
independently of the primary storage, unlike the RSA and is
meant for checkpoint data only, not end results. Addition-
ally, by using the I/O nodes in the system, data still must
be transferred back to persistent storage before the compute
system can be released for the next job.

2. RAMDISK STORAGE ACCELERATOR
ARCHITECTURE

The RAMDISK Storage Accelerator is constructed from
a dedicated cluster of high-memory servers. RSA nodes are
dynamically allocated to jobs prior to job execution on the
compute system and a parallel RAMDISK is constructed.
Jobs are able to stage-in data to the RAMDISK before the
job begins execution on the compute system. Once exe-
cution begins the job can access data from the RAMDISK
at a much higher speed than it would from the disk stor-
age systems. Later on the job is able to make use of the
RAMDISK again to write results data. Once data has been
written to the RAMDISK the job can release its allocation
on the compute system and the RSA will stage data out of
the RAMDISK back to persistent storage.

A critical factor of the design is the asynchronous data-
staging that the RSA nodes perform. To accomplish this,
at any given time half of the RSA nodes should be expected
to be serving active compute jobs, while the other half are
either staging data in to a RAMDISK for a job that has yet
to start or staging data back out for a job that has finished
execution on the compute system.

Before a scheduled job is run on the compute cluster a
segment of the RSA is allocated for that job in proportion
to the requested compute system size and a RAMDISK is
freshly created on the allocated nodes using a parallel filesys-
tem. The parallel filesystem aggregates the DRAM available
on each individual node into a single parallel RAMDISK.
Data needed for the job is then staged-in to the RAMDISK.
As this is happening independently from job execution, this
transfer can occur at a much slower rate than would be re-
quired on the compute system itself.

Once the job starts execution on the compute system it
reads its data in from the RSA at a much higher speed than
it would from the disk storage. The RSA is then able to
discard the data (as it remains in the persistent disk stor-
age system) and reset to receive output from the compute
system.

This reset occurs in the background without impacting the

compute job. Once the transition has completed the now-
empty RAMDISK can then be leveraged mid-execution for
job snapshots and at the end of computation to write results
out. After the job has written its results out to the RSA
and completed execution, the compute system is then free
to start the next job — it does not need wait for data to be
pushed out to disk storage.

The RSA (still allocated to the finished job) then stages
data back to the disk storage system. Again, the perfor-
mance of the disk storage system no longer directly impacts
the throughput of the compute system itself. An extended
mode of operation permits the compute job to perform some
data consolidation or post-processing independently of the
main compute job. As an example, supposing the appli-
cation wrote its results out to several thousand small files.
These many small files could then be aggregated to a single
file on the disk storage system instead. This addresses a
recurring metadata performance issue in many HPC filesys-
tems [2].

An additional advantage of this structure is that the I/O
performance of the RSA scales linearly with compute job
size — a task that is currently infeasible in traditional disk
storage systems. Traditionally all compute jobs, outside file
transfer processes, visualization systems and similar auxil-
iary services contend for access to the HPC center’s filesys-
tem, and complex interactions can severely reduce the over-
all performance [14]. Additionally, no major parallel filesys-
tems currently provide quality-of-service methods that would
allow administrators to control these interactions between
systems contending for access. Generally, the only medi-
ator is the relative network speeds of the various systems
competing for access to the storage network.

Instead, the RSA nodes are directly allocated to the job
which prevents contention for the throughput each RSA
node can provide. Additionally, as RSA nodes are allocated
in direct proportion to job size1 there is a linear scaling be-
tween capacity and I/O performance of the RSA for each
job, something that disk storage systems cannot currently
provide.

2.1 RAMDISK filesystem
A parallel filesystem is used to construct the RAMDISK

itself, allowing the aggregated memory of each RSA node to
be made available to the I/O nodes in the compute system
in a unified manner. Several options exist for this such as
Ceph, Lustre, PVFS, or GPFS.

Parallel filesystem considerations and the specific imple-
mentation used for testing are available as part of the full
Master’s Thesis [25].

3. THE RSA SCHEDULER
For the RAMDISK Storage Accelerator to work efficiently

certain stages in a job’s lifecycle — job submission, job ex-
ecution on the compute system, and cleanup — must be
identified and managed separately. The four stages that are
relevant for the RSA are: on-deck, demoted, running and
finished. Transitions between these job-states are shown
in Figure 1.

1An extension to the RSA could provide additional RSA
nodes to I/O intensive compute jobs on request, instead of
relying on a directly proportion between compute nodes and
the number of allocated RSA nodes.



The RSA Scheduler is constructed to coordinate these
stages and manage the RSA nodes. It is implemented along-
side the SLURM scheduler; the SLURM scheduler is tasked
with managing access to the compute system and job status
is then tracked through SLURM’s APIs.

These transitions are discussed in depth in the Master’s
Thesis [25].

(No State in RSA Scheduler)

On-Deck

Running

Finished

Demoted

Figure 1: Job State changes, showing all possible
job-state transitions. Dotted lines are unlikely state

transitions.

3.1 RSA Setup and Data Staging In
One of the difficult steps faced by the RSA Scheduler is to

determine which job is likely to start execution next on the
compute system. In a production environment jobs will be
continually added to the job queues, and job priorities will
be constantly reassessed based on the scheduler’s internal
state, and jobs may be canceled or updated at any time
by the system users. This dynamic scheduling environment
presents a significant challenge on its own.

The implementation relies on SLURM to handle this task.
The goal of the RSA Scheduler is not to re-implement a new
production HPC job scheduler, but rather to add an addi-
tional level of capabilities to the compute system it manages.
The scheduling information required by the RSA is limited
to knowing when jobs start and finish and determining which
jobs are likely to start execution next. This determination
drives the initial RSA setup for a job and kicks off the data
stage-in process. SLURM is relied on to make this deter-
mination; the RSA Scheduler learns the results by monitor-
ing the job-state for each pending job through APIs to
SLURM.

Pending jobs fall in two main categories in SLURM:

• Pending on job priority, internally denoted as a job-

state of PRIORITY, where there are higher priority jobs
waiting ahead of us.

• Pending on resources, job-state of RESOURCES, where
the job is waiting for sufficient free compute resources
to begin execution.

Note that jobs can fluidly move between these job-states
based on newly submitted jobs and other factors; the RSA
scheduling must react in the event of these changes and real-
locate the RSA resources to match these revised scheduling
decisions. Thus, the implementation distinguishes between
jobs that are on-deck — those next in line to begin execu-
tion on the compute system — and demoted — jobs that
were previously on-deck but no longer are.

Once the scheduler has found a new job that has changed
to the RESOURCES state the job is now considered to be on-

deck by the RSA Scheduler and a set of RSA nodes is al-
located to the job in proportion to the number of compute
nodes requested. A fixed ratio of compute nodes to each
RSA node is used here and is adjusted to match the system
scale. The allocated RSA nodes are removed from the list
of free nodes and marked in the scheduler’s state files as be-
longing to that job. If the required number of RSA nodes is
not available the job is skipped over in the current schedul-
ing iteration. The expectation is that a later pass of the
RSA Scheduler will be able to allocate nodes before the job
begins execution. The rsa-state transitions for on-deck

jobs are shown in Figure 2.

(no state)

INITIAL call try-to-assign-nodes.sh

ASSIGNED

RSA nodes assigned

INELIGIBLE

job not requesting RSA assistance

BOOTING

call rsa-construct.sh

wait for boot to finish

BOOTED

finished

STAGING_IN

call rsa-stage-in.sh

wait for stage in to finish

READY

finished

Figure 2: RSA state change diagram for On-Deck jobs. For
this and the following three figures the boxed nodes denote
the ideal starting and ending states and the dashed lines
indicate state transitions that are triggered by external

call-outs.

A separate process is then started to take the allocated
nodes and construct the parallel RAMDISK for use with
the job. Once this step completes and the RSA is marked as
being ready for use, the next RSA Scheduler iteration will
start the data stage-in process.

Once the job data has been successfully staged in, the
RSA Scheduler can attempt to lock-in the job scheduled
and prevent it from being preempted. This is accomplished



by setting a quality-of-service flag for the job in SLURM,
making it highly unlikely that SLURM would demote this
job and force us to tear-down the RSA and reallocate it.

Before the job has started on the compute system it may
be rescheduled and the RSA allocation would then need to
be revoked. This demoted job is defined as any job chang-
ing status in SLURM from pending waiting on RESOURCES

to pending waiting on PRIORITY. Once a job has been de-

moted the data staging process is stopped, the associated
RAMDISK is destroyed and the allocated RSA nodes are
released. State transitions for this state are shown in Figure
3. Note that in all of these state transition diagrams the
rsa-state may have been set by the scheduler in a different
job-state and these transitions must be handled properly
in the current rsa-state.

(no state)

INELIGIBLE INITIAL

TEARDOWN wait for deconstruct to finish

READY

call rsa-deconstruct.sh

DESTROYED

finished

release allocated RSA nodes

BOOTING wait for boot to finish

BOOTED

finished

call rsa-deconstruct.sh

ABORTED

call rsa-deconstruct.sh

STAGING_IN

STOPPING_STAGE_IN

call rsa-stop-stage-in.sh

finished

wait for stop to finish

ASSIGNED

release allocated RSA nodes

Figure 3: RSA state change diagram for Demoted jobs.

There is a further complication — it is possible that a
job would jump from pending on RESOURCES to RUNNING on
the compute system before the data stage-in process has
completed. In this case, rather than delay the start of job
execution until the stage-in completes, the RAMDISK is in-
stead ignored and the job will read data in directly from
the disk storage. It is expected in this case that the time
taken to complete staging data in to the RAMDISK would
be approximately the same as that necessary to read it di-
rectly from the compute system itself, and thus, the RSA is
ignored for the sake of expediency2.

3.2 Job Execution
If the RSA has successfully staged the data for the job in

to the RSA nodes, the RSA space must be made available

2A further extension to the RSA Scheduler would add an
option for the job to control this behavior. It is possible
that having the data staging complete would be preferable
for other reasons, especially if the stage-in process was re-
sponsible for unpacking and pre-processing the data rather
than simply proving an accelerated cache of the files stored
on disk. Alternatively, the stage-in script could be stopped,
and the Linux union mount could be used on the I/O nodes
to make the current contents of the RAMDISK accessible
alongside the full contents of the original directory — this
would provide faster access to data that has been staged
in, while files that were not staged would remain directly
accessible from the disk storage system.

to the compute job. Directly prior to execution beginning a
script, called from SLURM’s Prolog script, checks the rsa-

state, and (if the stage-in has finished) it bind mounts the
RSA directory over the original part of the filesystem on the
I/O nodes assigned to the job.

READY

INUSE_IN

INUSE_OUT

wait until RSA_DELAY elapses

UNMOUNTED

prepare to remount for staging out

TEARDOWN

call rsa-deconstruct.sh

INITIAL call try-to-assign-nodes.sh

INELIGIBLE

job not requesting RSA assistance

(no state)

ASSIGNED

RSA nodes assigned

BOOTING

call rsa-construct.sh

wait for boot to finish

BOOTED

finished

MOUNTING

call rsa-mount-on-ionodes.sh

finished

wait for mount to finish

wait for deconstruct to finish

DESTROYED

finished

call rsa-construct.sh

ABORTED

call rsa-deconstruct.sh

STAGING_IN

STOPPING_STAGE_IN

call rsa-stop-stage-in.sh

finished

wait for stop to finish

Figure 4: RSA state change diagram for Running jobs.

By using a bind mount the RSA directory is made to ap-
pear to be at the original filesystem location of the data
stage-in directory. The compute job does not need to know
the RSA status. If the RSA was unable to stage in all of the
data for the job before the job started or was not allocated
RSA nodes before launching, the job would instead be read-
ing data in from the disk filesystem directly — albeit at a
reduced speed.

Some time in to the job launch, the RAMDISK is reset
to empty it and prepare it to receive output data. The
specific state transitions are shown in Figure 4. In brief, the
following steps are taken:

• The bind mounts on the I/O nodes are released. Note
that if the job needs to read additional data in from the
RSA_DATA_IN directory it would be reading from the
disk filesystem directly, as the underlying disk storage
is then exposed to the job directly3.

• The RAMDISK is destroyed then recreated again from
scratch, providing a new empty RAMDISK.

• The fresh RAMDISK is bind-mounted over the
RSA_DATA_OUT directory on the I/O nodes assigned to
the job.

Once this completes, the RSA Scheduler will make no fur-
ther changes for this job until the job moves to the finished
state.

3The mounts will not be released until any open files have
been closed. If the job does not close out the input files until
the end of the job, the RSA will not be used to stage data
out as this transition to prepare the RSA to stage-out will
not complete until after the compute job finishes.



3.3 Data Staging Out and RSA Tear-Down
Once the job completes, the SLURM Epilog routine will

unmount the RAMDISK from the I/O nodes and update the
RSA Scheduler’s job state information. The RSA Scheduler
then handles the finished state transitions as shown in Fig-
ure 5. Briefly, the RSA Scheduler:

• Removes the bind mounts from the I/O nodes.

• Stages data back out to the disk storage systems. If
requested, a custom post-processing script can be run
here. This is controlled by the RSA_POSTPROCESS vari-
able in the SLURM job file. Otherwise, the default
stage-out script will copy data from the RAMDISK
back to the RSA_DATA_OUT directory in the disk stor-
age.

• Destroys the RAMDISK filesystem and releases the
RSA nodes back to the RSA Scheduler for allocation
to another job.

3.4 Data Staging
The data staging steps, both for moving data in before

job execution and for pushing data back to the disk storage
system after job completion, are designed to be flexible and
allow for customization by the end-user.

The default data flow implemented by the RSA Sched-
uler is to read data in from the user specified RSA_DATA_IN

directory to the RAMDISK. At a predetermined time the
RAMDISK is reset to receive output data. After job com-
pletion data is copied from the RAMDISK back to the user
specified RSA_DATA_OUT directory on the disk filesystem.

The user can provide RSA_PREPROCESS or RSA_POSTPROCESS
scripts to override this default behavior. These scripts are
executed under their user account through use of the sudo

command to ensure that the underlying filesystem security is
maintained. These scripts are able to perform more complex
operations than simply copying the data back and forth.

Scientific applications that structure their results as a
set of many independent files, usually one file per process
thread [8, 9] could potentially see significant performance
gains using these custom scripts. Applications have histori-
cally used this file-per-process pattern to simplify their I/O
behavior as each compute thread independently writes out-
put data taking full advantage of all of the I/O nodes as-
sociated with that job. The downside to this approach is
that it tends to lead to poor filesystem performance due to
bottlenecks writing out file metadata [2, 24]. As an alterna-
tive to this file-per-process model, libraries such as Parallel
HDF5 [6] and Parallel netCDF [13] aim to improve perfor-
mance for scientific data sets by coordinating access to a
single shared file. The trade-off with these approaches is
that they require modification to the application itself.

The RSA system can then improve these applications with-
out modification by using a custom data staging script. The
application can write out these many-small-files to the RAMDISK
and the stage-out script can aggregate them together into a
single file. One simple mechanism to accomplish this is to
use the tar command to package them into one larger file.
Advanced cases could use the RSA nodes to post-process
the data and distill it to a form more convenient for the
end user. Compression could also be used on the results in
preparation for transfer outside of the HPC center.

4. PROOF-OF-CONCEPT SYSTEM
The RAMDISK Storage Architecture was developed to

meet RPI’s requirements for a next-generation supercom-
puting facility [3]. The full-scale design is 4-Terabyte RSA
cluster (consisting of 32 nodes, each with 128GB of 1333
MHz DDR3 DRAM) connected over Infiniband to a 512-
node IBM Blue Gene/Q.

The proof-of-concept implementation is designed to match
the operating environment of the full-scale system as closely
as possible. An IBM Blue Gene/L acts as a stand-in for the
proposed Blue Gene/Q system. Architectural similarities
mean that integration work done in this proof-of-concept
system should translate to the proposed Blue Gene/Q sys-
tem and its associated management interfaces with only
slight adjustments. The stand-in for the RSA cluster is con-
structed from similar hardware to the target environment.

The RAMDISK Storage Accelerator in the proof-of-concept
system was implemented by borrowing 16 nodes of the Sci-
entific Computation Research Center’s Hydra cluster. Each
node in the Hydra cluster contains a 2.3GHz, 8-core AMD
Opteron processor and 32 GB of 1333MHz ECC DDR3 mem-
ory and is connected to a Gigabit Ethernet network. The
cluster nodes run Debian GNU/Linux 6.0 with a custom
2.6.37 Linux kernel and use PVFS [12] version 2.8.2 to con-
struct the RAMDISKs.

The compute system used for testing is the RPI SUR
Blue Gene/L , consisting of 1024 compute nodes and 32
I/O nodes. PVFS version 2.8.2 was installed on both the
I/O nodes in the system, as well as the frontend node, al-
lowing both to directly access the PVFS-based RAMDISKs
exported by the Hydra cluster.

The systems were linked together by running a single Gi-
gabit Ethernet link between the Gigabit Ethernet switch in
the Hydra cluster and the functional network’s Gigabit Eth-
ernet fabric in the SUR Blue Gene/L. Due to this 1-Gigabit
Ethernet bottleneck between the RSA cluster and the com-
pute system, results in the form of I/O performance improve-
ments were not specifically sought for. Due to this bottle-
neck, the proof-of-concept system cannot demonstrate the
order-of-magnitude performance advantages expected from
the RSA system in the full-scale environment. Instead, the
primary purpose of the proof-of-concept system is to demon-
strate that the scheduling mechanisms function properly,
that dynamic creation of the necessary RAMDISKs can be
managed, that the correct set of I/O nodes are able to access
the correct RAMDISKs and that data stage-in and stage-out
mechanisms behave as designed.

5. PERFORMANCE RESULTS
A series of test jobs were run to demonstrate performance

improvements from using the RSA on the proof-of-concept
system. An important caveat here is that any performance
results are influenced by the 1-Gigabit network bottleneck
between the RSA nodes and the I/O nodes and that this is
an expected limitation of the proof-of-concept environment.

5.1 Results for a Single Compute Thread and
Single File

A first attempt at comparing performance between the
GPFS system and the RSA in the prototype demonstrated
only a minor improvement. The results are shown in Ta-
ble 1. The test case was configured to write out a 2GB
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Figure 5: RSA state change diagram for Finished jobs.

file through a single compute thread. Only a minor differ-
ence between writing results out via the RSA, versus di-
rectly to the GPFS system can be seen — a 13% speedup, a
far cry from the order-of-magnitude improvement expected
from the full-scale system. In both the RSA and GPFS cases
the peak speed attained by the single compute thread is close
to 50MB/s. Both the RSA and GPFS systems should be
capable of better performance than this. On further investi-
gation prior results were found demonstrating that a single
I/O node’s network performance (and thus its networked
filesystem performance) on a Blue Gene/L system is around
50MB/s [26]. Thus, this result primarily demonstrates this
same bottleneck.

Table 1: Comparison of output performance of GPFS disk
storage vs. RSA, single thread writing. Times are in

seconds.

No RSA With RSA
Output Time Output Time Stage-Out Time

Run 1 46.60 41.19 54
Run 2 47.69 41.44 48
Run 3 46.35 41.27 54

Mean 46.88 41.30 52

5.2 Results for a Single-File-Per-Process over
1024 Nodes

A second approach to demonstrating I/O differences be-
tween the systems is to run the test case under One-File-
Per-Process mode. Table 2 shows the consolidated results

for three runs in three different modes of operation. The first
case is for writing results directly to GPFS and the second
and third cases are for writing to the RAMDISK instead.
The second and third cases differ only in the method used
to stage data back to disk.

Writing out the 2048 files from the 1024-node job to the
GPFS filesystem directly takes an average of 1109 seconds,
or over 18 minutes, while the same data written to the RSA
instead takes only 37 seconds — a 2800% speedup. This
slow performance from GPFS is due to lock contention on
the output directory. This is a known limitation of GPFS [7].

The data written to the RAMDISK needs to be staged-
out to the GPFS system. Results for two methods for stag-
ing data back to the GPFS system are shown. The first
method uses the default stage-out script, which uses the
rsync command, to transfer the data back to GPFS. This
stage-out step directly shows the performance gains achiev-
able by avoiding contention on GPFS as the resulting files
after the stage-out has finished are the same as they would
be if written directly to GPFS by the compute job. This
gain is due to the stage-out being handled by a single pro-
cess writing data sequentially, as opposed to 2048 compute
threads simultaneously competing for access, which avoids
metadata lock contention in GPFS.

The second stage-out method inserts a custom RSA_STAGE_OUT

script. This script is configured to use the tar command to
combine the separate files into a single output file (with no
compression). This clearly shows a performance gain versus
the default rsync method — storing the results in one large
file is definitely advantageous. Due to the asynchronous na-
ture of the RSA the time taken to stage back to disk is
relatively unimportant as long as the RSA nodes are free
before the next job would need to use them to stage data in.



Table 2: Comparison of output performance of GPFS disk storage vs. RSA, 1024 nodes (2048 processes) in file-per-process,
with normal and custom post-processing scripts. Times are in seconds.

No RSA RSA With Default Stage-Out RSA with Custom Stage-Out
Output Output Stage-Out Output Stage-Out

Run 1 1158.81 36.11 222 35.76 179
Run 2 1193.92 36.25 227 36.25 178
Run 3 976.84 35.26 224 35.97 181

Mean 1109.86 35.87 224 36.43 179

While these results clearly show a deficiency in the GPFS
implementation, it must be stressed that the One-File-Per-
Process mode is a common one among HPC applications
[8, 9, 11, 19], and this is clearly an instance where the RSA
would be particularly beneficial.

5.3 IOR Benchmark Results
The IOR synthetic filesystem benchmark [21] was run

against the PVFS-based RSA RAMDISK and the GPFS
filesystem to compare relative performance. IOR was con-
figured to run four write-out and read-in passes against both,
with a 1MB file per process (2048 files). Results as an av-
erage of the four runs on each system are shown in Table 3.
Notably, the IOR benchmark times the initial delay in open-
ing each file. This value directly demonstrates the overhead
in GPFS for file creation.

Table 3: Consolidated Results from the IOR benchmark on
both RAMDISK and GPFS filesystems, over 1024 nodes.

RSA GPFS

Write Time (seconds) 204.16 573.28
File Open Delay (seconds) 0.43 83.27
Read Time (seconds) 187.48 289.12
Write, MBytes/sec 100.31 36.18
Read, MBytes/sec 109.24 70.89

The RSA again demonstrates its value with a 180% per-
formance improvement when writing results out versus the
GPFS filesystem. The read performance for the two systems
is much closer here and demonstrates only a 54% improve-
ment for the RSA. Especially telling here is the delay in
opening files for writing out — GPFS needs an additional
80 seconds compared to the RSA. This delay is not reflected
in the write throughput performance number given before.
If it were factored in the RSA would show a 220% perfor-
mance gain instead.

Also specifically of interest is the 100MBytes/sec value
that the RSA achieves on both read and write performance
— this corresponds to the maximum performance possible
given the Gigabit Ethernet bottleneck between the systems.
To demonstrate this the iperf [22] benchmark was run be-
tween the frontend node on the SUR Blue Gene/L and a
Hydra node to quantify the maximum performance possible
between these systems. A peak bandwidth between them
of 943Mbit/sec was observed, or 117.9MBytes/sec. The
iperf result correlates to the maximum speed possible over
a Gigabit Ethernet link [5] and the read performance result

achieved by the RSA is then within 8% of this maximum
value. The RSA results are certainly affected by this net-
work bottleneck.

6. CONCLUSION
The RAMDISK Storage Architecture presents a novel method

of handling the growing divide between I/O throughput and
compute system power on large-scale HPC systems. Dedi-
cated I/O resources in the form of parallel RAMDISKs —
virtual storage space backed by DRAM on individual RSA
nodes and aggregated together using a parallel filesystem
— are assigned on-demand to jobs on the compute system.
Asynchronously staging data in and out of these RAMDISKs
provides a mechanism to support higher throughput on the
compute system, as jobs no longer sit idle on the compute
system waiting for data to be loaded-in or written-out to a
comparatively slow persistent disk storage systems. Instead
each job makes use of the higher-performance RAMDISK
assigned to it to read initial datasets in and write results
out.

The RSA Scheduler implements the required asynchronous
data staging and RSA system management mechanisms by
providing an additional scheduling layer built around the
SLURM job scheduler. The RSA Scheduler is implemented
as an asynchronous state-transition machine such that the
core scheduling duties are handled in a minimal time and ex-
ternal operations such as RAMDISK construction and de-
construction, data staging, and node management do not
impact the core scheduling mechanism.

A proof-of-concept system has been demonstrated with
the prototype RSA Scheduler in operation and demonstrates
the viability of the asynchronous staging model. Perfor-
mance results, including a 2800% improvement in one spe-
cific instance, are shown for running with and without use
of the RSA on a proof-of-concept system.
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