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Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics

(MHD). These models include the application of the variational multiscale formulation of LES to the

equations of incompressible MHD. Additionally, a new residual-based eddy viscosity model is

introduced for MHD. A mixed LES model that combines the strengths of both of these models is also

derived. The new models result in a consistent numerical method that is relatively simple to

implement. The need for a dynamic procedure in determining model coefficients is no longer

required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD

and benchmarked against classical LES turbulence models. The LES simulations are run in a

periodic box of size ½�p; p�3 with 32 modes in each direction and are compared to a direct numerical

simulation (DNS) with 512 modes in each direction. The new models are able to account for the

essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare

the performance of our models to a DNS simulation by Pouquet et al. [“The dynamics of unforced

turbulence at high Reynolds number for Taylor–Green vortices generalized to MHD,” Geophys.

Astrophys. Fluid Dyn. 104, 115–134 (2010)], for which the ratio of DNS modes to LES modes is

262:144.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4759157]

I. INTRODUCTION

Incompressible magnetohydrodynamics (MHD) has var-

ious applications in the study of phenomena in our universe

for both scientific exploration and engineering pursuits.

Among these are the geodynamo theory and the origin of

planetary magnetic fields, turbulence in the solar wind,

fusion plasmas in tokamak reactors, and liquid metal studies

in metallurgy.1–5 It is very often the case that these systems

are in a state of turbulence. Studying turbulent phenomena is

difficult due to a lack of a theory on hydrodynamic turbu-

lence, let alone MHD turbulence, and is compounded by the

mathematical difficulties associated with the equations of

MHD. These equations are a system of nonlinear partial dif-

ferential equations consisting of the momentum equation for

the velocity field augmented by the Lorentz force and Max-

well’s equations. Combining Maxwell’s equations results in

a nonlinear equation for the magnetic induction. Because of

the mathematical intractability of these equations and a

dearth of experimental opportunities for most plasma sys-

tems, scientists often resort to numerical simulations to probe

MHD phenomena.

There are, however, considerable difficulties in the nu-

merical simulation of plasma systems. In particular, simply

directly solving the incompressible MHD equations (direct

numerical simulation or DNS) is not feasible even with

today’s computational resources. In fact, DNS of many inter-

esting phenomena will remain elusive for the foreseeable

future. One method for enabling realistic numerical simula-

tions is to develop mathematical models that account for the

information that is missing from a numerical simulation.

Large eddy simulation (LES) involves directly simulating

the largest scales in the flow-field while mathematically

modeling scales smaller than the smallest resolved scale.

Considerable work has been done pertaining to LES models

for the hydrodynamic case, but less so for MHD.

Eddy viscosity models (EVMs) have been proposed for

MHD by generalizing those for the hydrodynamic case.6

These models are a good starting point, but do not account

for significant portions of the subgrid physics. For example,

they do not allow for the possibility of backscatter or a sub-

grid dynamo effect wherein turbulent velocity fluctuations

transfer energy to the resolved magnetic induction. Further-

more, it has been shown that the dynamic Smagorinsky

EVM (DSEVM) excessively damps out the effects of the

dynamo effect in MHD.7 Closures for the mean-field equa-

tions of MHD have been systematically worked out,8 but

these models are difficult to implement numerically. Newer

models account for the coupled nature of the equations, per-

mit the possibility of backscatter,9 and are relatively straight-

forward to implement. These models depend on parameters

that generally depend upon the flow field. Such parameters

are determined on the fly during the computation with a

dynamic procedure.10 The dynamic procedure for determin-

ing the model coefficients is cumbersome to implement. In

recent years, new eddy viscosity models have been pro-

posed11,12 that aim to eliminate the need for a dynamic pro-

cedure in the context of hydrodynamic turbulence. Other

studies have dealt with LES for MHD in recent years. Work

has been done for flows in which the magnetic Reynolds

number is small compared to the hydrodynamic Reynolds

number. One approach performs a DNS of the induction

equation while using a subgrid LES model to represent the

velocity field components that are smaller than the magnetica)Electronic mail: sondad@rpi.edu.
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diffusion length.13 In yet another approach, the quasistatic

approximation is used wherein the nonlinear terms in the

magnetic induction equation are neglected.14 Two point clo-

sure models in spectral space such as the eddy damped quasi

normal Markovian (EDQNM) approximation15 have been

generalized16 and applied to MHD.17 Another popular clo-

sure model, the Lagrangian-averaged alpha model, introdu-

ces closure not through the diffusion terms but via the

nonlinear terms.18–20 This technique has also been applied to

the MHD equations.21

Previous studies have been performed which apply stabi-

lized finite elements to incompressible magnetohydrodynam-

ics.22,23 Although useful in overcoming spurious oscillations

in the solution and circumventing the Lady�zenskaja-Babu�ska-
Brezzi condition,24 stabilized finite elements only represent

incomplete turbulence models. In this work, we develop novel

LES turbulence models for incompressible MHD that are

derived from the variational multiscale (VMS) formulation.25

These models are able to account for much of the desired

physics in incompressible MHD turbulence and do not rely on

a dynamic procedure. Further, they automatically vanish

when the coarse resolved scales are close to the “exact sol-

ution” of the MHD equations.

The layout of the remainder of this manuscript is as fol-

lows. In Sec. II, the incompressible MHD equations and their

variational counterpart are discussed. This section also dis-

cusses the concept of scale separation and its implications

for numerical methods. In Sec. III, an overview of a subset

of existing LES models is given and the new models are pre-

sented. The following models are considered in this work:

the DSEVM, a model based on the residual-based VMS for-

mulation, a new residual-based eddy viscosity model

(RBEVM), and a new mixed model (MM) that combines the

VMS and the RBEVM. In Sec. IV, we present the results in

predicting a Taylor-Green flow generalized to MHD, and in

Sec. V, we draw conclusions and discuss future work. From

the models proposed and tested in this manuscript, we con-

clude that the mixed model is the most comprehensive and

accurate.

II. PHYSICAL AND NUMERICAL BACKGROUND

A. Equations of incompressible MHD

The single-fluid incompressible MHD equations are

@u

@t
þr � ðu� uÞ � r � ðB� BÞ þ rP� �r2u ¼ f; (1)

r � u ¼ 0; (2)

@B

@t
�r � ðu� BÞ þ r � ðB� uÞ þ rr � gr2B ¼ g; (3)

r � B ¼ 0: (4)

Equation (1) is the momentum equation for the velocity field

u along with the solenoidal constraint on the velocity field

(Eq. (2)) which ensures incompressibility. The field P is the

pressure field. It is related to the fluid pressure, pf , via

P ¼ pf=qþ B � B=2. The kinematic viscosity of the fluid

with density q is denoted by �. Equation (3) is the induction

equation for the magnetic induction B. The induction equa-

tion is accompanied by the solenoidal constraint on the mag-

netic induction which says that there are no magnetic

monopoles (Eq. (4)). The magnetic diffusivity is given by

g ¼ 1=ðlrÞ, where l is the magnetic permeability and r is

the electrical conductivity of the fluid. We have also

included an artificial magnetic pressure r in the induction

equation which acts as a Lagrange multiplier that enforces

the divergence free constraint on the magnetic induction.

This artificial magnetic pressure is useful when working

within a finite element context to help to numerically enforce

the divergence free constraint on the magnetic induction. In

the realm of spectral methods, an additional benefit is that

the pressures can be eliminated analytically. Therefore, it is

only necessary to numerically solve for the two vector fields.

If one desires, the pressures can be recovered as part of a

post-processing step. In the equations above, the magnetic

induction has been rescaled to be in Alfv�en velocity units.

Both Eqs. (1) and (3) also include the possibility of volumet-

ric forces f and g.
In the remainder of the paper, Eqs. (1)–(4) will be writ-

ten as

@u

@t
þr �N V þrP� �r2u ¼ f; (5)

r � u ¼ 0; (6)

@B

@t
þr �N I þrr � gr2B ¼ g; (7)

r � B ¼ 0; (8)

in which the nonlinear terms are written as

N VðUÞ ¼ u� u� B� B (9)

for the momentum equation and

N IðUÞ ¼ �u� Bþ B� u (10)

for the induction equation, where U ¼ ½u; P; B; r�T is a vec-

tor of the solution fields.

This system of equations is completed with appropriate

boundary conditions. In this work, we use 2p� periodic

boundary conditions for u, B, P, and r. The numerical

method we use is therefore a Fourier-spectral method.

B. Variational formulation

The equivalent variational statement to Eqs. (5)–(8) is:

Find U 2 V such that 8W 2 V,

AðW;UÞ ¼ ðW;FÞ: (11)

In Eq. (11), W ¼ ½w; q; v; s�T is a vector of weighting func-

tions and U ¼ ½u; P; B; r�T is a vector of trial solutions. F ¼
½f; 0; g; 0�T is a vector of forcing functions. The goal is to

determine U. The weighting functions and trial solutions re-

side in a function space denoted by V. This space is

equipped with functions that have the desired smoothness
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properties and boundary conditions. Before defining the

space V, we first introduce some notation. The L2 inner prod-
uct in a domain X for a vector function h is

ðh; hÞ ¼
ð
X
h � h dX: (12)

The corresponding L2 norm is

khkL2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðh; hÞ

p
: (13)

The H1 inner product is

ðh; hÞH1 ¼
ð
X
ðh � hþrh : rhÞ dX: (14)

The corresponding H1 norm is

khkH1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh; hÞH1

q
: (15)

The function space V is defined as

V � fW jW ¼ ½w; q; v; s�T ;
w; v 2 H1ðXÞ; q; s 2 L2ðXÞ;

Wðy; tÞ ¼ Wðx; tÞg
(16)

in a cubic domain X with boundary @X. Each of the six faces

of the cube Cjð�pÞ; CjðpÞ, j¼ 1, 2, 3 are given by

CjðcÞ ¼ fx 2 @X j xj ¼ cg; (17)

so that

y ¼ xþ 2pej 2 CjðpÞ; (18)

where ej is the unit Cartesian vector in the xj direction. The
space L2ðXÞ is defined as

L2ðXÞ ¼ fh 2 X j khkL2 < 1g: (19)

This means that the pressures are bounded for all time. Simi-

larly, the space H1ðXÞ is defined as

H1ðXÞ ¼ fh 2 X j khkH1 < 1g: (20)

This implies that the velocity and magnetic induction, as

well as their first derivatives, remain bounded for all time.

We are now ready to define the semi-linear form AðW;UÞ,
AðW;UÞ¼ðw;u;tÞþðw;r�N VÞþðw;rPÞþðrsw;2�rsuÞ

þðq;r�uÞþðv;B;tÞþðv;r�N IÞþðv;rrÞ
þðrsv;2grsBÞþðs;r�BÞ:

(21)

In the equation above, rs is the symmetric gradient operator

defined as rsh � ðrhþ ðrhÞTÞ=2. Due to periodic bound-

ary conditions, no boundary terms appear in the semi-linear

form.

Numerical methods rely on a discrete version of Eq.

(11). The most straight-forward discretization is the Galerkin

method. We introduce a conforming subspace of finite-

dimensional functions as Vh � V. The mesh parameter h
represents the spacing of the grid points. The Galerkin

method is: Find Uh 2 Vh such that 8Wh 2 Vh,

AðWh;UhÞ ¼ ðWh;FÞ: (22)

It is well-known that the Galerkin method does not provide

accurate results for many problems. In particular, problems

that involve many different scales such as turbulent flows or

boundary layer flows, where Vh cannot represent all of the

scales of the solution, are especially challenging. Next, we

introduce the idea of scale separation.

C. Scale separation

One reason why the Galerkin method is not able to pro-

duce high-fidelity results for all flow fields is because it does

not account for all the necessary physics of the problem. In

particular, it is not able to capture the physics of scales

smaller than the mesh size. Let U be the “exact” solution to

our problem. We define an optimal solution that lives in the

finite dimensional space (the coarse-scale solution) through a

projection operator Ph. That is,

Uh ¼ PhU 2 Vh: (23)

Optimality is defined by the choice of the projection operator

Ph. Corresponding to the choice for the coarse-scale solu-

tion, there is a fine-scale solution defined as

U0 ¼ U� Uh; (24)

¼ ðI�PhÞU; (25)

¼ P0U 2 V0; (26)

where P0 is the fine-scale projection operator. With this, for

any U 2 V, we may uniquely define

U ¼ Uh þ U0: (27)

This leads to the decomposition of V into coarse- and fine-

scale components

V ¼ Vh þ V0: (28)

We note that the same decomposition may be applied to the

weighting functions as well,

W ¼ Wh þW0: (29)

Using Eqs. (27) and (29) in the variational form (Eq. (11))

leads to two coupled equations: one for the resolved scales

and one for the unresolved scales

AðWh;Uh þ U0Þ ¼ ðWh;FÞ; 8Wh 2 Vh; (30)

AðW0;Uh þ U0Þ ¼ ðW0;FÞ; 8W0 2 V0: (31)

This procedure is the starting point of the VMS formula-

tion.25 Equation (30) is the equation that is to be solved for
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the coarse-scale solution Uh. It differs from the Galerkin for-

mulation in one important respect: the Galerkin formulation

does not contain U0. This is a very important difference and

leads naturally to a discussion of LES. The aim of LES is to

mathematically model the effects of U0 on Uh. We see that

from Eq. (31) one may solve for U0; indeed, this is precisely
the next step in the VMS. Assuming that this equation can be

solved (approximately), we can write the fine scales, U0, as a
functional of the coarse scales, and substituting this back in

Eq. (30), we can devise new LES models. This is described

in Sec. III A in the context of MHD.

Most other LES models are represented in a slightly dif-

ferent form. The effect of the fine scales on the coarse scales

is modeled by appending a model term to the original Galer-

kin statement. That is, find Uh 2 Vh such that 8Wh 2 Vh,

AðWh;UhÞ þMðWh;Uh; c; hÞ ¼ ðWh;FÞ; (32)

where the model termMð�; �; �; �Þ seeks to model the effects of

U0. It depends on the resolved-scale solution and is parameter-

ized by some model parameters c and the mesh parameter h.
Various specifications forMð�; �; �; �Þ are discussed in Sec. III.

Remark: For the Fourier-spectral functions we are

working with, the projection operators are specifically cho-

sen to be

PhUðx; tÞ ¼
X

jkj1�kh

Ûðk; tÞeik�x; (33)

P0Uðx; tÞ ¼
X

jkj1>kh

Ûðk; tÞeik�x; (34)

where Ûðk; tÞ represents the Fourier coefficients at wave-

number k ¼ ½k1; k2; k3�T and jkj1 ¼ maxfjk1j; jk2j; jk3jg
with kh the cutoff wavenumber at p=h.

III. OVERVIEW OF LES MODELS

In this section, we consider various LES models for

incompressible MHD. The presentation of these models is as

follows:

• We first briefly review the traditional Smagorinsky-type

EVM in the context of incompressible MHD.
• Following this, we turn to the VMS formulation and apply

it to incompressible MHD. The result is one type of LES

model which is not an EVM.
• We then return to EVMs and introduce a new EVM that is

motivated by an expression for the turbulent velocity fluc-

tuations derived using the VMS formulation.
• Finally, we discuss a new mixed model that combines the

VMS model with the new VMS-based EVM.

EVMs for incompressible MHD have the form

MðWh;Uh; c; hÞ ¼ ðrwh; 2�TrsuhÞ
þðrvh; 2gTJ

hÞ: (35)

The traditional Smagorinsky eddy viscosity model takes

the eddy viscosity to be

�T ¼ ðCS
VhÞ2S; S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rsuh : rsuh

p
; (36)

and the magnetic diffusivity to be6

gT ¼ ðCS
I hÞ2jjhj; jh ¼ r	 Bh: (37)

In Eq. (35), Jh ¼
�
rBh � ðrBhÞT

�
=2 is the rate of

rotation tensor for the magnetic induction. In Eqs. (36) and

(37), S is a characteristic rate of strain and jh is the current

density. Further, CS
V and CS

I are coefficients that are deter-

mined via a dynamic procedure.10

A. VMS

Applying the multiscale decomposition introduced in

Sec. II C to the equations of incompressible MHD results in

the problem (see Eq. (30)): Find Uh 2 Vh such that
8Wh 2 Vh,

AðWh;Uh þ U0Þ ¼ ðWh;FÞ; (38)

where

AðWh;Uh þ U0Þ ¼ AðWh;UhÞ
þ ðwh;r �N C

VÞ þ ðwh;r �N R
VÞ

þ ðvh;r �N C
I Þ þ ðvh;r �N R

I Þ: (39)

Note that all the terms in AðWh;Uh þ U0Þ that are linear
in U0 evaluate to zero because of the orthogonality of the

functions in Vh and V0. Further, in Eq. (39), a superscript C
represents cross stress terms (interactions between subgrid

and resolved solutions) and a superscript R represents the

Reynolds stress terms (interactions solely between subgrid

solutions). In particular,

N C
V ¼ ðuh � u0 þ u0 � uhÞ

�ðBh � B0 þ B0 � BhÞ
N R

V ¼ u0 � u0 � B0 � B0

N C
I ¼ �ðuh � B0 þ u0 � BhÞ

þðBh � u0 þ B0 � uhÞ
N R

I ¼ �u0 � B0 þ B0 � u0:

(40)

To close the problem, we must still determine U0. We recog-

nize that Eq. (31) provides an equation that, in principle, can

be solved for U0. However, solving this equation is just as

difficult as solving the full MHD equations. We can, how-

ever, obtain an approximation for U0.26 This is given by

U0 
 �P0sP0TRðUhÞ: (41)

In Eq. (41), s is an algebraic approximation to the inverse

differential operator. It represents an intrinsic grid time-

scale. More specifically, it is a combination of advective and

diffusive time-scales.27–29 It is given as s ¼ diagðsV ; sVc ;
sI; sIcÞ with
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sV ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

h2

�
ðuhrmsÞ2 þ ðBh

rmsÞ2
�
þ 3p

4�

h2

� �2
s ; (42)

sVc ¼ 1

sV
h

6
ffiffiffi
2

p
� �2

; (43)

sI ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

h2
ðBh

rmsÞ2 þ 3p
4�

h2

� �2
s ; (44)

sIc ¼
1

sI
h

6
ffiffiffi
2

p
� �2

: (45)

Here, the “rms” quantities are the root-mean square values

averaged over the entire simulation volume. From Eq. (41),

we conclude that the approximation to U0 is driven by the re-

sidual of the coarse scales, RðUhÞ,

RðUhÞ ¼

@uh

@t
þr �N h

V þrPh � �r2uh � f

r � uh
@Bh

@t
þr �N h

I þrrh � gr2Bh � g

r � Bh

2
666664

3
777775: (46)

Note that in the above equation

N h
V ¼ uh � uh � Bh � Bh; (47)

N h
I ¼ �uh � Bh þ Bh � uh: (48)

Using Eq. (46) in Eq. (41) and making use of the orthogonal-

ity between the function spaces Vh and V0 yield

U0 

U0 
 �P0sP0TRðUhÞ

0

U0 
 �P0sP0TRðUhÞ
0

2
664

3
775: (49)

That is, the fine-scale contribution to the two pressure terms

is zero. We note that this approximation for U0 preserves a
key feature of the equation for U0 (Eq. (31)) in that if the

coarse scale solution is exact, that is, AðW;UhÞ
¼ ðW;FÞ; 8W 2 V, then U0 ¼ 0. Equivalently, if the resid-

ual of the coarse scales is zero, then the fine scales vanish.

On the other hand, if the residual is not zero then the approx-

imation to the fine scales is active and the effect of the fine

scales is directly included in the equation for the coarse

scales.

To summarize, the VMS leads to Eq. (38) for the

resolved scales, where the unresolved scales are given by

Eq. (41) (and, more specifically, with our selected basis func-

tions, by Eq. (49)).

From Eq. (40), we conclude that the equation for the

resolved scales includes subgrid stress contributions from the

cross stresses and Reynolds stresses. It has been shown that

the VMS is able to capture cross stress terms well but is a

poor model for the Reynolds stress terms.30 Motivated by

this, in the present work, we will retain the VMS models that

contribute to the cross stresses and drop the models that con-

tribute to the Reynolds stresses. The VMS model is: Find
Uh 2 Vh such that 8Wh 2 Vh,

AðWh;UhÞ þ ðwh;r �N C
VÞ

þðvh;r �N C
I Þ ¼ ðWh;FÞ; (50)

where N C
V and N C

I are given by Eq. (40) and the fine scales

u0 and B0 are given by Eq. (49). For flows in which either the

Reynolds number or the magnetic Reynolds number (or

both) are large, the Reynolds stresses will play a significant

role. We will account for this by introducing an eddy viscos-

ity model in Eq. (50) in Sec. III C.

We note that the VMS has been shown to be dissipative

overall.30 However, it does allow for the possibility of local

backscatter which is associated with the inverse energy cas-

cade that is known to occur in MHD.

B. Residual-based EVM

We now return to the discussion of eddy viscosity mod-

els. The VMS provided us with an expression for the subgrid

fields (Eq. (41)). With this expression, we propose a new,

residual-based EVM of the form

MðWh;Uh; c; hÞ ¼ ðrwh; 2C0hju0jrsuhÞ
þ ðrvh; 2C0hju0jJhÞ; (51)

where u0 is given by Eq. (49). We observe that the eddy vis-

cosity and magnetic diffusivity for this new model are

�T ¼ gT ¼ 2C0hju0j; (52)

which is motivated through a direct analogy with molecu-

lar viscosity. The turbulent eddy viscosity may be

expressed as the product of a fluctuating velocity and a

length scale (the mean free path). A similar analogy can be

made for the turbulent magnetic diffusivity gT via the

Drude model. This formulation has the benefit that it is

residual-based and in that sense it is inherently dynamic. In

particular, in regions where the flow is more-or-less lami-

nar, the residual for the resolved scales is small, and as a

result, the viscosity and the subgrid model automatically

vanish. Based on this argument, we expect that the parame-

ter C0 above has a chance at being a global parameter that

does not have to be tuned from one region to another. For

hydrodynamic turbulence, this parameter has been eval-

uated by equating the subgrid dissipation of the EVM to

the total dissipation in the limit of an infinitely long inertial

range.31 Following a similar procedure (see the Appendix)

for MHD and assuming that the total energy spectrum for

incompressible MHD is

ETðkÞ ¼ CK�
2=3k�5=3; (53)

where CK is the Kolmogorov constant for the total energy

spectrum, we find
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C0¼Ca�1=2; (54)
where

a ¼ ju0j2
ju0j2 þ jB0j2 ; (55)

C ¼ 4

27C3
Kp

2

� �1=2

: (56)

For CK ¼ 2:2 (Ref. 4), this yields C ¼ 3:75	 10�2.

Using the definition of C0 (Eq. (54)) in Eq. (51), we arrive at

a new expression for the RBEVM

MðWh;Uh; c; hÞ ¼ ðrwh; 2Ch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju0j2 þ jB0j2

q
rsuhÞ

þðrvh; 2Ch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju0j2 þ jB0j2

q
JhÞ: (57)

We note that several estimates exist for CK in MHD turbu-

lence32 and the value of C depends on this choice. Further,

the existence of a k�5=3 inertial range in MHD is not a settled

matter. In light of this, our value of C may be a candidate

value among other possible values.

C. Mixed model for MHD

Finally, we propose a mixed model for incompressible

MHD in which the cross-stresses are modeled with the VMS

and the Reynolds stresses are modeled with the new

residual-based EVM. This method is: Find Uh 2 Vh such
that 8Wh 2 Vh,

AðWh;UhÞ þ ðwh;r �N C
VÞ þ ðvh;r �N C

I Þ
þMðWh;Uh; c; hÞ ¼ ðWh;FÞ; (58)

where Mð�; �; �; �Þ is given by Eq. (57). Equation (58) repre-

sents a consistent numerical formulation. In both the models

for the cross stresses and Reynolds stresses, the approxima-

tion for the unresolved scales from the VMS is used. The

cross-stress terms are represented by terms that are identical

to the exact expressions; the only approximation is in the

expression for the fine-scales. The Reynolds stresses are rep-

resented by eddy viscosity terms whose magnitude is propor-

tional to the magnitude of the fine-scale fields. We note that

the EVM that is used to account for the Reynolds stresses is

entirely dissipative. However, the VMS portion still allows

for the possibility of local backscatter.

D. Summary

We have considered several LES models for the incom-

pressible MHD equations. We now take the time to summa-

rize them in a single equation. This equation, which is to be

solved for Uh, reads: Find Uh 2 Vh such that 8Wh 2 Vh,

AðWh;UhÞ þ ðwh;r �N C
VÞ þ ðvh;r �N C

I Þ
þ ðrwh; 2�TrsuhÞ þ ðrvh; 2gTJ

hÞ ¼ ðWh;FÞ; (59)

where AðWh;UhÞ is given by Eq. (21) and contains all the

terms present in a Galerkin approximation (no model). In

addition,

1. For the Smagorinsky EVMs, N C
V ¼ N C

I ¼ 0 and �T and

gT are given by

�T ¼ ðCS
VhÞ2S; (60)

gT ¼ ðCS
I hÞ2jjj: (61)

The parameters, CS
V and CS

I , that appear in these equations

are determined dynamically.

2. For the VMS model, �T ¼ gT ¼ 0 and expressions for

the cross stress interactions N C
V and N C

I are provided in

Eq. (40).

3. For the residual-based EVMs, N C
V ¼ N C

I ¼ 0 and �T and

gT are given by

�T ¼ gT ¼ Ch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju0j2 þ jB0j2

q
; (62)

where C ¼ 3:75	 10�2. This constant has the potential to

be a global parameter.

4. In the mixed model, both the eddy viscosity models and

the VMS cross stress models are active. That is, no term

in Eq. (59) is dropped. The turbulent eddy diffusivities,

�T and gT , are given by the same expressions as in the

RBEVM (Eq. (62)).

Next, we test the performance of each of these models on a

canonical turbulent MHD flow.

IV. RESULTS

In this section, the performance of the models is

assessed with a standard Taylor-Green flow generalized to

MHD. The initial condition for the velocity field is33

uðx; y; z; t ¼ 0Þ ¼ u0

sin ðxÞ cos ðyÞ cos ðzÞ
�cosðxÞ sinðyÞ cosðzÞ

0

2
4

3
5: (63)

A generalization to MHD considers an initial magnetic field

of the form34

Bðx; y; z; t ¼ 0Þ ¼ B0

cos ðxÞ sinðyÞ sinðzÞ
sinðxÞ cosðyÞ sinðzÞ

�2 sinðxÞ sinðyÞ cosðzÞ

2
4

3
5: (64)

Initially, there is no cross helicity in this flow field, and this

fact remains true for the duration of the simulation. All mod-

els, unless otherwise specified, are computed with N¼ 32

modes in each direction and are compared to a DNS run with

N¼ 512. The domain is a periodic box of size ½�p; p�3. We

define the Reynolds number Re and magnetic Reynolds num-

ber Rm as

Re ¼ urmsL
V

�
; (65)

Rm ¼ urmsL
M

g
: (66)

The characteristic length scales LV and LM are computed as
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LV;M ¼

ð
1

k
EV;MðkÞdkð
EV;MðkÞdk

; (67)

where EV;MðkÞ is the energy spectrum of the velocity field or

the magnetic induction. The energy of each field is deter-

mined from their respective energy spectrum,

KT;V;M ¼
ð
ET;V;MðkÞ dk; (68)

where KT;V;M represents the total energy, velocity field

energy, or magnetic induction energy at a certain time. The

ratio of molecular viscosity to magnetic diffusivity, the mag-

netic Prandtl number (Pr¼Rm/Re), is unity. The diffusiv-

ities are � ¼ g ¼ 2:5	 10�4 which correspond to Reynolds

numbers of Re ¼ Rm ¼ 5:1	 103. The initial velocity and

magnetic fields are scaled so that the total energy, which is

the sum of the kinetic and magnetic energies, is initially

equal to 0.25. The initial state also has the kinetic and mag-

netic energies equal to each other. The evolution of the total

energy, kinetic energy, and magnetic energy is presented in

Fig. 1.

We observe that although the total energy is decaying

throughout the simulation the kinetic and magnetic energies

can either gain or lose energy. This is a characteristic of MHD

flows: one of the fields (here the magnetic field) gains energy

at the expense of the other field (in this case, the velocity

field). In Figs. 2 and 3, we present the evolution of the kinetic

and magnetic energies, respectively, as predicted by each of

the LES models derived in this paper. These figures indicate

that the VMS and mixed models provide the best perform-

ance. However, all of the models presented in this paper

appear to provide too much dissipation. In Secs. IVA–IVC,

we discuss the performance of each of these models in more

detail by considering their energy spectra.

A. VMS

In Fig. 4, we compare the performance of the VMS

model and the dynamic Smagorinsky model in predicting the

total energy spectrum at t¼ 8. We observe that the DSEVM

is overly dissipative for all wavenumbers, whereas the VMS

model produces results that are very accurate in the mid-

wavenumber range but overpredict the energy at wavenum-

bers near the cutoff. Based on these observations, it is fair to

say that the DSEVM is too dissipative while the VMS model

is not dissipative enough and that the latter is more accurate

than the former.

FIG. 1. Evolution of MHD energies for the decaying Taylor-Green vortex

(DNS).

FIG. 2. Time evolution of kinetic energy as predicted by the LES models

derived in this paper and compared to DNS.

FIG. 3. Time evolution of magnetic energy as predicted by the LES models

derived in this paper and compared to DNS.

FIG. 4. Comparison of the VMS model and the dynamic Smagorinsky

model. The energy spectrum of the total energy, ETðkÞ, at t¼ 8 is presented.
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A similar behavior for the VMS has been observed in

the context of hydrodynamic turbulence.29 This has been

attributed to the fact that the VMS model is an accurate

model for the cross-stresses and not for the Reynolds

stresses. This has motivated us to consider the mixed model

that employs the VMS model in conjunction with the resid-

ual based eddy viscosity model. In Sec. IVB, we first con-

sider the RBEVM by itself and thereafter examine the

performance of the mixed model.

B. RBEVM

The RBEVM for MHD retains the consistency of the

VMS model and the ability of the EVMs to capture the

effects of the Reynolds stresses. By consistency, we imply

that the eddy viscosity in this model vanishes when the

coarse scale residual is equal to zero. In that case, the fine

scales should be zero and we do not require a model to cap-

ture their effect. The RBEVM ensures that this happens. Fig.

5 assesses the performance of the RBEVM when compared

to the standard DSEVM.

We observe that the performance of the two models is

comparable although for large wavenumbers the RBEVM

does not provide enough dissipation. Furthermore, the

RBEVM is easier to implement as it does not require a

dynamic procedure. Note, too, that the assumptions in deriv-

ing the constant C in the RBEVM formulation could be

modified to better account for the energy spectrum behavior

in the inertial range. Unfortunately, not knowing, this behav-

ior a priori would require some ad-hoc methods (or even a

dynamic procedure) for determining C, which we wish to

avoid.

C. Mixed model

In Fig. 6, we assess the performance of the DSEVM, the

VMS, and the mixed model. Note that the mixed model is a

combination of the VMS and the RBEVM and since both of

these models are consistent (they vanish when the coarse

scales are accurate), the mixed model is also consistent. We

observe that the mixed model is the most accurate. It appears

to have retained the accuracy of the VMS model in the mid

wavenumber range and slightly improved on it in the high

wavenumber range through enhanced dissipation. This is

also observed in the plots for the velocity and magnetic spec-

tra in Figs. 7 and 8, respectively. In both of these plots, the

mixed model is the most accurate followed by the VMS

model and the DSEVM.

We note that at the Reynolds number considered in this

simulation, the difference between the VMS and the mixed

model is not especially significant. This implies that within

the mixed model the contribution from the RBEVM compo-

nent is not very large. We can understand this by recognizing

that the Reynolds number for the flow is not high and so we

do not anticipate the Reynolds stresses (which is what the

RBEVM represents) to play a significant role. One way to

test this explanation is to consider a higher Reynolds

number.

Fig. 9 presents the time-evolution of the energy ratio

between the magnetic and velocity fields (KM=KV) for a flow

field with � ¼ g ¼ 6:25	 10�5 (Re ¼ Rm ¼ 2:1	 104). All

other parameters are the same as in the previous problem.

The DNS is obtained from a simulation by Pouquet et al. and
is computed with N¼ 2048 modes in each direction. Qualita-

tively, it appears that the mixed model performs best overall.

Near the peak of dissipation (�t ¼ 3:90), it is in best agree-

ment with the DNS data.

To gain further insight, we compare the compensated

total energy spectrum averaged around the peak of total

FIG. 5. A comparison of the total energy spectra of two EVMs: the standard

dynamic Smagorinsky EVM and the new residual-based EVM.

FIG. 6. The total energy spectrum at t¼ 8 for LES models (DSEVM, VMS,

MM) compared to the DNS simulation.

FIG. 7. The velocity energy spectrum at t¼ 8 for LES models (DSEVM,

VMS, MM) compared to the DNS simulation.
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dissipation (t 2 ½3:5; 5�) for each of the models with the DNS

data.35 In Fig. 10, the advantages of the mixed model

become apparent; the mixed model is in very good agree-

ment with the DNS simulation, while the VMS is underdif-

fuse in the high wavenumbers and the DSEVM provides far

too much dissipation overall.

We note that previous work has suggested that the ratio

of the dissipation from the Reynolds stresses to the total tur-

bulent dissipation is approximately 1/3.36 This would imply

that it is necessary to replace C with C=3 in Eq. (57) for the

mixed model. We tested this modification for the decaying

Taylor-Green vortex but found that leaving the dissipation

constant C alone gives the best results. By using C=3, the
mixed model still represents an improvement over the VMS

model, but this improvement is harder to discern.

V. CONCLUSIONS AND FUTURE WORK

We have developed novel LES turbulence models for

incompressible MHD. These models are

• A model based on the variational multiscale formulation
• A new residual-based EVM
• A mixed model that combines the first two

All these models are driven by the residual of the coarse

scale variables and hence vanish when the coarse scales are

accurate. In this sense, they are consistent. Because of this

feature, we also anticipate that the parameters appearing in

these models do not have to be adapted or evaluated dynami-

cally. Indeed, in the simulations presented in this paper, they

were held fixed.

These models were tested using a decaying Taylor-

Green vortex with Re ¼ Rm ¼ 5:1	 103. They were com-

pared to the classic dynamic Smagorinsky EVM as well as

results from a DNS simulation with 512 modes in each direc-

tion. We found that at these Reynolds numbers, the mixed

model provides the best results followed by the VMS model.

The RBEVM and the DSEVM produced results that were the

least accurate.

A greater distinction between the performances of the

models was seen upon considering a higher Reynolds num-

ber flow. The DNS data for a high Reynolds number flow

was taken from a simulation that was run with 2048 modes

in each direction.35 The LES was run with only 32 modes in

each direction. The ratio of the number of modes in the DNS

to the LES simulations in this case is 262:144. Even at this

large ratio, the new mixed model performed exceptionally

well.

Although the new models for incompressible MHD (in

particular, the mixed model) yielded good results, there

might be some room for improvement. In particular, the sub-

grid stresses in the momentum equation involve the subgrid

velocity fluctuations and the subgrid magnetic fluctuations.

However, the eddy viscosity model that we employed was

designed specifically for the subgrid velocity fluctuations. It

did not contain a term whose goal was to model the subgrid

Maxwell stresses.

Additional studies are planned that will compare our new

models to more state-of-the art models such as an alignment-

based eddy viscosity model.9 We also intend to explore the

abilities of the new models to represent interesting and impor-

tant MHD phenomena such as alignment of the velocity and

magnetic field, the effects of magnetic helicity, and the

inverse cascade of magnetic helicity. We have already demon-

strated the ability of the VMS model to reproduce the subgrid

FIG. 8. The magnetic energy spectrum at t¼ 8 for LES models (DSEVM,

VMS, MM) compared to the DNS simulation.

FIG. 9. Time-evolution of energy ratio, KM=KV for the decaying Taylor-

Green vortex with Re ¼ Rm ¼ 2:1	 104. DNS results are from a previous

work.35

FIG. 10. Compensated total energy spectra, averaged about peak of total dis-

sipation, for the run with Re ¼ Rm ¼ 2:1	 104. DNS results are from a pre-

vious work.35
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dynamo effect under certain physical conditions. In a future

work, we plan to systematically demonstrate this phenomenon

with numerical experiments.

There are several extensions of this work that are in-

triguing. For example, it would be interesting to perform a

simulation of the solar wind using the new mixed model. In

this case, rather than compare with DNS simulations, the

data are available.37–39 that will allow us to assess the per-

formance of the new LES models on a realistic problem for

which experimental results exist. The ability to accurately

simulate and thereby predict solar wind activity is important

in forecasting space weather in the vicinity of our planet.

Furthermore, rather than focus on problems with peri-

odic boundary conditions, it will be worthwhile to consider

problems with more realistic boundary conditions and

boundary layers. A relatively straightforward problem to

consider initially is the turbulent MHD channel flow prob-

lem. This analog to channel flow in fluid dynamics will intro-

duce a turbulent boundary layer whose characteristics will

change depending on the relative importance of the magnetic

and velocity fields.
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APPENDIX: DERIVATION OF THE RBEVM
CONSTANT

We now proceed with a derivation of the calibration con-

stant C in the RBEVM. The rate of dissipation of the total

energy for incompressible MHD with the RBEV model is

�h ¼ 2h�TSh : Sh þ gTJ
h : Jhi; (A1)

where we have neglected the contribution from molecular

viscosity and magnetic diffusivity. With �T ¼ gT ¼ C0hju0j,

�h ¼ 2C0h
�ju0jðSh : Sh þ Jh : JhÞ�; (A2)


 2C0h
�ju0j2�1=2�

Sh : Sh þ Jh : Jh
�
: (A3)

We would like to express each term on the right-hand-side of

Eq. (A3) in terms of the total energy spectrum. To do this,

we assume that the spectra for u and B differ by a multiplica-

tive constant so that we may replace ju0j2 with aðju0j2 þ
jB0j2Þ where

a ¼ ju0j2
ju0j2 þ jB0j2 : (A4)

Using this in Eq. (A3), we arrive at

�h 
 2C0h
�
2a

ðbkh
kh

ETðkÞ dk
�1=2

	
�ðkh

0

k2ETðkÞ dk
�
: (A5)

We assume a power law for the total energy spectrum,

ETðkÞ ¼ CKC
0�mkn; (A6)

where CK is a dimensionless constant and � is the exact dissi-
pation rate. The parameter C0 depends on the physics of the

problem. Note that C0 is not a constant but a dimensional

parameter. After some algebra, we obtain

�h 
C02
ffiffiffi
2

p
h

ffiffiffi
a

p ðCKC
0Þ3=2 ðkhÞ1=2 ð3nþ 7Þ

ðnþ 3Þðnþ 1Þ1=2
	 ðbnþ1 � 1Þ1=2�3m=2: (A7)

Equating the modeled and exact dissipation rate, �h ¼ �, we
arrive at

C0 ¼ Ca�1=2; (A8)

where

C ¼ 1

2
ffiffiffi
2

p
hðCKC0Þ3=2Kðbnþ1 � 1Þ1=2�ð3m�2Þ=2

; (A9)

with

K ¼ ðkhÞ1=2ð3nþ 7Þ

ðnþ 3Þðnþ 1Þ1=2
: (A10)

Note that, in general, the calibration constant C will not be

problem independent as it has a dependency on the dissipa-

tion rate. However, if we assume a Kolmogorov spectrum

(m¼ 2/3, n¼�5/3, CK ¼ 2:2, C0 ¼ 1) and recall that the

cutoff wavenumber is kh ¼ p=h and furthermore take b ! 1
(to account for all of the subgrid scales), we have

C ¼ 4

27

� �1=2
1

C
3=2
K p

: (A11)

Returning now to the expressions for the eddy viscosity and

the magnetic diffusivity, we have

�T ¼ gT ¼ C0hju0j
¼ Ca�1=2hju0j
¼ Chð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju0j2 þ jB0j2

q
Þ: (A12)
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