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Abstract—Two Department of Energy (DOE) office of Science’s
Scientific Discovery through Advanced Computing (SciDAC)
Frameworks, Algorithms, and Scalable Technologies for Math-
ematics (FASTMath) software packages, Parallel Unstructured
Mesh Infrastructure (PUMI) and Partitioning using Mesh Adja-
cencies (ParMA), are presented.

Index Terms—unstructured mesh; architecture-awareness;
two-level mesh partitioning; threading; partition improvement;

I. INTRODUCTION

Unstructured meshes, often adaptively defined, can yield
required levels of accuracy using many fewer degrees of
freedom at the cost of more complex parallel data structures
and algorithms. The DOE SciDAC FASTMath Institute efforts
in this area are focused on the parallel unstructured mesh
data structures and services needed by the developers of
PDE solution procedures [1]. Current FASTMath efforts are
addressing parallel techniques for mesh representations on
exascale computers, dynamic load balancing, mesh optimiza-
tion, mesh adaptation, mesh-to-mesh solution transfer, and
a massively parallel unstructured CFD solver. This paper
discusses two core components of the FASTMath unstructured
mesh developments:

• PUMI a parallel infrastructure with a general unstructured
mesh representation and various operations needed for
interacting with meshes on massively parallel computers.

• ParMA dynamic load balancing operations through the
direct use of mesh adjacency information in PUMI’s
unstructured mesh representation.

The design of an infrastructure for unstructured meshes
on massively parallel computers must consider the mesh
information management, the operations to be carried out on
the meshes, and the complications introduced in the scalable
execution of those operations in parallel. Since the goal is
to support the full set of operations needed in a simulation
workflow from the generation of the mesh through the post
processing of the solution information solved for, it becomes
clear that a mesh representations that can effectively provide
information on any order mesh entity, as well any adjacencies
of mesh entities, is needed. The minimal requirement of such a
mesh representation is complete representation with which the
complexity of any mesh adjacency interrogation is O(1) (i.e.,
not a function of mesh size) [2]. Since it is highly desirable to
support mesh modification during a simulation workflow, the
mesh infrastructure needs to efficiently support dynamic mesh
updates.

Given the dominance in the past decade of message passing
parallelism, the most common form of parallel mesh decompo-
sition is to partition the mesh into parts such that workload is
balanced and the communications between parts is minimized.
A second form of decomposition that can be advantageous
for intra-process threaded operations using a shared memory
is coloring into small independent sets. Although it may
be possible to get the highest degree of parallel efficiency
on parallel computers with high core count nodes using a
combination of the two approaches, the amount of code rewrite
needed for applications to take full advantage would be large.
In addition, the support of two forms of parallel representation
will introduce additional data storage and data manipulations
during execution. Thus the current development effort in
PUMI is focused on supporting a two level partitioning of
the mesh where message passing is used at the node level and
threading is used at the core level.

Another key component of supporting unstructured mesh
workflows is the ability to apply dynamic load balancing
on a regular basis (assuming it can be fast enough). In
case of a fixed mesh, this can be driven by the fact that
different operations in the workflow can require a different
partitioning of the mesh to maximize scaling of that operation.
For example, one step in a multi-physics analysis may be using
a cell centered FV method where work load balance is based
on the mesh regions only, while another step may be using
second order FE on the same mesh where vertex and edge
balance is more important to scaling than region balance. Of
course, the application of operations like mesh adaptation will
change the mesh in general ways thus requiring dynamic load
balancing before any analysis operation is carried out on the
adapted mesh.

II. PUMI

The three data models central to the numerical solution
of PDEs on unstructured meshes are the geometric model,
the mesh and the fields. The geometric model is the high-
level (mesh independent) definition of the domain, typically
a non-manifold boundary representation [3]. PUMI interacts
with the geometric model through a functional interface that
supports the ability to interrogate the geometric model for the
adjacencies of the model entities and geometric information
about the shape of the entities [2], [4], [5]. The mesh is the
discretization of the domain into a form used by the PDE
analysis procedures. The fields are tensor quantities that define
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Fig. 1: Software structure of PUMI

the distributions of the physical parameters of the PDE over
domain (mesh and geometric model) entities.

The unstructured mesh representation is typically defined as
a boundary representation using the base topological entities
of vertex (0D), edge (1D), face (2D), region (3D) and their
adjacencies [6], [7], [8], [9], [10]. A mesh entity is uniquely
identified by its handle and denoted by Md

i , where d is dimen-
sion (0 ≤ d ≤ 3) and i is an id. Each mesh entity maintains
its association to the highest level geometric model entity that
it partly represents, referred to as geometric classification [7].
The geometric classification is central to the ability to support
automated, adaptive simulations. Three common utilities used
by both the geometric model and mesh are: (i) Iterator: com-
ponent for iterating over a range of data, (ii) Set: component
for grouping arbitrary data with common set requirements,
and (iii) Tag: component for attaching arbitrary user data to
arbitrary data or set with common tagging requirements [11],
[12], [13].

In addition, adaptive simulations in a parallel computing
environment place extra demands to represent and manipulate
the distributed mesh data over a large number of processing
cores. PUMI supports a topological representation of the dis-
tributed mesh and efficient distributed manipulation functions
through the use of the partition model [9], [10].

Figure 1 illustrates the software structure of PUMI consist-
ing of the following six components.

• Common utility component is a helper component provid-
ing common utilities and services used in multiple other
components such as iterator, set, and tag.

• Parallel control component is a helper component provid-
ing parallel-specific utilities and services such as commu-
nications and architecture-aware operations.

• Geometric model component provides a uniform interface
for querying geometric model representations. It uses
common utility and parallel control component.

• Partition model component is constructed based on the

mesh distribution and provides mesh partitioning rep-
resentation in topology to the mesh component for the
support for efficient update/manipulation of mesh with
respect to partitioning.

• Mesh component provides the storage and management
of distributed unstructured meshes. It uses all components
except for the field component.

• Field component provides the services for storage and
management of solution information on the mesh. It uses
common utility, parallel control and mesh components.

(a) (b)

(c)

Fig. 2: Geometric model (a), partition model (b), and mesh
distributed to four parts (c)

Figure 2 illustrates an example of a geometric model, a
partition model and a mesh distributed to four parts (different
colors represent different part). As illustrated, a partition model
in the middle represents the mesh partitioning.

A. Part
When a mesh is distributed to N parts, each part is assigned

to a process or processing core. A part is a subset of topolog-
ical mesh entities of the entire mesh, locally identified by a
part handle which is a pointer to the part instance, and globally
identified by a unique integer id, denoted by Pi, 0 ≤ i < N .
Figure 3 depicts a 2D mesh that is distributed to three parts
on two processes such that the parts P0 and P1 are on process
i and the part P2 is on process j. The dashed line between
P0 and P1 represents intra-process part boundary and the solid
line between P0 and P2 represents inter-process part boundary.
For part boundary entities which are duplicated on multiple
parts, one part is designated as owning part and the owning
part imbues the right to modify the part boundary entity. In
Figure 3, the part boundary vertices and edges on owning part
are illustrated with bigger circles and solid lines, respectively.
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Fig. 3: Three-part distributed 2D mesh on two processes

B. Part Boundaries

Each part is treated as a serial mesh with the addition
of mesh part boundaries to describe groups of mesh entities
that are on the links between parts. Mesh entities on part
boundaries, called part boundary entities, are duplicated on
all parts for which they bound other higher order mesh
entities [1], [9], [10], [14]. Mesh entities that are not on any
part boundaries exist on a single part and called interior (with
respect to the part) mesh entities.

For each mesh entity, the residence part [9], [10] is a set
of part id(s) where a mesh entity exists based on adjacency
information: If mesh entity Md

i is not adjacent to any higher
dimension entities, the residence part of Md

i is the id of the
single part where Md

i exists. Otherwise, the residence part of
Md

i is the set of part id’s of the higher order mesh entities that
are adjacent to Md

i . Note that part boundary entities share the
same residence part if their locations with respect to the part
boundaries are the same.

In 2D mesh illustrated in Figure 3, the part boundary entities
are the vertices and edges that are adjacent to mesh faces on
different parts. The residence part of M0

i and M0
j are {P0,

P1, P2} and {P0, P1}, respectively.

C. Partition Model

For the purpose of representation of a partitioned mesh and
efficient parallel operations, a partition model is developed [9],
[10].

• Partition (model) entity: a topological entity in the parti-
tion model, P d

i , which represents a group of mesh entities
of dimension d or less, which have the same residence
part. One part is designated as the owning part.

• Partition classification: the unique association of mesh
entities to partition model entities.

Figure 4 depicts the partition model of the mesh in Figure 3.
The mesh vertex M0

i , duplicated on three parts, is classified
on the partition vertex P 0

1 . Other part boundary vertices
and edges (like M0

j ) are classified on partition edges. At
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Fig. 4: Partition model of the mesh in Figure 3
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Fig. 5: Two-level mesh partitioning

the mesh entity level, the proper partition classification is
a key to maintaining up-to-date residence part and owning
part information. Partition classification also enables PUMI
to support various capabilities for parallel unstructured mesh
modification in an effective manner. These operations include:

• Mesh migration: a procedure that moves mesh entities
from part to part to support (i) mesh distribution to parts,
(ii) mesh load balancing, or (iii) obtaining mesh entities
needed for mesh modification operations [10], [15].

• Ghosting: a procedure to localize off-part mesh entities
to avoid inter-process communications for computations.
A ghost is a read-only, duplicated, off-part internal entity
copy including tag data.

• Multiple part per process: a capability to dynamically
change the number of parts per process.

D. Two-level, Architecture-aware Mesh Partitioning

Recent supercomputers such as the Blue Gene/Q and Cray
XE6, characterized by their hybrid shared and distributed
memory architecture and fast communication networks [16],
[17], offer new opportunities for improving performance by
fully exploiting the process-level shared memory to reduce
the total memory usage and communication time. Unstruc-
tured mesh infrastructure on modern computer systems re-
quires two-level mesh partitioning with architecture awareness,
thread management, efficient message passing, intra-proces
and inter-process boundary entity differentiation, and intra-
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Fig. 6: Architecture-aware mesh partitioning

process shared entity access control. Architecture awareness
supports mapping each MPI process to the largest hardware
entity whose memory is shared (usually called a node) and
each thread to the smallest hardware entity capable of in-
dependent computation (processing unit). The first mapping
maximizes usable shared memory and the second mapping
maximizes the use of processing resources.

In implementation, for effective manipulation of multiple
parts per process, a mesh instance is created on each process
and then the mesh instance maintains a list of part handles
created on the process. A part handle maintains a set of mesh
entity handles, pointers to the mesh entity data, per dimension.
Regardless of its status (internal or part boundary), a mesh
entity is created at most once on every residence process,
which is a set of MPI process ranks where a mesh entity
exists based on adjacency information. For an inter-process
part boundary entity, one or more memory addresses of the
duplicate copies on remote processes are stored as remote
copies. The remote copy data structure is a pair of MPI rank
and mesh entity handle on a remote process. Note that only
the owning part can modify the entity (internal or on part
boundary). Creation of a part boundary mesh entity, e.g. during
mesh loading or migration, on a process i which is owned by
a part in process j requires the following steps:

• On process i, a part handle with minimum part id creates
the entity and the entity stores the entity copy address on
process j as a remote copy.

• On process j, the owning part creates the entity and stores
the entity copy address on process i as a remote copy.

Applying owning and minimum part id rule in entity mod-
ification and creation, inherently, the entity management on
hybrid system is free of race condition.

Figure 5 depicts the two-level mesh partitioning in which
communications are done through MPI message passing be-
tween remote parts and inter-thread message passing between
local parts. Figure 6 illustrates architecture-aware mesh par-
titioning which differentiates intra-process and inter-process
part boundaries. An intra-process part boundary entity (e.g.

M0
j ) is shared by every local residence part, as such intra-

process part boundaries do not explicitly exist. Whereas, an
inter-process part boundary entity (e.g. M0

i ) is duplicated on
every residence process.

In order to support architecture-aware, two-level parallelism
effectively, parallel control functions are implemented as a
library called Parallel Control Utilities (PCU). PCU function-
alities include:

• Architecture topology detection: computing hardware in-
formation is obtained using hwloc [18]

• Message passing abstraction over shared memory and
MPI-based message passing: in order to pass messages,
applications (including the mesh component in PUMI) are
presented with an API based on integer part ids, and then
the PCU delegates to the appropriate messaging method
(threading or MPI) based on the mapping of part handles
to software threads.

• Creation and management of software threads within a
process: PCU informs each running thread of its ID and
the total number of threads in the job.

• Message passing control: message buffer management
and message routing by hardware topology and neighbor-
ing process recognition (A process i neighbors process j
over entity type d if they have d dimensional mesh entities
on inter-process part boundary).

• Message round termination detection: most of the com-
munication algorithms in PUMI are implemented as a
series of collective message passing rounds. There are
two algorithms for detecting the termination of such a
round, depending on whether communication is confined
to known neighborhoods. If this is the case, a local
algorithm is used whose runtime is proportional to neigh-
borhood size. When neighborhoods are not known, a non-
blocking barrier is used to detect termination of the round.
The latter algorithm has a runtime logarithmic over the
total number of processes.

The MPI-only version of PUMI with the mesh represen-
tation in Figure 3 is being used on a number of adaptive
simulation applications. Figure 7 illustrates (a) initial mesh (b)
close view of initial mesh, (c) adapted mesh, and (d) close view
of adapted mesh for a supersonic flow past a scramjet [19].
Figure 8 illustrates three adapted meshes tracking the motion
of particles through a linear accelerator [20]. The MPI-only
version has been used on meshes of billions of elements up to
512K cores of Blue Gene/Q (K represents thousand). PUMI’s
mesh representation is under improvement toward architecture-
aware, two-level mesh partitioning with the PCU. With hybrid
multi-threaded/MPI version, an initial, experimental test of
mesh loading on a Blue Gene/Q demonstrated faster commu-
nications than the MPI-only version.

III. PARMA
Unstructured distributed meshes in parallel adaptive simula-

tion workflows need to satisfy varying requirements. Partitions
for mesh adaptation require, at a minimum, that the resulting
adapted mesh fits within memory, while partitions for PDE
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(c) (d)

Fig. 7: Initial and adapted mesh on scramjet model

Fig. 8: Three adapted meshes on particle model

analysis require accounting for the balance of multiple entity
types, those associated with degrees of freedom, to maximize
scaling. In both cases peaks determine performance; valleys
may leave a process idle or consuming very little memory,
while peaks will leave the majority of processes idle or exhaust
available memory. Therefore, reduction of peaks for each step
in a workflow is critical for efficient performance.

A partitioning algorithm capable of reducing imbalance
peaks must also account for the connectivity of the unstruc-
tured mesh such that the part boundaries are optimized. As was
described in section II-B, the distributed representation of the
mesh among processes creates duplicated mesh entities along
the part boundaries. Thus, the amount of communications
across partition model boundaries will increase as the part

boundary gets ‘rougher’, an increase in boundary surface
area in 3D, or length in 2D. The most powerful parallel
unstructured mesh partitioning procedures are the graph and
hypergraph-based methods as they can explicitly account for
application defined imbalance criteria via graph node weights,
and one piece of the mesh connectivity information via the
definition of graph edges. Hypergraph-based methods can fur-
ther optimize the partition boundaries at the cost of increased
run-time over the graph-based methods [21]. Faster partition
computation is available through geometric methods, and for
certain applications are desirable. However, as they do not
account for mesh connectivity information, the quality of
partition boundaries can be poor. The problems observed in
the partitions produced by the graph and hypergraph-based
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methods are limited typically to a small number of heavily
loaded parts, referred to as spikes; scalability of applications
is then reduced by these spikes.

ParMA, partitioning using mesh adjacencies, provides fast
partitioning procedures for adaptive simulation workflows
that work independently of, or in conjunction with, the
graph/hypergraph-based procedures. ParMA procedures use
constant time mesh adjacency queries provided by a com-
plete mesh representation, and partition model information,
to determine how much load must be migrated, the migration
schedule, and which elements need to be migrated to satisfy
that load, element selection. As graph/hypergraph-based use
only a subset of the information provided by mesh adjacencies
and the partition model, decisions can be made in the schedule
and selection processes that can better satisfy the applications
partition requirements. A key challenge is developing and
adopting efficient algorithms required for partitioning without
the classical graph data structure. Two ParMA procedures for
partitioning are presented: multi-criteria partition improvement
and heavy part splitting.

A. Multi-criteria Partition Improvement
ParMA multi-criteria partition improvement procedures take

as input a partition with moderate imbalance spikes, and
efficiently reduce them to the application specified level while
meeting the partition requirements of the application. Effi-
cient reduction of vertex imbalance spikes, with acceptable
increases in element balance, for PHASTA CFD analysis with
greedy diffusive procedures is demonstrated by Zhou in [21]
and [22]. An extension to this work supports multi-criteria
greedy partition improvement. An application executing the
multi-criteria partition improvement procedure provides a pri-
ority list of mesh entity types to be balanced such that the
imbalance of higher priority entity types is not increased while
balancing a lower priority type.

The ParMA partition improvement procedure traverses the
priority list in order of decreasing priority. For each mesh
entity type the migration schedule is computed, regions are
selected for migration, and the regions are migrated. These
three steps form one iteration. When the application defined
imbalance is achieved, or the maximum number of iterations
is reached, the next mesh entity type is processed. If multiple
mesh entity types share equal priority then those entities are
traversed in order of increasing topological dimension.

For example, if the application specifies Rgn > Face =
Edge > V tx, there are two “>”, yielding three levels of
priority. ParMA starts with the first level and improves the
balance for mesh regions. Since mesh regions have the highest
priority, the algorithm will do the migration for better region
balance even if it may make the balance of other mesh entities
(faces, edges and vertices) worse. After the iterations of region
balance improvement, the algorithm moves to the second level,
where the mesh faces and edges have the equal importance.
During face balance improvement mesh elements are migrated
if and only if they reduce the face imbalance and do not harm
the balance for mesh regions and edges. The procedure for

Fig. 9: Select mesh regions for migration that have more
faces classified on the part boundary (translucent) then faces
classified on the part interior (blue).

edge balance improvement is similar. When ParMA finishes
the iterations for the second level it starts the iterations for
the last level, vertex imbalance improvement. Since the vertex
balance has the lowest priority, migration occurs if and only
if it reduces the vertex imbalance with no harm to the balance
of any other types of mesh entities.

1) Candidate Parts: The ParMA algorithm reduces entity
imbalance by migrating a small number of mesh elements from
heavily loaded parts to the lightly loaded neighboring parts,
which are called candidate parts. There are two categories
for candidate parts: absolutely lightly loaded, and relatively
lightly loaded. An absolutely lightly loaded part is one which
either has fewer number of entities then the average across
all parts, or has less then the application defined threshold for
spikes. A relatively lightly loaded part is one which has fewer
entities then a neighboring heavily loaded part. A candidate
part must be lightly loaded, either absolutely or relatively, for
all lesser priority mesh entity types then the mesh entity type
being balanced. These categories of candidate parts improve
the ability of the imbalance spikes to be diffused throughout
the partition.

2) Mesh Element Selection: Mesh elements, and groups of
mesh elements, referred to as cavities, are selected for mi-
gration if they will decrease the communication cost over part
boundaries once migrated. To improve region balance, ParMA
traverses the mesh faces classified on the part boundaries
searching for those regions that have more faces classified on
the part boundary then on the part interior. Figure 9 depicts
three such examples of mesh regions that will be selected.

To improve the edge balance, ParMA traverses the mesh
edges classified on the part boundary searching for those edges
that bound fewer then two or three mesh faces. When such an
edge is found the mesh elements bounded by both the mesh
faces and the edge form a cavity selected for migration. This
selection improves the edge balance with minimum effect to
other types of mesh entities and usually improves the part
boundary. Figure 10 gives an example in which edge M1

0 has
two faces (in (a)) and three faces (in (b)) classified on part
P0. In both cases, suppose P0 is heavily loaded with edges,
P1 is a candidate part, and edge M1

0 is classified on the part
boundary of P0 and P1. In Figure 10 (a), edge M1

0 bounds only
two faces on P0 and has only one adjacent region. In order
to reduce the number of edges on P0 the region adjacent to
M1

0 is migrated from P0 to P1. This migration only increases
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the number of region on P1 by one and does not increase the
number of faces and edges on part boundaries. In Figure 10
(b), edge M1

0 bounds three faces and two regions on P0. In
order to remove M1

0 from the part boundary between P0 to
P1 both regions adjacent to M1

0 have to be migrated from P0

to P1. The number of regions classified on P1 is increased
by two. The number of faces and edges classified on the part
boundary increases by two and three, respectively. Migration
of edges which bound more faces can significantly increase the
number of mesh entities on the part boundary. The strategy of
ParMA to find candidate vertices to improve the vertex balance
is same as that developed by Zhou in [21].

(a) 

P1 

P0 

(b) 

P0 

P1 

(left) 
M 1 

2 

(bottom) 
M 0 

2 

(middle) 
M 1 

2 

(bottom) 
M 0 

2 

(left) 
M 2 

2 

M 0 
1 M 0 

1 

Fig. 10: An edge bounds two or three faces on part P0

3) Multi-criteria Partitioning Tests: Multi-criteria partition
improvement tests are performed on an abdominal aorta
aneurysm (AAA) model depicted in Figure 11. A mesh with
133M tetrahedral elements (regions) is considered. Table I
presents the tests done in this section. The first column labels
the tests for referencing into Tables II and ??. The first test,
T0, is the parallel partitioning with Zoltan Parallel Hypergraph
partitioner PHG [23] to 16,384 parts. The remaining tests,
T1−4, apply ParMA multi-criteria partition improvement on
the partition created in T0 with the user inputs given in column
two.

Fig. 11: Geometry and mesh of an AAA model

Table II presents the imbalance of each type of mesh entities
for tests listed in Table I. The tests are performed on 512 cores

TABLE I: Tests and parameters for the partition improvement
algorithms

Test Method
T0 Zoltan’s Hypergraph
T1 ParMA V tx > Rgn
T2 ParMA V tx = Edge > Rgn
T3 ParMA Edge > Rgn
T4 ParMA Edge = Face > Rgn

on Jaguar (Cray XT5) at NCCS with the software’s capability
to handle multiple parts (32 parts) per process.

TABLE II: ParMA algorithm on a partition with 133M element
mesh on an AAA model

AAA 133M T0 T1 T2 T3 T4

MeanRgn 8,177 8,177 8,177 8,177 8,177
Rgn Imb.% 4.3 4.99 5.99 5.98 5.93
MeanFace 17,315 - - - 17,309
Face Imb.% 5.39 - - - 4.97
MeanEdge 11,023 - 10,973 11,013 11,014
Edge Imb.% 9.07 - 4.91 4.99 4.99
MeanVtx 1,886 1,865 1,870 - -
Vtx Imb.% 19.41 4.99 4.99 - -

For comparison purposes, the imbalance ratios are all com-
puted based on the mean values of the partition created in
T0, the 1st column of Table II. Test T1 balances both regions
and vertices where vertices are of higher priority then regions.
ParMA reduces the vertex and region imbalance below the
prescribed 5% tolerance. Furthermore, the average number
of vertices after T1 is 1,865 which is 1% smaller than the
original value of 1,886. This is due to the careful selection
of mesh entities to be migrated while improving the balance.
Test T2 improves the balance of regions, edges and vertices
with the priority of vertices equal to edges, and larger then
regions. ParMA reduces the balance for all three types of
mesh entities below the prescribed tolerance. In tests T3 and
T4, the balance of specified types of mesh entities satisfies
the tolerance as well. Figure 12 demonstrates the normalized
number of mesh vertices (left) and edges (right) on each part
before and after the partition improvement in test T2. In all
four ParMA tests, the total number of mesh entities on part
boundaries are reduced compared to the original partition,
which reduces the communication load in the analysis.

The time usage of each test is presented in Table ??. The
time usage of ParMA partition improvement is much smaller
than that of hypergraph method and it is negligible compared
to the analysis.

Application of the iterative diffusive procedure is currently
being tested on a 3 billion element mesh partitioned up to 1.5M
parts for PHASTA CFD on Mira Blue Gene/Q. Initial tests
specifying V tx > Rgn on the 1.5M part mesh improve vertex
imbalance by more then 10%. This partition is created by
locally partitioning each part of a 16,384 part mesh with Zoltan
Hypergraph to 96 parts. The initial peak vertex imbalance
of the 1.5M part mesh is 54% while the initial peak vertex
imbalance of the 16,384 part mesh is 9%.
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Fig. 12: Normalized number of vertices (a) and edges (b) on
each part before and after the partition improvement in ParMA
test T2.

B. Heavy Part Splitting

The greedy iterative diffusive procedure presented in Sec-
tion III-A is observed to not meet a target imbalance tolerance
when the input partition is large and has multiple parts with
the imbalance spikes neighboring each other. In [21] Zhou
observed such an imbalance during local partitioning with
greater then 80 parts per-process. Large entity imbalances
are also likely in partitions with tens of thousands of parts
where each part has fewer then two of three thousand mesh
elements. For an extreme example of this, consider a 3 billion
tetrahedron mesh partitioned to 1.5M parts. In this partition the
average number of vertices per part is 576 and a 56% vertex
imbalance occurs if one part has only 324 more vertices then
the average. 324 vertices is approximately one 10 million’th
of the total number of vertices. Given the sensitivity of each
part to increases in entity count an approach is required that

is more directed, and aggressive, then iterative diffusion.
Large imbalance spikes are also observed when predictively

load balancing for mesh adaptation based on the estimated
target mesh resolution at each mesh vertex. These spikes are
common to analysis driven adaptation in which the regions
of high mesh resolution change to capture some physical
phenomena of interest, such as a phasic interface, or a shock
front; some parts request large amounts of refinement while
others request large amounts of coarsening. For example,
consider a super-sonic viscous flow analysis on an ONERA
M6 wing in which a shock front is resolved with a size field
computed from the hessian of the mach number. Figure 13
depicts a histogram of element imbalance in an adapted mesh
if no load balancing is applied prior to adaptation. Here the
peak imbalance is over 400% and approximately 80 parts have
an imbalance over 20%. Imbalanced parts cannot exist without
reducing the number of elements in other parts an equivalent
amount. As such, there are over 120 parts that have fewer then
50% of the average number of mesh elements.
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Fig. 13: Histogram of element imbalance (number of elements
/ average number of elements ) in 1024 part adapted mesh
on Onera M6 wing if no load balancing is applied prior to
adaptation.

One possible approach to quickly reduce multiple large
imbalance spikes is heavy part splitting. ParMA heavy part
splitting reduces imbalance spikes by first merging lightly
loaded parts to create empty parts, and then splitting heav-
ily loaded parts into the newly created empty parts. The
procedure begins by independently solving the 0-1 knapsack
problem [24] on each part to determine the largest set of
neighboring parts which can be merged while keeping the
number of total number of elements less then the average.
Next, a set of these merges that can be performed without
conflicts, i.e. a part is merged only once, are found by solving
for the maximal independent set. Lastly, heavily loaded parts
are split as many times as required until there are either
no heavy parts or empty parts remaining. As needed, heavy
part splitting is followed by iterative partition improvement
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described in Section III-A.

IV. CLOSING REMARKS

Two DOE SciDAC FASTMath software packages, PUMI
and ParMA, are presented. The existing MPI-based PUMI
demonstrated its effectiveness taking meshes of billions of
elements from a few thousand parts to 1.5 million parts for
ParMA and parallel adaptive simulations running on 512K
cores of Blue Gene/Q (Mira). The current development in-
cludes two-level, architecture-aware mesh partitioning and
various parallel control functionalities running on modern
massively parallel computers.

PUMI and ParMA are open source and available at
http://www.scorec.rpi.edu/software.php.
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