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Abstract In the traditional programming paradigm,
data structures and algorithms are developed for spe-
cific data types and requirements. This leads to code

redundancy and inflexibility thus not allowing effective
code reuse for similar applications. One effective ap-
proach to increase code reuse is generic programming,

which focuses on the development of efficient, reusable
software libraries through suitable abstractions for the
common requirements. In this paper, we present how we

applied generic programming to an on-going effort for
mesh-based adaptive simulations on massively parallel
computers. Three generic components, iterator, set and

tag, were developed using design pattern, C++ tem-
plate programming and the Standard Template Library
(STL). The scaling studies on petascale supercomput-

ers demonstrate the efficiency of the reusable, generic
components which do not sacrifice the performance of
the previous tools developed in the traditional object-

oriented programming paradigm.

1 Introduction

The generic programming [1,2] paradigm has emerged
as a methodology towards developing efficient, reusable
component-based software libraries, and gained popu-

larity through the success of the C++ Standard Tem-
plate Library (STL) [1,3,4]. Generic programming has
been applied to scientific computing software packages

such as:

– Matrix Template Library (MTL): a generic compo-
nent library for high performance numerical linear

algebra [5],
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– Generic Message Passing framework (GMP): mes-
sage communication library [6],

– Grid Algorithms Library (GrAL): a generic grid tool-

box for reusable mesh-level components [7,8],
– Computational Geometry Algorithms Library (CG-

AL): a library for general-purpose geometric data

structures and algorithms [9],
– Generic interfaces for parallel and adaptive hierar-

chical grids based on DUNE [10,11],

– A layer of generic software components used for par-
allelization of a finite element solver and for solver
coupling in multi-physics applications [12].

The software components for an adaptive analysis

of partial differential equations (PDEs) include [13–15]:
(i) the geometric model which houses the topological
and shape description of the domain of the problem,

(ii) attributes describing the rest of parameters needed
to define and quantify the problem, (iii) the mesh which
describes the discretized representation of the domain

used by the analysis method, and (iv) fields which de-
scribe the distribution of solution tensors over the mesh
entities.

The most common approach for developing reusable
simulation software is to create libraries for specific data
components such as mesh, geometric model, and field

and to let them interact through well-defined API’s
to perform needed operations to accomplish scientific
applications. The Interoperable Technologies for Ad-

vanced Petascale Simulations (ITAPS) center [16] has
defined a set of common interfaces that support the ab-
stract data model; five that correspond to the core data

model components, Geometry (iGeom), Mesh (iMesh/i-
MeshP), Field (iField), and Data Relation Manager
(iRel) and one that contains the utilities and definitions

used by other interfaces (iBase) [16–18]. A common set
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of utilities used in the five functional components are

iterator, set and tag. This paper presents a generic im-
plementation of these three utilities that are designed to
support mesh based simulations on massively parallel

computers.

The rest of the paper is organized as follows. Sec-

tion 2 introduces the abstract data models of a mesh-
based simulation, and summarizes a set of generic com-
ponents for adaptive mesh-based simulations. Sections

3 - 5 present the three generic components developed
as part of utilities of simulation tools, and describe how
these generic components are used in the simulation

model and data management software development to
support automated adaptive simulations. In Section 6,
the performance results of adaptive simulations on mas-

sively parallel computers are presented. Section 7 sum-
marizes the paper and discusses the future work.

Nomenclature

V the model, V ∈ {G, P , M} where G sig-
nifies the geometric model, P signifies the
partition model, and M signifies the mesh

model.
V d
i the ith entity of dimension d in model V .

d = 0 for a vertex, d = 1 for an edge, d = 2

for a face, and d = 3 for a region.
Pi the ith part in a distributed mesh.

2 Simulation Data Model

The four data models central to general numerical so-

lutions of PDEs with mesh based methods are:

– Geometric model: geometric model interface that
supports the ability to interrogate solid models for
topological adjacency and geometric shape informa-

tion.
– Mesh: distributed mesh representation.
– Field: representation of tensor fields to quantify the

distribution of physical parameters over mesh enti-
ties.

– Relationship manager: utility used to manage the
relationships between meshes and geometric models,

tensor fields and meshes, and so on.

The design of reusable and efficient generic compo-
nents for mesh-based simulations is availed from un-
derstanding the common requirements of essential data

models for parallel mesh-based simulations, as well as a
suitable level of abstractions in the form of concepts [1]
of such requirements, with ultimate balance between

commonality and specialization.

In addition to the four data models described above,

adaptive simulations in a parallel computing environ-
ment place extra demands to represent and manipu-
late the distributed mesh data over a large number of

processing cores (i.e. processors). The subsections that
follow present the data models and functional require-
ments of the geometric model, mesh, and distributed

mesh as a first step towards identifying essential, reusab-
le generic components.

2.1 Geometric Model

The geometric model is a data model which provides
a functional interface to support the communication of

geometry information to mesh-based applications.

Geometric entities: the constituents of a geometric mo-

del. They are, in the boundary representation, re-
gions, shells, faces, loops, edges and vertices and
use entities for vertices, edges, loops and faces with

a non-manifold model [19].
Adjacencies: how geometric entities are connected to

each other.

Geometric interrogations: provide specific information
relating to the shape of geometric entities such as
pointwise locations and shape coefficients [20–22].

Geometric entity sets: mechanism to group geometric
entities for various purposes [16,23]. The useful at-
tributes and requirements of geometric entity sets

are: (i) entity uniqueness and entity insertion order
preservation (ii) set population through entity ad-
dition or entity removal (iii) traversal through an

iterator per entity type (iv) set binary operations
(union, subtraction, intersection) (v) relationships
among entity sets such as superset/subset and par-

ent/child.
Tags: mechanism to attach arbitrary user data, termed

as tag data, to geometric entity sets or geometric

entities [16,23]. Tag data is a single or array of a
specific type which could be primary data type such
as integer, double, geometric entity set, geometric

entity, or arbitrary type represented as void∗.
Iterators: mechanism to traverse geometric entities by

type either in an entity set or in the entire model [16].

2.2 Mesh

The mesh is a data model which provides a description

of the mesh information in a manner that mesh-based
operations can be efficiently performed. A minimum set
of functional requirements to support adaptive simula-

tions is the following:
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Mesh entities: the constituents of a mesh. They are dis-

tinguished by their type, i.e. topological dimension1,
(vertex (0D), edge (1D), face (2D), or region (3D)),
and topology (for instance, triangle and quadrilat-

eral for 2-dimensional entities, or tetrahedron or
hexahedron for 3-dimensional entities) [24].

Adjacencies: how the topological mesh entities are con-

nected to each other. For an entity of dimension d,
first-order adjacency returns the mesh entities of di-
mension q, which are either on the closure of the en-

tity for a downward adjacency (d > q), or for which
the entity is part of the closure for an upward adja-
cency (d < q) [17,25–28].

Geometric classification: a unique association that each
mesh entity maintains to a geometric entity for par-
tial representation. Given a geometric entity, the set

of equal dimension mesh entities classified on the ge-
ometric entity is termed as the reverse classification
for the geometric entity [25].

Mesh (entity) sets: mechanism to group mesh entities
for various purposes [18,23]. There are various kinds
of sets depending on the following options:
– entity uniqueness

– entity insertion order preservation
– entity type constraint
In addition, (i) set population through entity ad-

dition or entity removal (ii) traversal through an
iterator per entity type and/or topology (iii) set
binary operations such as subtraction, intersection,

and union (iv) relationships among sets such as su-
perset/subset and parent/child are needed for flex-
ible set manipulation.

Tags: mechanism to attach arbitrary user data, termed
as tag data, to a part, entity set or mesh entity [18,
23]. Tag data is a single or array of a specific type

where it could be of primary data type such as in-
teger, double, mesh entity set and mesh entity, or
arbitrary type represented as void∗.

Iterators: mechanism to traverse mesh entities in a spe-
cific range with various options [16,18], such as (i)
traversing entities by type and/or topology (ii) trave-

rsing entities classified on a specific geometric entity,
and so on.

2.3 Distributed Mesh

In parallel adaptive simulations, a mesh is distributed
to parts over multiple processors. A distributed mesh
data structure supports a topological representation of

the distributed mesh and efficient distributed mesh ma-

1 In this paper, entity dimension and entity type are inter-
changeable terms.
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Fig. 1 Distributed 2D mesh on two processors with two parts
per processor.

nipulation functions. A topological model for a dis-

tributed mesh representation, referred to as a partition
model, will support the needed capabilities for repre-
senting parts, part boundaries, mesh partitioning and

migration [27,28].

2.3.1 Part

When a mesh is distributed to N parts, each part is
assigned to a processor. A part is a subset of topologi-

cal mesh entities of the entire mesh, uniquely identified
by its part handle or id, denoted by Pi, 0 ≤ i < N .
Figure 1 depicts a 2D mesh that is distributed to four

parts on two processors where each processor contains
two parts. The dashed lines represent intra-processor
part boundaries within a processor and the solid black

lines represent inter-processor part boundaries between
processors.

In practice, for effective manipulation of multiple
parts per processor, a mesh instance is defined on each
processor to contain the parts on that processor.

Note a mesh entity set can contain any mesh enti-

ties regardless of the belonging parts. In a distributed
mesh environment, there are two types of mesh entity
sets depending on the number of parts over which a

set spans. Since the sets that span more than one part
bring extra communication and maintenance complexi-
ties in parallel computations, especially when the mesh

changes, the set operations on the sets with the single
part constraint are notably more efficient. Section 3.2
presents how to migrate mesh sets with the single part

constraint between parts in parallel.

2.3.2 Part boundaries

Each part is treated as a serial mesh with the addition
of mesh part boundaries to describe groups of mesh en-

tities that are on the links between parts, where mesh
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Fig. 2 Distributed mesh and its association with the partition model via partition classifications.

entities on part boundaries, called part boundary enti-
ties, are duplicated on all parts for which they bound
other higher order mesh entities. Mesh entities that are

not on any part boundaries exist on a single part and
termed as interior mesh entities. In the 2D mesh illus-
trated in Figure 1, the part boundary entities are the

vertices and edges that are adjacent to mesh faces on
different parts.

For each mesh entity, the residence part operator [27,

28] returns a set of part id(s) where a mesh entity exists
based on adjacency information: If mesh entity Md

i is
not adjacent to any higher dimension entities, the resi-

dence part of Md
i is the id of the single part where Md

i

exists. Otherwise, the residence part of Md
i is the set

of part id’s of the higher order mesh entities that are

adjacent to Md
i . Note that part boundary entities share

a set of residence parts depending on the locations in
part boundaries.

2.3.3 Partition model

For the purpose of topological representation of a mesh
partitioning and efficient parallel operations, a parti-

tion model is developed as a conceptual model existing
between a geometric model and a mesh. A partition
model consists of partition model entities [27,28].

Partition (model) entity : a topological entity in the par-

tition model, P d
i , which represents a group of mesh

entities of dimension d or less, which have the same
residence part(s).

Partition classification: the unique association of mesh
entities to partition model entities.

Reverse partition classification: for each partition en-

tity, the set of equal order mesh entities classified
on that entity.

Figure 2 depicts the 2D distributed mesh in Figure 1
and its association with the partition model. The mesh

entity arrows indicate the partition classification of the

mesh entities onto the partition entities. For instance,
the mesh vertex M0

i , duplicated on four parts, is clas-
sified on the partition vertex P 0

1 . Other mesh vertices

and edges (like M1
j ) duplicated on part boundaries are

classified on partition edges.

2.3.4 Mesh partitioning

Mesh partitioning is a procedure to perform mesh dis-

tribution to a number of parts in which the amount
of computational work required for each part is equal
and the amount of inter-part communications is mini-

mized. The computational work is often associated with
certain objects in the computation. In the case of un-
structured mesh applications, objects can be the mesh

entities (vertices, edges, faces, and regions) and decom-
positions can be computed with respect to any of these
entities or to a combination of entities (e.g., vertices and

regions) [29,30]. In the current discussion, a partition
object is defined as follows:

Partition object : the basic unit to which a destination
part id can be assigned for mesh partitioning. It can
be either a mesh entity that is not on the boundary

of any higher dimension mesh entities, or a mesh
entity set contained in a single part.

Graph/hypergraph-based algorithms are effective for
unstructured mesh partitioning [30–33].

2.3.5 Mesh migration

Mesh migration is a procedure that moves mesh entities

from part to part to support (i) mesh distribution to
parts, (ii) mesh load balancing, or (iii) obtaining mesh
entities needed for mesh modification operations [28,

34]. An efficient mesh migration algorithm with min-
imum resources (memory and time) and parallel op-
erations designed to maintain the mesh load balance

throughout the computation is an important factor for
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pursuing high performance in parallel adaptive simu-

lations. To migrate mesh entities to another part, the
destination part id must be specified to each partition
object before moving the mesh entities.

2.4 Generic Components for Parallel Adaptive
Simulations

The discussion on the data model and requirement anal-
ysis in Sections 2.1 - 2.3 necessitates the following three

generic components to support mesh level operations in
adaptive mesh-based simulations on a massively paral-
lel computing environment:

Set : component for grouping arbitrary data with com-
mon set requirements.

Iterator : component for iterating over a range of data.
Tag : component for attaching arbitrary user data to

arbitrary data or set with common tagging require-

ments.

A generic component can be reused in various situa-

tions in which the concepts of the component are met as
a minimal set of requirements and associated types. For
instance, the set component can be used on geometric

entities, or mesh entities, and so on. The iterator and
tag components can be used on the geometric model,
the mesh, or sets.

Sections 3 - 5 present the design and implementation
of the three components - set, iterator, and tag - which

are in use as utilities. They also illustrate how the three
generic components were used to implement various it-
erator, set and tagging needs in the Flexible distributed

Mesh DataBase (FMDB) and Geometric Model Inter-
face (GMI), a distributed mesh and geometric model
data infrastructure, to support parallel adaptive simu-
lations [13,27,28].

3 Set Component

A set is a collection of data objects or a container of
data objects where a set can contain other sets. Data

objects from which a given set is composed are called el-
ements or members of the set. Non-set data members in
a set can have relations to each other. A common rela-

tion useful in most applications is ordering. Depending
on the need to preserve the insertion order for non-set
data members, two set types are defined [16,18,23]:

Ordered set : if any two data members are comparable
in terms of the insertion ordering, a set is an ordered
set. An ordered set can contain duplicate data mem-

bers.

Unordered set : if the insertion ordering is not preserved,

a set is an unordered set. An unordered set contains
unique data members.

3.1 Design and Implementation

To support the set related requirements of parallel adap-
tive simulations, the primary constituents of the set

component include: (i) set handle for holding multi-
ple arbitrary data of the same type, (ii) set holder for
maintaining all active sets uniquely identified by the

set handles, and (iii) settable object which models data
containable in a set.

The syntax of set API’s for basic set operations,

such as set creation/deletion, set existence/type check,
set data insertion/deletion, is listed in the following.
Two STL containers [1,35], std::list and std::vector, are

used as data types of the output arguments with multi-
ple data. The output of each API function is an integer
value of either success (zero) or failure (predefined non-

zero error code).

// create set and store it in set holder

// type: ordered or unordered

template<typename Entity>

int SetHolder_CreateSet (SetHolder<Entity>*,

int type, Set<Entity>*);

// delete set and remove it from set holder

template<typename Entity>

int SetHolder_DelSet (SetHolder<Entity>*,

Set<Entity>*);

// check whether set exists in set holder

template<typename Entity>

int SetHolder_HasSet (SetHolder<Entity>*,

Set<Entity>*, int*);

// get list of sets contained in set holder

template<typename Entity>

int SetHolder_GetSet (SetHolder<Entity>*,

vector<Set<Entity>*>&);

// get # sets contained in set holder

template<typename Entity>

int SetHolder_GetNumSet (SetHolder<Entity>*, int*);

// get type of set (ordered or unordered)

template<typename Entity>

int Set_GetType (Set<Entity>*, int*);

// check whether set has data

template<typename Entity>

int Set_HasEnt (Set<Entity>*, Entity*, int*);

// get # data contained in set

template<typename Entity>

int Set_GetNumEnt (Set<Entity>*, int*);
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Set
superset
subset
child
parent
addEnt (entity)
addSubset (set)
addChild (set)
union (set1, set2)
createSet (type)

Entity

Set* createSet (int type)
{
   if type = Ordered
      return new OrderedSet;
   if type = Unordered
      return new UnorderedSet;
}OrderedSet

ent_container: std::list
addEnt (entity)
union (set1, set2)

Entity
UnorderedSet

ent_container: std::set
addEnt (entity)
union (set1, set2)

Entity

Fig. 3 Class diagram of set component.

// insert data into set

template<typename Entity>

int Set_AddEnt (Set<Entity>*, Entity*);

// insert multiple data into set

template<typename Entity>

int Set_AddEntArr (Set<Entity>*, vector<Entity*>&);

// remove data from set

template<typename Entity>

int Set_RmvEnt (Set<Entity>*, Entity*);

// remove multiple data from set

template<typename Entity>

int Set_RmvEntArr (Set<Entity>*, vector<Entity*>&);

Herein, Entity is a concept modeling a piece of data
in a data model. In the current unstructured mesh ap-
plications, Entity can be a mesh entity in a mesh, or

a model entity in a geometric model. Given a desired set
type (ordered or unordered), the function SetHolder Cr-
eateSet creates a set and stores its handle in the set

holder object provided.
To implement the data uniqueness and order preser-

vation characteristics of ordered/unordered sets efficien-

tly, std::set and std::list containers are ideal for an un-
ordered set and an ordered set, respectively. The factory
method design pattern [36], an object-oriented design

method to define an interface for creating a class object
with yielding instantiation to sub-classes with special-
ization, is used to support the dynamic container data

structure selection upon the set type input at runtime.
As illustrated in Figure 3, the base class (Set) provides
a uniform interface (function createSet) and the fac-

tory method enables creation of ordered or unordered
set dynamically.

In addition to the general set functionality described

above, it’s also desirable to support set relations (par-

ent/child and superset/subset) and set binary opera-

tions such as union, subtraction, and intersection for
flexible set manipulation. The following are the API’s
for set relations.

// superset-subset operations

template<typename Entity>

int Set_AddSuperSub (Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_RmvSuperSub (Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_HasSub (Set<Entity>*, Set<Entity>*, int*);

template<typename Entity>

int Set_GetNumSuper (Set<Entity>*, int*);

template<typename Entity>

int Set_GetNumSub (Set<Entity>*, int*);

template<typename Entity>

int Set_GetSuper (Set<Entity>*, list<Set<Entity>*>&);

template<typename Entity>

int Set_GetSub (Set<Entity>*, list<Set<Entity>*>&);

// parent-child operations

template<typename Entity>

int Set_AddPrntChld (Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_RmvPrntChld (Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_IsChldOf (Set<Entity>*, Set<Entity>*, int*);

template<typename Entity>

int Set_GetNumPrnt (Set<Entity>*, int*);

template<typename Entity>

int Set_GetNumChld (Set<Entity>*, int*);
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Fig. 4 Part of a boundary layer mesh (the stacks of mesh
entities are considered as entity sets).

template<typename Entity>

int Set_GetPrnt (Set<Entity>*, list<Set<Entity>*>&);

template<typename Entity>

int Set_GetChld (Set<Entity>*, list<Set<Entity>*>&);

The following are the API’s for set binary opera-

tions.

// set binary operations: third argument is output set

template<typename Entity>

int Set_Unite (Set<Entity>*,

Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_Intersect (Set<Entity>*,

Set<Entity>*, Set<Entity>*);

template<typename Entity>

int Set_Subtract (Set<Entity>*,

Set<Entity>*, Set<Entity>*);

3.2 Application

Due to the property of a mesh entity, which must be

assigned to a part for management, there are two types
of entity sets used in unstructured mesh applications:
(i) a set of entities from a single part, and (ii) a set of

entities from multiple parts.

P-set : a mesh entity set with the single part constraint
that all mesh entities in the set belong to the same
part.

NP-set : a mesh entity set without the single part con-
straint.

The user can designate a P-set as a partition object
and then migrate all entities contained in the P-set and
their adjacent higher dimension entities to the destina-

tion part during the migration procedure.

In support of parallel anisotropic adaptive meshing

based on mesh metric fields with adaptive boundary
layer meshes [37], a stack of boundary mesh entities is
required to be on a single part for mesh modification,

partitioning and migration. In Figure 4, mesh entities
contained in the black polygon illustrate a stack of en-
tities to be treated with a P-set.

3.2.1 Mesh entity set for iMesh:

Using the set component with a mesh instance as a set

holder, all requirements of iMesh sets are easily sup-
ported [16]; (i) populating by addition or removal of
entities into or from a set, (ii) traversal through an it-

erator with various conditions such as type, or topology
of an entity, (iii) set binary operations (union, subtrac-
tion, intersection), and (iv) relationships among sets

such as superset/subset and parent/child.

3.2.2 Mesh entity set for boundary layer adaptation:

The requirements of a P-set for supporting boundary
layer mesh adaptation are the following.

1. mesh entities contained in a set are unique.
2. mesh entities are ordered in a set based on their

insertion ordering.
3. mesh entities contained in a set are not part of the

boundary of any higher dimension mesh entities.

4. user can attach arbitrary data to a set.
5. iterating over mesh entities in a set.
6. migrating a set and constituting entities to another

part.
7. migrating tag data along the set migration.

Items 1-5 are supported by using the set component
with a part as a set holder. For Item 6 and 7, the user

can designate a set as a partition object so the mesh
entities contained in the set and tag data attached to
the set are migrated along when the set is migrated to

another part.

Figure 5(a) depicts a 2D mesh with three P-sets,

each of which consists of mesh faces and is designated
as a partition object. Figure 5(b) illustrates its corre-
sponding partition object diagram, where graph nodes

(circles) represent partition objects and graph edges
(lines) represent mesh edge based adjacencies between
partition objects.

To support boundary layer mesh adaptation in par-

allel, the mesh migration algorithm developed in Refer-
ence [27,28] was improved to migrate both mesh entities
and P-sets.

Given an array of entities of dimension d to migrate,

the pseudo code of Algorithm 1 illustrates the mesh en-
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Fig. 5 Distributed mesh with three P-sets (a) and partition
object diagram (b).

Data: EntitiesToMigr[d]
Result: entities and P-sets are migrated to destination

parts
begin

/* STEP 1: pack messages and send to destination

parts */

for each Md
i ∈ EntitiesToMigr[d] do

pack message A (entity info of Md
i , ...);

if FMDB Ent IsInSet(Md
i ) = false then

isInSetFlag ← false;
append (isInSetFlag) to message A;

else
isInSetFlag ← true;
Si ← FMDB Ent GetSet(Md

i );
entPos ← FMDB Set GetEntOrder(Si, M

d
i );

append (isInSetFlag, Si, entPos) to message A;

end
Plocal sends message A to Pi;

end

/* STEP 2: initialize a map to track P-sets */

PSetMap ← map<pair< Pi, Si >, Sj >;

/* STEP 3: unpack messages and create entities and

P-sets */

while Pi receives message A from Psender do

Md
i
′ ← FMDB Ent Create(Pi, entity info);

if isInSetFlag = false then continue;
if PSetMap [pair< Psender, Si >] exists then

Sj ← PSetMap [pair< Psender, Si >];

FMDB Set AddEnt(Sj , M
d
i
′
, entPos);

else
Si

′ ← FMDB Set Create(Pi, PSET);
PSetMap [pair< Psender, Si >] ← Si

′;

FMDB Set AddEnt(Si
′, Md

i
′
, entPos);

end

end

end

Algorithm 1. The mesh entity exchange procedure to

move mesh entities and P-sets to destination parts.

tity exchange procedure to move mesh entities and P-

sets to destination parts in mesh migration. Note each
P-set handle is attached (tagged) to each consisting
entity to expedite the P-set manipulation and migra-

tion. The FMDB API FMDB Ent IsInSet is to check
whether an entity is contained in a specific set or not.
The main steps in Algorithm 1 are listed below:

Step 1: packs messages and sends them to destination
parts. Before sending a message (A) of a mesh en-
tity (Md

i ) in EntitiesToMigr [d], check if the entity

is in a set (say, Si), and pack the message A with a
variable (isInSetFlag) to indicate whether the mes-
sage contains set data or not. If yes, i.e. isInSetFlag

equals true, pack the set data within the message A
also.

Step 2: initializes a set map to keep track of P-sets. On

each process, create a set map PSetMap to store the
pairwise relations between an original set (Si) from
the sending part (Pi) and its local copy (Sj).

Step 3: unpacks messages and creates entities and P-
sets. When a part Pi receives the message A from
the sender (Psender), it creates a new mesh entity

Md
i
′
. Then it checks the variable isInSetFlag con-

tained in the message A. If necessary, i.e. isInSet-
Flag equals true, it searches PSetMap for a local

copy of the set Si from the part Psender. If a local
copy Sj exists, the new entity is added into the ex-
isting set Sj . Otherwise, a new set Si

′ is created,

a new entry for the set Si
′ is added into PSetMap,

and Md
i
′
is added into the new set Si

′.

As illustrated in Algorithm 1, the FMDB API nam-
ing convention [38] is to have the operation target in
the middle of the function name and the operation per-

formed on the target data in the end. For instance,
(i) the function with Ent in the middle of the name,
such as FMDB Ent IsInSet and FMDB Ent GetSet, is

performed on a specific mesh entity, (ii) the function
with Part in the middle of the name is performed on
a specific part, and (iii) the function with Set in the

middle of the name, such as FMDB Set AddEnt and
FMDB Set Create, is performed on a specific set.

4 Iterator Component

An iterator is a generalization of a pointer, an object
that points to another object used to traverse over a
range of objects. When an iterator is within a range,

the increment operator moves the iterator to the next
object [1,35]. In the STL, the concept iterator models
an object which traverses over a single one-dimensional

container [1,35].
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4.1 Design and Implementation

In addition to the general iterator functionality such as
initialization, advancement, reset, position check, and

iterator deletion, the iterator component for parallel
adaptive simulations should support: (i) filtering : skip-
ping unwanted data over traversal with various condi-

tions specifiable by the user, and (ii) resilience: validity
with data modification such as data insertion or dele-
tion.

The following are the API’s for iterator initializa-
tion, advancement, reset, the position check, and itera-
tor deletion.

// iterator initialization

template<typename Iterator, typename Entity>

int Iter_Init (const Iterator& first,

const Iterator& last,

int type, int topo, void* ptr,

void (*functor)(Iterator&,Iterator&,void*,int,int),

Iter<Iterator, Entity>*);

// iterator advancement

template<typename Iterator, typename Entity>

int Iter_GetNext (Iter<Iterator, Entity>*, Entity*);

// iterator reset

template<typename Iterator, typename Entity>

int Iter_Reset (Iter<Iterator, Entity>*);

// iterator position check

template<typename Iterator, typename Entity>

int Iter_IsEnd (Iter<Iterator, Entity>*, int*);

// iterator deletion

template<typename Iterator, typename Entity>

int Iter_Del (Iter<Iterator, Entity>*);

Herein, the concept Entity represents a piece of data
in a data model. For instance, it can be a mesh entity

in a mesh, a model entity in a geometric model, or a
mesh entity in a set. In a distributed mesh environment,
an iterator traverses mesh entities within a single local

part to avoid extra communication costs.
In Iter Init function, given the input arguments con-

sisting of (i) a data range represented by an iterator

pair [first, last)2, (ii) type (dimension), (iii) topology,
(iv) void∗ type pointer (ptr), and (v) user-defined fil-
tering function pointer (functor), an iterator instance is

created and returned. The iterator traverses the entity
data within the data range that satisfies the specified
type, topology and filtering function pointer require-

ments. The void∗ type pointer ptr is reserved for any
user-defined data structure. If unnecessary, it is set to
null.

2 The notation [first, last) refers to all the iterators from
first up to, but not including, last [35].

The function Iter GetNext fetches the entity data

pointed by the current iterator, and then advances the
iterator to the next available entity data. If the itera-
tor reaches to the end of the data range, the function

Iter GetNext returns non-zero error code.

Unlike an STL iterator [35], the iterator component

for adaptive unstructured mesh simulations should be
able to traverse multiple containers through a single it-
erator since the topological model data is usually stored

in multiple containers per type. For instance, mesh and
model entities can be stored in four containers per type:
vertices, edges, faces and regions. To support travers-

ing multiple containers with a single iterator, a linking
method is developed in the iterator advancement opera-
tor with which the end of the previous one-dimensional

container is connected to the beginning of the next con-
tainer.

The following is the pseudo-code to traverse multi-
ple containers with a single iterator.

// cur_pos is the current iterator position

if cur_pos == current_container.end

if (current_container.end != data_range.end)

cur_pos = next_container.begin;

else

return;

else

advance cur_pos;

4.2 Application

To support parallel adaptive simulations, the minimum

set of iterators needed in a mesh and geometric model
includes (i) mesh entity traversal in a part by type
and/or topology, (ii) mesh entity traversal by reverse

geometric classification, (iii) part boundary mesh en-
tity traversal, (iv) mesh entity traversal in a set by type
and/or topology, and (v) geometric entity traversal in

the entire geometry by type. For all cases, the iterator
range for mesh entities is limited to entities on a single
part or a set.

In the FMDB, a single part uses an std::set con-
tainer to store unique mesh entities. As per std::set it-

erator specification [35], an iterator is guaranteed to
work properly even with mesh modifications except for
the case when the entity being pointed by the iterator

is deleted. However, when a mesh entity currently being
pointed by the iterator is deleted, the invalid iterator
problem can be avoided by advancing the iterator on

the deleted entity to the next.
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4.2.1 Mesh entity traversal in part by type and/or

topology:

An iterator for a mesh entity traversal is implemented

by providing the first and one past the end of an entity
container as for the data range based on the requested
entity dimension and topology. To traverse mesh enti-

ties in a part by type and/or topology, various combi-
nations of the input type and topology pairs are possi-
ble for entity filtering. Users can also specify all types

(ALLTYPE ) and all topologies (ALLTOPO).

For each part, the entity container of dimension i
is denoted as part→container[i] where i={VERTEX,
EDGE, FACE, REGION}. For each entity container of
dimension i, part→container[i].begin and part→contain-
er[i].end denote the first and one past the end of the
container, respectively. pPart is a pointer type to a part,

and mEntity is a class type of mesh entity. The follow-
ing FMDB API illustrates how to initialize an iterator
to implement a mesh entity traversal in a part.

typedef entity_container_iterator_type part_iter;

typedef Iterator<part_iter, mEntity>* pPartEntIter;

// iterator initialization

int FMDB_PartEntIter_Init (pPart part, int type,

int topo, pPartEntIter& iter)

{

if type==ALLTYPE

return Iter_Init (part->container[VERTEX].begin,

part->container[REGION].end, type, topo,

(void*)part, &EntityProcessFilter, iter);

else

return Iter_Init (part->container[type].begin,

part->container[type].end, type, topo,

(void*)part, &EntityProcessFilter, iter);

}

Herein, if the input entity type is ALLTYPE, the it-
erator input range is specified as the mesh entities of all

dimensions, denoted by part→container[VERTEX].begin
and part→container[REGION].end. Otherwise, the it-
erator input range is specified as mesh entities of a spe-

cific dimension, denoted by part→container[type].begin
and part→container[type].end.

For readability, the predefined data type of an entity

container iterator on each part is part iter and pPar-
tEntIter is a pointer to the template class Iterator<par-
t iter, mEntity>. The following pseudo code illustrates

the function EntityProcessFilter, which moves the iter-
ator to the next proper position that points to a mesh
entity satisfying the type and topology criterion in the

range.

void EntityProcessFilter (part_iter& ibegin,

part_iter& iend, void* ptr, int type, int topo)

{

if ibegin==iend

return;

for each entity in range [ibegin, iend)

if entity->type==type && entity->topology==topo

ibegin = current_entity_position;

return;

ibegin=iend;

}

The following code illustrates how the iterator com-
ponent is used to implement iterator advancement, po-
sition check, deletion and reset functionalities in a mesh

entity traversal in a part.

// iterator advancement

int FMDB_PartEntIter_GetNext

(pPartEntIter iter, mEntity* ent)

{

return Iter_GetNext (iter, ent);

}

// iterator position check

int FMDB_PartEntIter_IsEnd

(pPartEntIter iter, int* isEnd)

{

return Iter_IsEnd(iter, isEnd);

}

// iterator deletion

int FMDB_PartEntIter_Del (pPartEntIter iter)

{

return Iter_Del (iter);

}

// iterator reset

int FMDB_PartEntIter_Reset (pPartEntIter iter)

{

return Iter_Reset (iter);

}

4.2.2 Mesh entity traversal by reverse classification:

For the input geometric entity of dimension d, mesh en-
tity traversal by reverse geometric classification is im-
plemented using the iterator component with the filter-

ing function that checks the geometric classification of
each mesh entity on traversal. Note the cost of the re-
verse classification through iterator is O(n) where n is

the number of mesh entities in a part, while the reverse
classification can be obtained in O(1) cost using mesh
adjacencies.

The following FMDB API illustrates how to initial-
ize an iterator for a mesh entity traversal by reverse
classification in a part.
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// iterator initialization

int FMDB_PartEntIter_InitRevClas (pPart part,

pGeomEnt geomEnt, int type, pPartEntIter& iter)

{

if type==ALLTYPE

return Iter_Init (part->container[VERTEX].begin,

part->container[REGION].end, type, topo,

(void*)part_ent, &GeomClasProcessFilter, iter);

else

return Iter_Init (part->container[type].begin,

part->container[type].end, type, topo,

(void*)part_ent, &GeomClasProcessFilter, iter);

}

Herein, pGeomEnt is a pointer type to a geometric

entity. If the input entity type is ALLTYPE, the iter-
ator input range is specified as the mesh entities of all
dimensions. Otherwise, the iterator input range is spec-

ified as mesh entities of a specific dimension. Using a
data structure part ent that is casted into void∗ type
and contains a pair of local part and geometric entity,

the input filtering function GeomClasProcessFilter is
used to increment the iterator to the next proper posi-
tion that points to a mesh entity classified on a given

geometric entity geomEnt in the range. Note that the
local part stored in the data structure part ent is used
by the linking method to traverse multiple entity con-

tainers in a part. The following is the pseudo code of
function GeomClasProcessFilter.

void GeomClasProcessFilter(part_iter& ibegin,

part_iter& iend, void* ptr, int type, int topo)

{

ent = (cast<part_geomEnt*> ptr)->second;

if ibegin==iend

return;

for each entity in range [ibegin, iend)

if entity->geometric_classification

==cast<pGeomEnt> ent

ibegin = current_entity_position;

return;

ibegin=iend;

}

An example usage is to calculate the number of

mesh entities classified on a specific geometric entity
through the FMDBAPI FMDB GeomEnt GetNumRev-
Clas. The pseudo code of Algorithm 2 illustrates the

procedure, which consists of three main steps: (i) ini-
tializing an iterator based on the input part, geometric
entity (geomEnt) and entity type, (ii) advancing the

iterator one step forward in the entity traversal loop,
and (iii) deleting the iterator to avoid memory leak.

4.2.3 Part boundary mesh entity traversal:

A part boundary entity traversal is implemented using

the iterator component with the filtering function which

Data: part, geomEnt, type
Result: store the number of mesh entities classified on

geomEnt into numEnt
begin

/* STEP 1: initialize an iterator */

numEnt ← 0;
iterEnd ← FMDB PartEntIter InitRevClas(part, geomEnt,
type, iter);

/* STEP 2: traverse mesh entities in a loop */

while iterEnd = false do
iterEnd ← FMDB PartEntIter GetNext(iter, meshEnt);
if iterEnd = true then break;
++numEnt;

end

/* STEP 3: delete the iterator */

FMDB PartEntIter Del(iter);
return numEnt;

end

Algorithm 2. Example of mesh entity traversal by re-
verse classification: to calculate the number of mesh
entities classified on a specific geometric entity in a

part.

checks the duplicated copy existence of each mesh entity
(also referred to as remote copy [27,28]) on traversal.

Given the input arguments consisting of entity type,
topology and non-local part id, called target part id, the
iterator creation API initializes an iterator to traverse

mesh entities duplicated on the part boundary between
the local part and target part.

int FMDB_PartEntIter_InitPartBdry (pPart part,

int target_part_id, int type, int topo,

pPartEntIter& iter)

{

part_pid=pair<part, target_part_id>;

if type==ALLTYPE

return Iter_Init (part->container[VERTEX].begin,

part->container[REGION].end, type, topo,

(void*)part_pid, &PartBdryProcessFilter, iter);

else

return Iter_Init (part->container[type].begin,

part->container[type].end, type, topo,

(void*)part_pid, &PartBdryProcessFilter, iter);

}

Using a data structure part pid that is casted into
void∗ type and contains a pair of local part and target
part id, the function PartBdryProcessFilter moves the

iterator to the next proper position, which points to a
mesh entity that is on the part boundary between the
local part and target part with the help of partition

classification.
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4.2.4 Mesh entity traversal in set by type and/or

topology:

Similar to a mesh entity iterator in a part described
in §4.2.1, a mesh entity iterator in an entity set is
implemented using the iterator component with the

input range [set→container.begin, set→container.end),
and the function EntityProcessFilter, where set→contai-
ner denotes the entity container for a set.

4.2.5 Geometric entity traversal in the entire geometry
by type:

In the Geometric Model Interface (GMI) [39], an std::vec-

tor container is used to store the model entities of a
given dimension. Given the geometric model (model)
and entity dimension (type), the following GMI API il-

lustrates how to initialize an iterator for a model entity
traversal.

typedef model_entity_container_iterator_type model_iter;

typedef Iterator<model_iter, gEntity>* pGeomEntIter;

// iterator initialization

int GMI_GeomEntIter_Init (pGeomMdl model, int type,

pGeomEntIter& iter)

{

if type==ALLTYPE

return Iter_Init (model->container[VERTEX].begin,

model->container[REGION].end, type, 0,

(void*)model, &GEntityProcessFilter, iter);

else

return Iter_Init (model->container[type].begin,

model->container[type].end, type, 0,

(void*)model, &GEntityProcessFilter, iter);

}

Herein, pGeomMdl is a pointer type to a geometric

model, and gEntity is a class of geometric entity. For
readability, model iter is a predefined data type of an
iterator of the geometric model’s entity container. pGe-

omEntIter is a predefined data type of a pointer to the
template class Iterator<model iter, gEntity>.

Similar to a mesh entity iterator in a part described
in §4.2.1, the model entity container of dimension i
is denoted as model→container[i] where i={VERTEX,
EDGE, FACE, REGION}. If the input entity type is
ALLTYPE, the iterator’s range is specified as the mesh
entities of all dimensions (V ERTEX to REGION).

Otherwise, the iterator’s range is specified as the input.
The geometric entity filtering function GEntityProcess-
Filter moves the iterator to the next proper position in

the geometric model.

The following code illustrates how the iterator com-

ponent is used to implement iterator advancement, re-

set, the position check, and deletion functionalities in

the geometric model.

// iterator advancement

int GMI_GeomEntIter_GetNext

(pGeomEntIter iter, pGeomEnt ent)

{

return Iter_GetNext (iter, ent);

}

// iterator position check

int GMI_GeomEntIter_IsEnd

(pGeomEntIter iter, int* isEnd)

{

return Iter_IsEnd(iter, isEnd);

}

// iterator deletion

int GMI_GeomEntIter_Del (pGeomEntIter iter)

{

return Iter_Del (iter);

}

// iterator reset

int GMI_GeomEntIter_Reset (pGeomEntIter iter)

{

return Iter_Reset (iter);

}

5 Tag Component

Tags are used as containers of arbitrary user-defined
data attachable to the geometric model, geometric enti-

ties, mesh instance, part, mesh entities, sets, and fields.
Different values of a particular tag can be associated
with different data models, entities or sets [16,18,23].

5.1 Design and Implementation

The tag component consists of (i) tag data for repre-
senting arbitrary user data, (ii) tag handle for holding a
unique tag identifier attachable to data, (iii) tag holder

for maintaining all active tags identifiable with handles,
and (iv) taggable object which models the data to which
tag data is attached with a tag handle.

Each tag handle is uniquely identified by a pair of
belonging tag holder and string tag name. A tag handle

has two attributes, (i) tag data type which is primary
type (integer, double, entity and set) or arbitrary type
data, and (ii) tag size which specifies the number of

data in tag data. If the tag size is 1, the tag data holds
a single piece of data of a given tag type. If the tag size
is greater than 1, the tag data holds an array of data

of a given tag type.
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The following are the API’s for a tag holder, includ-

ing tag handle creation/deletion and tag handle queries
in a tag holder.

// given tag name, type, and size,

// create tag handle and store it in tag holder

TagHandle* TagHolder_CreateTag

(TagHolder*, const char* name, int type, int size);

// delete tag handle and remove it from tag holder

int TagHolder_DelTag (TagHolder*, TagHandle*);

// remove all tags from tag holder

void TagHolder_ClearTag (TagHolder*);

// check tag type matches given type info

int TagHolder_CheckTag (TagHolder*, TagHandle*,

int type, int*);

// check tag exists in tag holder

int TagHolder_HasTag (TagHolder*, TagHandle*, int*);

// given tag name, find tag from tag holder

int TagHolder_FindTag (TagHolder*,

const char* name, TagHandle*);

// get list of tags stored in tag holder

void TagHolder_GetTag (TagHolder*, vector<TagHandle*>&);

For a taggable object and tag handle, the API’s for
getting/setting a single or array of tag data with a pri-
mary type (integer, double, entity and set) are the fol-

lowing.

template<typename Type>

int Taggable_SetData (Taggable*, TagHandle*, Type*);

template<typename Type>

int Taggable_GetData (Taggable*, TagHandle*, Type[]);

For a taggable object and tag handle, the API’s

to get/set a single or array of void∗ tag data are pre-
sented below. Note that template typename Type en-
ables transforming void∗ type tag data to specific pri-

mary type data specified on the tag handle creation.

template<typename Type>

void Taggable_SetByteData (Taggable*, TagHandle*,

const void* data, int size);

template<typename Type>

void Taggable_SetByteArrData (Taggable*, TagHandle*,

const void* data, int size);

template<typename Type>

void Taggable_GetByteData (Taggable*, TagHandle*,

void** data, int* size);

template<typename Type>

TagHolder
tag_list

Taggable
tag_data

mMesh mEntity

Fig. 6 Class diagram of the mesh and mesh entity.

void Taggable_GetByteArrData (Taggable*, TagHandle*,

void** data, int* size);

For a taggable object and tag handle, the API to

delete tag data is presented below.

void Taggable_DelTag (Taggable*, TagHandle*);

5.2 Application

To support tag handles created per mesh instance, the
mesh instance class, mMesh, inherits from the class

TagHolder. To support efficient tag data access and
automatic tag data removal along the taggable object
deletion, classes of part, mesh set and mesh entity in-

herit from the class Taggable. The class diagram in Fig-
ure 6 illustrates mMesh (the mesh instance class) in-
herited from TagHolder and mEntity (the mesh entity

class) inherited from Taggable, which are to support
tag handles created in a mesh instance and tag data
attachable to mesh entities, respectively.

The following is the pseudo code to create a tag
handle of a specific name, type and size. pMeshMdl is
a pointer type to a mesh instance.

int FMDB_Mesh_CreateTag (pMeshMdl mesh,

const char* name, int type,

int size, TagHandle* tag)

{

if tag with given name exists in mesh

tag = existing_tag;

else

tag = TagHolder_CreateTag(cast<TagHolder*>(mesh),

name, type, size);

return SUCCESS;

}

If a tag handle of the specific name, type and size

already exists in the tag holder object, i.e. the mesh, the
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function returns the existing tag handle. Otherwise, it

creates a new tag handle and stores it in the mesh.
The following is the pseudo code to delete a specific

tag handle from the mesh.

int FMDB_Mesh_DelTag (pMeshMdl mesh, TagHandle* tag)

{

TagHolder_DelTag(cast<TagHolder*>(mesh), tag);

delete tag;

return SUCCESS;

}

The following is the pseudo code to search and get

tag handle(s).

// for input string name, find tag handle from mesh

int FMDB_Mesh_FindTag (pMeshMdl mesh, char* name,

TagHandle* tag)

{

return TagHolder_FindTag (cast<TagHolder*>(mesh),

name, tag);

}

// get all tag handles in mesh

int FMDB_Mesh_GetTag (pMeshMdl mesh,

vector<TagHandle*>& tags)

{

return TagHolder_GetTag (

cast<TagHolder*>(mesh), tags);

}

The FMDB APIs to set/get integral tag data to a

part, and delete tag data attached to a part are illus-
trated below.

// set integral tag data to part

int FMDB_Part_SetIntTag (pPart part, TagHandle* tag,

const int data)

{

return Taggable_SetData<int>(cast<Taggable*>(part),

tag, &data);

}

// get integral tag data from part

int FMDB_Part_GetIntTag (pPart part, TagHandle* tag,

int* data)

{

return Taggable_GetData<int>(cast<Taggable*>(part),

tag, data);

}

// delete tag data attached to part

int FMDB_Part_DelTag (pPart part, TagHandle* tag)

{

return Taggable_DelTag (cast<Taggable*>(part), tag);

}

The code to set/get an array of integral tag data
with an entity set is given below. pEntSet is a pointer

type to a mesh entity set.

// get integral tag array data to set

int FMDB_Set_SetIntArrTag (pEntSet set, TagHandle* tag,

const int* data, int size)

{

if size!=tag->size return ERROR;

return Taggable_SetData<int>(cast<Taggable*>(set),

tag, data);

}

// get integral tag array data from set

int FMDB_Set_GetIntArrTag (pEntSet set, TagHandle* tag,

int** data, int* size)

{

*size = tag->size;

return Taggable_GetData<int>(cast<Taggable*>(set),

tag, *data);

}

Contrary to the code to set/get primary type tag
data in which accessing the tag data is done in one

step, the implementation to set/get byte type (void∗)
tag data is composed of two steps: (i) for a given tag
handle, retrieve tag type and transform the void∗ tag

data to specific (primary) type data if necessary and
(ii) if primary type, call single or array type set/get tag
functions based on tag size information. For instance,

part of the code to set void∗ tag data with a mesh entity
(ent) is given below.

if tag->type==byte

out = Taggable_SetByteArrData<char>

(cast<Taggable*>(ent), tag, data, size);

if tag->type==integer

if tag->size==1 // single integer

out = Taggable_SetByteData<int>

(cast<Taggable*>(ent), tag, data, size);

else // multiple integers

out = Taggable_SetByteArrData<int>

(cast<Taggable*>(ent), tag, data, size);

Herein, if replacing integer to other primary data
type, the code above can set void∗ tag data with other

primary type, such as double, pEntSet, or pMeshEnt
(mesh entity pointer type). As illustrated in the code
above, tagging for a part, entity and entity set can

be implemented easily by reusing the tag component
through the class inheritance and template mechanism.

In parallel computations using the FMDB, migrat-
ing the tag data attached to a P-set or an entity along

with the migration is achieved through specifying call-
back functions [27,40] in mesh migration, which is the
mechanism to allow the user to specify how to pack the

tag data within the entity message packing procedure
and how to unpack and attach the tag data received
from remote parts within the entity message unpacking

procedure. If no callback function is specified, tag data
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Fig. 7 Clip-plane mesh views of the boundary layer meshes: before (left) and after (right) the boundary layer mesh adaptation.

is ignored during the migration and removed automat-
ically when a P-set or an entity is eliminated from a

part.

In the migration procedure, callback functions deal-
ing with tag data are defined as pure virtual member

functions in a derived class of the FMDB class pmMi-
grationCallbacks, and are called in the entity message
packing and unpacking steps. These callback functions

(i) getUserData specifies the tag data to migrate with a
P-set or an entity, (ii) receiveUserData specifies the op-
erations to be performed when the tag data is received

on a remote part, and (iii) deleteUserData defines how
to delete the tag data to avoid memory leak. Since re-
trieving all tag handles attached to a taggable object

is supported, an on-going development effort includes
automatic tag data migration along P-set or entity mi-
gration.

6 Mesh Adaptive Applications

This section presents two parallel mesh adaptation ex-

amples developed with GMI and FMDB using the three
generic components running underneath.

6.1 Support Boundary Layer Mesh Adaptation

The boundary layer mesh adaptation procedure [41]
performs on a manifold heat exchanger model, in which

a large flow rate comes in a larger tube and dumps into a
thin rectangular geometry where the flow is distributed
into smaller pipes. The solution-based anisotropic adap-

tation is carried out on this model to capture the flow
features.

The initial boundary layer mesh has about 450, 000

regions, and the resulting adapted boundary layer mesh

has about 4.5 million regions. The clip-plane views of
the interior boundary layer mesh structures before and

after the boundary layer mesh adaptation are shown in
Figure 7. In the implementation, each stack of boundary
layer mesh entities (see the mesh entities in the black

polygon in Figure 4) is a P-set, thus all the mesh entities
in the set can be handled as a unit and kept together
on one part as the mesh changes. These P-sets are then

handled as partition objects for mesh partitioning and
migration.

6.2 Scaling Studies of Mesh Adaptation

The anisotropic mesh adaptation procedure [34,42] is
carried out on a flow simulation example to compare the

performance of mesh adaptation between traditional
object-oriented and generic programming paradigm. The
mesh adaptation procedure is chosen for testing, since

it relies heavily on entity iteration and tag data associ-
ation. The iterator component is to support traversing
over either geometric entities or mesh entities, and the

tag component is to support data association with ei-
ther of these entities. Associated data can be arbitrary,
such as solution-based mesh size fields.

In the adaptive flow simulation, a straight pipe model
with air bubbles distributed in the pipe is used (see Fig-

ure 8). Figure 8a shows the mesh size field which repre-
sents the motion of air bubbles in the geometric model.
The smaller size field is shown in blue, implying a fine

mesh (or high resolution), and the relative large size
field is shown in red, implying a coarse mesh. In multi-
phase flow simulations, fine meshes at phase boundaries

are expected to capture the complicated physical phe-
nomena at the interface [43]. Figure 8b shows a segment
of the straight pipe model which involves the motion of

five air bubbles by a distance of 1/5 of their radius. A
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Table 1 Scaling results of air-bubble mesh adaptation on ANL Intrepid using two methods: mesh adaptation without using
the generic components (adapt without generic), and mesh adaptation using the generic components (adapt with generic).

adapt without generic adapt with generic time

num of cores time s-factor time s-factor increase(%)

1,024 (base) 475.90 1 476.07 1 0.04
2,048 329.94 0.72 330.81 0.72 0.26
4,096 220.17 0.54 220.99 0.54 0.37
8,192 107.78 0.55 110.32 0.54 2.36
16,384 74.46 0.40 74.72 0.40 0.35
32,768 44.15 0.34 44.33 0.34 0.41

Fig. 8 Defined mesh size field (a) and a segment of straight
pipe model with air bubbles (b).

zoomed bubble in the mesh is colored by the magnitude

of size field in Figure 8b.
The mesh adaptation procedure starts with an ini-

tial uniform tetrahedral mesh with 165 million tetrahe-

dra, and obtains an adapted mesh of 188 million tetra-
hedra. All the test cases were run on the ANL Intrepid
(IBM BG/P system) [44]. The test cases were executed

on 1, 024 up to 32, 768 cores using 512MB per core
memory. The execution time of the mesh adaptation
procedure for all the test cases are collected, and scal-

ing factors are computed based on the execution time
on 1, 024 cores. The scaling factor is defined as

s-factor = (npbase ∗ tbase)/(npi ∗ ti), (1)

where t represents the execution time and np represents

the number of cores. For instance, npbase represents the
number of cores in the base case (here is the test case
running on 1, 024 cores), and tbase represents the exe-

cution time of the base case.

The performance results are summarized in Table 1,
which compares the performance of two methods in-
cluding (i) the mesh adaptation procedure using the

generic components, and (ii) the mesh adaptation pro-
cedure using the traditional object-oriented program-
ming paradigm. As shown in the last column of the

table, the mesh adaptation procedure using the generic
components requires at most 2.36% more time than the
one without the generic components, and does not af-

fect the scaling. In summary, the generic components
achieve code reusability and flexibility without sacrific-
ing the performance of mesh adaptation, compared to

the traditional object-oriented programming.

7 Closing Remark

This paper presented the generic iterator, set and tag

components developed as part of utilities of data man-
agement software tools in unstructured mesh based adap-
tive simulations, and presented how they were applied

to meet various needs of distributed mesh management
tools.

In the future, the iterator, set and tagging func-
tionalities will support geometric model and field li-

braries through well-defined API’s. At the same time,
for better supporting unstructured mesh applications,
more generic components will be designed and devel-

oped, such as the (i) the relation component for re-
lating arbitrary data in different data models when no
direct interactions through API’s are available, and (ii)

the communicator component for supporting efficient
parallel functionalities such as architecture-aware com-
munication and data distribution on massively parallel

computers.

On the other hand, more software engineering tech-
niques and generic programming methods can be ap-
plied in the software component design for adaptive

unstructured mesh simulations. For example, instead
of using raw function pointers, using Boost.Function li-
brary [45] can be an alternative method to implement

the generic iterator component with greater flexibility.
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However, the third party software libraries were not

considered in the current practice due to the portability
issue on supercomputers.

The presented three generic components are open
source and available at

http://www.scorec.rpi.edu/software.php.

For source code and more information about FMDB
and its iMesh/iMeshP interfaces, please visit
http://www.scorec.rpi.edu/FMDB.
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