
Immersed Boundary Method as an Inverse Problem

Jianfeng Yan∗ and Jason E. Hicken†

Rensselaer Polytechnic Institute, Troy, New York, 12180

In this paper we propose a new immersed boundary method (IBM). To enforce Dirichlet
boundary conditions, control variables are introduced element boundaries that approximate
the exact boundary. The control variables are determined by solving an inverse problem.
The proposed method is high-order accurate and agnostic to the discretization. To verify
the accuracy of the scheme, convection-diffusion problems are solved with a discontinuous
Galerkin finite element discretization. The Karush-Kuhn-Tucker (KKT) system is solved in
the full space, and two preconditioners are developed and tested.

I. Introduction

In spite of the rapid development of computational fluid dynamics (CFD) in the past several decades, its application
in conceptual design remains limited. This is partly because CFD simulations are relatively expensive. Nevertheless,

with the development of increasingly powerful computers and algorithms, we can expect that the computational cost will
diminish as a bottleneck. Another reason, which is of more importance in the long term, is mesh generation: automatic
mesh generation for complex geometries remains challenging[1], especially generation of high-order meshes. For
example, gaps in CAD models are common at intersections of different parts, but mesh generation needs a watertight
geometry, which makes human intervention inevitable.

Immersed boundary methods (IBMs) can significantly improve the automation of mesh generation and, hence,
enable the use of CFD during conceptual design. Compared to body-fitted methods, which require a mesh that conforms
to the problem domain, IBM meshes can be generated almost arbitrarily, irrespective of the problem domain.

Simplified mesh generation comes at the expense of complicating the imposition of boundary conditions. The
momentum-force-based implementation of the IBM, which was first introduced by Peskin[2], introduces an additional
concentrated force on the domain boundaries to model the action of moving boundaries. Dirac-delta functions, used to
model the concentrated force, are then regularized to spread the force field over the neighboring cells. One can show
that this approach is equivalent to adding penalty terms in finite element methods[3]. Variations in this class involve the
choice of regularization applied to the delta functions and the user specified magnitude of the concentrated force[4–6].
While these methods have proven useful for low and moderate Reynolds number flows, it is challenging to extend this
type of method to higher Reynolds numbers, since the regularization of the delta function deteriorates the local accuracy
in resolving the boundary layer.

The interpolation-based approach, also known as the sharp immersed interface method, was proposed to overcome
the local accuracy problem described above while achieving second or higher-order accuracy[7]. In this approach the
precise value of the solution can be implicitly imposed on the immersed boundary through an interpolation scheme;
therefore, ad-hoc parameters are avoided. Furthermore, desirable properties can be achieved by carefully selecting
the stencil and tuning the interpolation coefficients; examples of such properties include accuracy[8], stability[9], and
improved conditioning[10]. However, since most methods of this type are based on finite difference discretizations, they
are restricted to grids with (possibly mapped) quadrilateral elements in two-dimensions (2D) and hexahedral elements in
three-dimensions (3D), which are not always well-suited for mesh adaptation. Furthermore, the interpolation schemes
are typically constructed based on a one-dimensional analysis of a specific problem, so the desired properties (e.g.
stability) may not generalize to multiple dimensions and other physical problems.

Immersed boundary conditions can be imposed in finite-element using a Lagrange-multiplier formulation in which
a Lagrange multiplier is introduced to impose the boundary condition as a constraint. Although this approach can
be applied to various physical problems, the proper choice of the Lagrange multiplier space is challenging, since the
multiplier function space and the solution space should satisfy the so-called inf-sup condition[11]. Otherwise, severe
oscillations along the Dirichlet boundary, known as boundary locking[12, 13], may occur. Unfortunately, proving that

∗Ph.D student, Department of Mechanical, Aerospace and Nuclear Engineering, AIAA Student Member
†Assistant Professor, Department of Mechanical, Aerospace and Nuclear Engineering, AIAA Member

1

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 

 2018 Fluid Dynamics Conference 

 June 25-29, 2018, Atlanta, Georgia 

 10.2514/6.2018-4162 

 Copyright © 2018 by Jianfeng Yan, and Jason E. Hicken. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 

 AIAA AVIATION Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2018-4162&domain=pdf&date_stamp=2018-06-24


the inf-sup condition is satisfied a priori is difficult, if not impossible. To the best of our knowledge, few high-order
accurate results are reported using this approach.

In this work we propose a new approach that is high-order accurate and agnostic to the discretization. It is similar
to the momentum-force-based methods. However, instead of adding a concentrated force along the exact Dirichlet
boundary, we introduce control variables that are distributed along an approximate boundary that consists merely of
element faces. The significance of doing this is that it allows us to eliminate the delta function and, consequently, its
problematic regularization. An inverse problem is solved to find the control variables that best satisfy the boundary
conditions. Compared to the Lagrange-multiplier approach, no special function space is required. The approach
requires the solution of a PDE-constrained optimization problem, which can be computationally expensive in general.
Fortunately, the structure of the problem can be exploited to develop effective preconditioners[14].

The remainder of the paper is organized as follows. In Section II we introduce the framework of the proposed
method; in Section III we perform a mesh convergence study to investigate the accuracy of the proposed method; in
Section IV we discuss preconditioners for the iterative solution of the inverse problem.

II. Proposed method

In this section we first introduce the formulation of the inverse problem used to impose Dirichlet boundary conditions
for a generic boundary value problem (BVP). We then provide the first-order optimality conditions and the corresponding
Karush-Kuhn-Tucker (KKT) system.

Let Ω ⊂ R2 be a two dimensional domain. We consider the following BVP:

R(u) = 0, ∀x ∈ Ω,

u = uD, ∀x ∈ ∂Ω,
(1)

where R(u) denotes a (possibly nonlinear) partial differential operator, Ω is the problem domain, and uD is the boundary
value on the Dirichlet boundary ∂Ω. In the optimal control community, the solution u is also called the state variable.
To simplify the presentation, we focus exclusively on Dirichlet boundary conditions, but the proposed method can easily
be generalized to include, for example, Neumann boundary conditions.

A. Problem formulation
As with other immersed boundary methods, the physical domain Ω is extended into a larger computational domain

Ω̃ ⊇ Ω such that the computational boundary ∂Ω̃ is an approximation of the physical boundary ∂Ω. This is illustrated
in Figure 1, in which Ω is the shaded area, and the computational domain is the domain consisting of all the triangles.

Rather than discretizing the BVP (1) on Ω directly, we instead propose the following discretized inverse problem on
Ω̃:

min
uh,ch

Jh(uh, ch) = ‖uh − uD ‖
2
∂Ω + ‖ch − uD ‖

2
∂Ω̃

s.t. Rh(uh, ch) = 0 on Ω̃.
(2)

Here, uh is the discrete solution defined on the computational domain Ω̃, and ch is the control variable defined on the
computational boundary ∂Ω̃. The control variable is the Dirichlet boundary value in the discretization of the BVP,
denoted by Rh, which itself serves as the equality constraint in the above optimization problem. Note that Rh can be
based on any type of discretization that uses weakly imposed boundary conditions, including finite difference, finite
volume or finite element. Discretizations that use strongly imposed boundary conditions have not been considered in
this work, but we believe the general approach could be adapted to such methods.

There are two terms in the objective Jh , and both involve the (squared) norm of a difference defined on a boundary.
For example, since we use a discontinuous Galerkin (DG) method to discretize Rh in this work, a straightforward choice
for the objective is

Jh(uh, ch) =
∫
∂Ω
(uh − uD)

2dΓ +
∫
∂Ω̃
(ch − uh)2dΓ.

The first term above, referred to as the misfit in the inverse-problem literature, evaluates the discrepancy between the
discrete solution uh and the boundary value uD along the true boundary ΓB. The second term is a Tikhonov-type
regularization used to stabilize the inverse problem.

2

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 



Fig. 1 Example illustrating the physical domain Ω (the shaded domain) and the computational domain Ω̃ (the
domain consisting of all triangles).

Our regularization is different from the typical Tikhonov regularization in the sense that the discrete solution uh is
used as the target value for the control variable ch . The effectiveness of this choice is due to a priori knowledge of the
control variable from the equality constraint Rh = 0. Recall that ch is the boundary value of uh weakly imposed on ∂Ω̃.
Therefore, assuming the discretization Rh produces a state solution of p + 1 order of accuracy, and the mesh element
size is h, then ‖uh − ch ‖∂Ω̃ ∼ hp+1. That is, using uh as the background state will significantly reduce the magnitude of
the regularization and, therefore, diminish the negative influence of it on the accuracy of the solution. Another unique
feature of the regularization in (2) is that it is not scaled by a regularization parameter; such regularization parameters
are typically necessary in inverse problems and their determination can be problematic. Furthermore, assuming the
inverse problem (2) can be solved, we hypothesize that the misfit term will also be driven to the same order, i.e.,
‖uh − uD ‖∂Ω ∼ hp+1.

The regularization is easy to compute since both uh and ch are defined on ∂Ω̃. On the other hand, in order to
evaluate the misfit term the discrete solution must be interpolated onto the physical boundary ∂Ω since, in general, the
computational boundary ∂Ω̃ does not coincide with the physical boundary. In this work uh is interpolated onto Gauss
quadrature points on piecewise subsets of ∂Ω (pink square dots in Figure 1). The locations of these Gauss points are
independent of ∂Ω̃ and do not even require a watertight geometry; this suggests the proposed method will be able to
handle CAD geometries with gaps. Based on numerical experiments, we suggest using a sufficient number of Gauss
points to resolve the physical boundary and achieve an optimal convergence rate. In addition, the conditioning of the
Karush-Kuhn-Tucker (KKT) system discussed in next subsection depends little on the number of points used to evaluate
the misfit.

Finally, we note the inverse problem (2) is consistent with the PDE (1). As h→ 0, Ω̃→ Ω and ∂Ω̃→ ∂Ω. Then
the exact solution also solves the inverse problem (2), with ch → uD and Jh → 0.

B. KKT system
A solution to (2) must satisfy the first optimality conditions, also known as the KKT conditions. In this subsection,

we will show how the inverse problem (2) can be solved equivalently as a system of linear or nonlinear equations. For
convenience, we introduce the following definitions for the derivative submatrices:

3

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 



Ju =
∂Rh

∂uh
, Jc =

∂Rh

∂ch
, (3)

Huu =
∂2Lh

∂u2
h

, Hcc =
∂2Lh

∂c2
h

, (4)

Huc =
∂2Lh

∂uh∂ch
, Hcu =

∂2Lh

∂ch∂uh
. (5)

The matrix Huc = Hcu
T for problems with continuous second derivatives, but they are kept distinct in the following

sections.
To begin, we define the Lagrangian

Lh(uh, ch, ψh) = Jh + ψT
h Rh, (6)

where ψh is the Lagrange multiplier. By differentiating the Lagrangian with respect to uh, ch and ψh, and setting the
derivatives to zero, we obtain the KKT conditions

∂Lh

∂x
=


∂Jh
∂uh
+ ψT

h
Ju

∂Jh
∂ch
+ ψT

h
Jc

Rh

 = 0, (7)

where we have introduced the compound vector

x =
[
uT
h

cT
h

ψT
h

]T
.

The conditions (7) define a system of equations that inherit the linearity/nonlinearity of the original problem (1). That is,
if (1) is linear, so is (7); if (1) is nonlinear, (7) is also nonlinear. The first equation in (7) is typically called the adjoint
equation, and the multiplier ψh is the adjoint. The second equation is the total derivative of the objective Jh with respect
to ch , and the third is the equality constraint in (2), i.e., the state discretization.

For the linear problems considered in this work, (7) is equivalent to the following KKT system:

K∆x = −
∂Lh

∂x
(8)

where

K =
∂2Lh

∂x2 =


Huu Huc JTu
Hcu Hcc JTc
Ju Jc 0


is the second derivative of the Lagrangian, and ∆x = x∗ − x with x∗ being the solution to the KKT system.

There are two approaches that can be used to solve the KKT system (8): the reduced-space approach and the
full-space approach. In the reduced-space approach, the state and adjoint variables are first eliminated to produce an
equation for ch . Once the control is known, Rh can be solved to find uh . This whole process may need to be repeated for
nonlinear problems until convergence. In the full-space approach the three variables are solved simultaneously. We use
the full-space approach in this work, because, eventually, we are interested in solving nonlinear BVPs governed by, e.g.,
the Euler and Navier-Stokes equations, and solving (7) in the full space is usually more efficient for nonlinear problems.
Readers are referred to [14–16] for further discussion on the relative merits of the two approaches.

III. Convergence Study

In this section we carry out a convergence study of our proposed approach using the method of manufactured
solutions. The model BVP is a steady linear convection-diffusion equation. By adjusting the advection velocity and the
diffusion coefficient pure convection and diffusion problems can be recovered as extreme cases. The discretization Rh is
a DG finite-element method, which is described in greater detail below.

4

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 



A. Model problem
As mentioned above, we consider the linear convection-diffusion equation:

∇ · (au − µ∇u) = f , in Ω,

u = uD, on ∂Ω,
(9)

where a ∈ R2 is the convection velocity, and µ is the positive diffusion coefficient. The problem domain Ω is the unit
disk, i.e., Ω = {[x, y] : x2 + y2 ≤ 1}. In the following tests, three sets of parameters a and µ are chosen to model
different physics:

• a = [1, 1], µ = 0 for a pure convection problem;
• a = [0, 0], µ = 1 for a pure diffusion problem;
• a = [1, 1], µ = 10−2 for a convection-diffusion problem.

The manufactured solution used to derive the source f and the boundary data uD is defined to be

u = ex+y sin(πx) sin(πy). (10)

Fig. 2 The coarsest mesh and the physical boundary used for the convergence study.

B. Discontinuous Galerkin discretization
We use a DG finite-element method to discretize (9). The symmetric interior penalty Galerkin (SIPG) method[17]

is used to discretize the diffusion term while upwinding is used for the advection part[18]. In order to be more specific,
we begin by introducing some notation. Let Ω̃h be a shape-regular subdivision of Ω̃ into disjoint elements K ∈ Ω̃h , and
letVh be a broken function space on Ω̃h such thatVh(K) ⊂ H2. The set of interior faces is denoted by ΓI . Additionally,
we introduce the standard jump and mean operators on both scalar and vector variables. For an interior face e ∈ ΓI ,
these operators are given by

{{u}} = (u+ + u−)/2, {{q}} = (q+ + q−)/2,
nuo = u+n+ + u−n−, nqo = q+ · n+ + q− · n−,

where n+ and n− are the outward unit normals of ∂K+ and ∂K−, respectively, and u+ and u− are the traces along the
common face from the interior of K+ and K−, respectively. Finally, the subscript h will be used to indicate a function
from a finite dimensional space; for example, the approximate solution to the PDE is denoted as uh which is previously
introduced in Section II.

The bilinear weak form of the discretization Rh corresponding to (9) reads

5

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 



Rh(uh, ch; vh) =
∫
Ω̃h

[∇vh · (auh − µ∇uh) + vh fh] dΩ

−

∫
ΓI

[nvho · F̂(u+h, u−h )] dΓ −
∫
∂Ω̃

[
vh F̂(uh, ch) · n

]
dΓ

+

∫
ΓI

[nvho · {{µ∇uh}} + {{µ∇vh}} · nuho − ε{{µ}}nuho · nvho] dΓ

+

∫
∂Ω̃
[vhµ∇uh · n + (µ∇vh) · n(uh − ch) − ε µvh(uh − ch)] dΓ,

(11)

where vh ∈ Vh is the test function, F̂ is the upwinding flux function, and ε is the SIPG penalty parameter[17]. Note that
the discrete source fh is obtained by projecting the exact source f derived from the manufactured solution (10) onto Ω̃.

As mentioned in Section II.A, the control variable is the Dirichlet boundary value on ∂Ω̃. These boundary conditions
are weakly imposed by penalizing the discrepancy between uh and ch .

Lastly, the Lagrangian polynomials with degree p ∈ {1, 2, 3, 4} are chosen as the basis ofVh .

C. Numerical results
In the following test cases, the linear KKT system (8) is solved using a sparse direct solver. In Section IV we will

discuss the iterative solution of (7).
To estimate the asymptotic convergence rate, we use a sequence of five uniformly refined triangular meshes. The

coarsest mesh together with the immersed boundary ∂Ω is shown in Figure 2, with element size h = H = 0.1178513.
Here element size h is taken to be the square root of the element area. Each element is subdivided into four to obtain a
refined mesh; that is, the element sizes of the finer meshes are H/2, H/4, H/8 and H/16. We can see from Figure 2 that
the physical boundary intersects mesh elements at different locations, including vertices, which will help demonstrate
the robustness of the proposed approach.

We would like to assess the accuracy of the discrete solution uh , and this is typically accomplished by evaluating the
L2 error on a sequence of ever finer grids; however, evaluating the L2 solution error in Ω is not straightforward, because
element-based cubature rules do not apply on the elements cut by the boundary. One could develop cubature rules for
the elements cut by the immersed boundary, but this is a research topic in its own right[19]. The approach adopted in
this paper is to set the solution error on Ω̃h \Ω to zero.

The solution contours using p = 1 and p = 4 basis functions on the coarsest mesh are compared against the exact
contours in Figure 3a and 3b, respectively. We can see that in both cases the discrete solution matches well with the
exact manufactured solution. Furthermore, as expected, a higher-order approximation produces better results on the
same mesh.

Figure 4 plots the solution error versus element size h for the specific convection, diffusion and convection-diffusion
problems defined earlier. For all problems, our approach achieves the optimal convergence rates of p + 1.

IV. Iterative solution of the KKT system

An alternative to the direct factorization used in Section III is an iterative method. Iterative methods are suitable for
solving very large systems in terms of memory consumption, and they often lend themselves well to parallelization.

However, compared to a conforming-mesh discretization, the system (8) is an indefinite and highly ill-conditioned
saddle-point problem. Therefore, an effective preconditioner is essential for an iterative solution of (8) to be practical.
In [14] a set of preconditioners based on the block factorization of the KKT matrix were introduced, and we will apply
two of them to our inverse problem.

A. Preconditioners for KKT matrix
An exact factorization of the KKT matrix K is given by

K =


HuuJ−1

u 0 I
HcuJ−1

u I JTc J−Tu
I 0 0



Ju Jc 0
0 Hz 0
0 HT

y JTu

 , (12)

6

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 



(a) p = 1 (b) p = 4

Fig. 3 Solution contour of the convection-diffusion problem on the coarsest mesh. Exact solution: red line,
discrete solution: blue line.

where we have introduced Hy and the reduced Hessian Hz :

Hy = Hcu − JTc J−Tu Huu,

Hz = JTc J−Tu HuuJ−1
u Jc − JTc J−Tu Huc − HcuJ−1

u Jc + Hcc.
(13)

The factorization (12) is significant because it is equivalent (up to permutation) to a block LU factorization of K; thus,
it permits a sequential solution of the three variables, ch, uh, and ψh. It suggests that we can build a preconditioner,
denoted by P1, for the KKT matrix by replacing the reduced Hessian Hz with an approximation Bz , and replacing the
state Jacobian Ju with its own preconditioner J̃u

P1 =


HuuJ̃−1

u 0 I
HcuJ̃−1

u I JTc J̃−Tu
I 0 0



J̃u Jc 0
0 Bz 0
0 H̃T

y J̃Tu

 , (14)

where
H̃y = Hcu − JTc J̃−Tu Huu.

Furthermore, if all the second derivative matrices Huu, Huc, Hcu and Hcc are discarded, P1 is reduced to another
preconditioner P2:

P2 =


0 0 I
0 I JTc J̃−Tu
I 0 0



J̃u Jc 0
0 H̃z 0
0 0 J̃Tu

 . (15)

P1 and P2 correspond to P̃4 and P̃2 from [14], where it was shown that P1 requires four applications of the state
preconditioner (or its transpose) and P2 requires two applications of the state preconditioner (or its transpose).

Once J̃u and Bz are chosen, the preconditioner for the whole KKT system is fully determined. In our work, we
use the Crout version of Incomplete LU factorization (ILUC)[20] as the preconditioner J̃u . The accuracy of the
ILUC factorization is determined by a threshold parameter τILUC; when τILUC = 0 ILUC is equivalent to a complete LU
factorization.

Two choices of the approximate reduced Hessian, Bz , are considered. Both choices are based on an approximate
reduced Hessian H̃z rather than the exact one. H̃z approximates Hz by replacing the state Jacobian Ju with its
preconditioner J̃u; that is

H̃z = JTc J̃−Tu HuuJ̃−1
u Jc − JTc J̃−Tu Huc − HcuJ̃−1

u Jc + Hcc. (16)

7

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 



(a) convection problem (b) diffusion problem

(c) convection-diffusion problem

Fig. 4 L2 solution error versus element size h.

8

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 



The first reduced Hessian preconditioner, denoted by BILUC
z , is obtained by applying the ILUC factorization to (16).

Since BILUC
z is based on an ILUC factorization, an explicit expression for H̃z is required, which limits its application to

small- or medium-size problems.
The second choice for Bz , denoted by BLC

z , is a Lanczos-Chebyshev preconditioner (the two-step stationary method
in [14]). This preconditioner applies a fixed number of Chebyshev iterations using (16) to precondition Hz . Chebyshev
iteration is a stationary method suitable for positive definite matrices and requires estimates of the smallest and the
largest eigenvalues. Since the only operations required is are Hessian-vector products, it is matrix free∗. See [21] for
more information on Chebyshev iteration and the Lanczos algorithm.

In the following results, when BLC
z is used we denote P1 and P2 as P1(BLC

z ) and P2(BLC
z ), respectively. The same

convention also applies to BILUC
z .

B. Numerical results
In this subsection, the convection-diffusion problem described in Section III is solved with a restarted left-

preconditioned Generalized Minimal Residual (GMRES) method[22] in order to assess the performance of the
preconditioners P1 and P2. The ILUC factorization with τILUC = 10−4 is used as the state preconditioner J̃u . For BILUC

z ,
the threshold of the ILUC factorization is τILUC = 10−8. All cases use p = 4 Lagrange basis functions. The number of
GMRES restart steps and the number of Lanczos iterations are both set to 100, and the number of Chebyshev iterations
is fixed at 20. The GMRES iteration terminates once the residual norm is reduced by a factor of 1013.

The convergence histories in terms of GMRES iterations are plotted in Figure 5. As can be seen, the Krylov iteration
converges in fewer than 200 steps using preconditioner P1, for all the meshes, and in fewer than 900 steps using P2.
Additionally, with the same Bz , it takes many fewer iterations (around a third) with P1 than with P2. Even taking into
account that each application of P1 requires twice the number of applications of J̃u as P1, this suggests that P2 is more
efficient than P2, at least for problems considered.

A comparison between the reduced Hessian preconditioners BILUC
z and BLC

z shows that with the current settings the
former is superior to the latter in terms of the number of Krylov iteration. However, to construct BILUC

z the explicit
expression of the approximate reduced Hessian H̃z has to be available, which needs at least size(ch) applications of J̃u .
On the other hand, the cost for BLC

z is composed of two parts: the Lanczos iteration used to estimate the smallest and the
largest eigenvalues of H̃z , which has to be performed once per Krylov solve, and the Chebyshev iteration for each BLC

z

application.
Although Figure 5 shows the number of iterations increases as the problem size gets larger, this does not imply that

P1 and P2 themselves are not effective, because their performance depends strongly on the performance of the state
preconditioner J̃u . For instance, we have observed that a fixed threshold value for the ILUC factorization works better for
small problems than for large problems. For example, with the threshold value mentioned above, the ratio between the
number of nonzero values in J̃−1

u and that in Ju , nnz(J̃−1
u )/nnz(Ju), drops from 67.85% on the coarsest mesh to 56.13%

on the finest mesh; keep in mind a larger ratio indicates fewer dropped entries and a more accurate approximation.
To reduce the influence of J̃u on our assessment of the preconditioners, we examine the number of GMRES iterations

required to solve the preconditioned adjoint equation (the first equation in (7))

J̃−Tu JTuψh = −
∂Jh
∂uh

,

and use this to normalize the number of GMRES iterations required to solve the KKT system. Note that this does not
reflect the cost of constructing or using the Bz preconditioners.

The results are given in Table 1.We find that P1(BLC
z ) is the most scalable preconditioner. Furthermore, roughly

speaking, P1 is more scalable than P2 for both BILUC
z and BLC

z .

V. Conclusion
We have proposed a novel immersed boundary method that is formulated as an inverse problem. The method

is notable in the sense that it is agnostic to the underlying discretization and it is high-order accurate. We verified
this latter characteristic by demonstrating that a DG discretization achieves optimal convergence rates on advection,
advection-diffusion, and pure diffusion problems. In order for the method to be applied to large-scale problems, iterative
methods are necessary for which we need effective preconditioners. We presented potential preconditioners based

∗More precisely, it is Hessian free, since the ILUC factorization of Ju is still needed for (16).

9

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 



(a) P1(BILUC
z ) (b) P2(BILUC

z )

(c) P1(BLC
z ) (d) P2(BLC

z )

Fig. 5 Convergence histories for the various preconditioners when used to solve the convection-diffusion
problem.

10

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 



Table 1 Relative performance of KKT preconditioners with respect to the state preconditioner J̃u with approx-
imation degree p = 4.

mesh size h P1(BILUC
z ) P2(BILUC

z ) P1(BLC
z ) P2(BLC

z )

H 2.13 4.00 6.88 7.38
H/2 1.54 3.54 3.63 4.54
H/4 1.57 4.07 3.14 4.50
H/8 0.86 3.54 1.28 3.58

H/16 3.38 16.50 3.72 13.06

on using the PDE Jacobian to eliminate the state and adjoint. These preconditioners work relatively well when the
effect of the state preconditioner J̃u is taken into account. Future work will focus on improving the efficiency of the
preconditioner for the reduced Hessian and extending the methodology to the Euler and Navier-Stokes equations.

Acknowledgements
The authors gratefully acknowledge the financial support of Rensselaer Polytechnic Institute and RPI’s Scientific

Computation Research Center for the use of computer facilities.

References
[1] Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., and Mavriplis, D., “CFD Vision 2030 Study: A

Path to Revolutionary Computational Aerosciences,” Tech. Rep. NASA/CR-2014-218178, Langley Research Center, 2014.

[2] Peskin, C. S., “Flow patterns around heart valves: A numerical method,” Journal of Computational Physics, Vol. 10, No. 2, 1972,
pp. 252 – 271. doi:https://doi.org/10.1016/0021-9991(72)90065-4, URL http://www.sciencedirect.com/science/
article/pii/0021999172900654.

[3] Lew, A. J., and Buscaglia, G. C., “A discontinuous-Galerkin-based immersed boundary method,” International Journal for
Numerical Methods in Engineering, Vol. 76, No. 4, 2008, pp. 427–454. doi:10.1002/nme.2312, URL http://dx.doi.org/
10.1002/nme.2312.

[4] Tornberg, A.-K., and Engquist, B., “Regularization Techniques for Numerical Approximation of PDEs with Singularities,”
Journal of Scientific Computing, Vol. 19, No. 1, 2003, pp. 527–552. doi:10.1023/A:1025332815267, URL https://doi.
org/10.1023/A:1025332815267.

[5] Lai, M.-C., and Peskin, C. S., “An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical
Viscosity,” Journal of Computational Physics, Vol. 160, No. 2, 2000, pp. 705 – 719. doi:https://doi.org/10.1006/jcph.2000.6483,
URL http://www.sciencedirect.com/science/article/pii/S0021999100964830.

[6] Smereka, P., “The numerical approximation of a delta function with application to level set methods,” Journal of Computational
Physics, Vol. 211, No. 1, 2006, pp. 77 – 90. doi:https://doi.org/10.1016/j.jcp.2005.05.005, URL http://www.sciencedirect.
com/science/article/pii/S0021999105002627.

[7] LeVeque, R. J., and Li, Z., “The Immersed Interface Method for Elliptic Equations with Discontinuous Coefficients and
Singular Sources,” SIAM Journal on Numerical Analysis, Vol. 31, No. 4, 1994, pp. 1019–1044. doi:10.1137/0731054, URL
https://doi.org/10.1137/0731054.

[8] Linnick, M. N., and Fasel, H. F., “A high-order immersed interface method for simulating unsteady incompressible flows on
irregular domains,” Journal of Computational Physics, Vol. 204, No. 1, 2005, pp. 157 – 192. doi:https://doi.org/10.1016/j.jcp.
2004.09.017, URL http://www.sciencedirect.com/science/article/pii/S0021999104004127.

[9] Brehm, C., and Fasel, H., “A novel concept for the design of immersed interface methods,” Journal of Computational
Physics, Vol. 242, No. Supplement C, 2013, pp. 234 – 267. doi:https://doi.org/10.1016/j.jcp.2013.01.027, URL http:
//www.sciencedirect.com/science/article/pii/S0021999113000715.

11

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 

http://www.sciencedirect.com/science/article/pii/0021999172900654
http://www.sciencedirect.com/science/article/pii/0021999172900654
http://dx.doi.org/10.1002/nme.2312
http://dx.doi.org/10.1002/nme.2312
https://doi.org/10.1023/A:1025332815267
https://doi.org/10.1023/A:1025332815267
http://www.sciencedirect.com/science/article/pii/S0021999100964830
http://www.sciencedirect.com/science/article/pii/S0021999105002627
http://www.sciencedirect.com/science/article/pii/S0021999105002627
https://doi.org/10.1137/0731054
http://www.sciencedirect.com/science/article/pii/S0021999104004127
http://www.sciencedirect.com/science/article/pii/S0021999113000715
http://www.sciencedirect.com/science/article/pii/S0021999113000715


[10] Mattsson, K., and Almquist, M., “A high-order accurate embedded boundary method for first order hyperbolic equations,”
Journal of Computational Physics, Vol. 334, 2017, pp. 255 – 279. doi:https://doi.org/10.1016/j.jcp.2016.12.034, URL
http://www.sciencedirect.com/science/article/pii/S0021999116306969.

[11] Barbosa, H. J., and Hughes, T. J., “The finite element method with Lagrange multipliers on the boundary: circumventing
the Babuška-Brezzi condition,” Computer Methods in Applied Mechanics and Engineering, Vol. 85, No. 1, 1991, pp. 109
– 128. doi:https://doi.org/10.1016/0045-7825(91)90125-P, URL http://www.sciencedirect.com/science/article/
pii/004578259190125P.

[12] Moës, N., Béchet, E., and Tourbier, M., “Imposing Dirichlet boundary conditions in the extended finite element method,”
International Journal for Numerical Methods in Engineering, Vol. 67, No. 12, 2006, pp. 1641–1669. doi:10.1002/nme.1675,
URL http://dx.doi.org/10.1002/nme.1675.

[13] Stenberg, R., “On some techniques for approximating boundary conditions in the finite element method,” Journal of
Computational and Applied Mathematics, Vol. 63, No. 1, 1995, pp. 139 – 148. doi:https://doi.org/10.1016/0377-0427(95)00057-
7, URL http://www.sciencedirect.com/science/article/pii/0377042795000577, proceedings of the International
Symposium on Mathematical Modelling and Computational Methods Modelling 94.

[14] Biros, G., and Ghattas, O., “Parallel Lagrange–Newton–Krylov–Schur Methods for PDE-Constrained Optimization. Part
I: The Krylov–Schur Solver,” SIAM Journal on Scientific Computing, Vol. 27, No. 2, 2005, pp. 687–713. doi:10.1137/
S106482750241565X, URL https://doi.org/10.1137/S106482750241565X.

[15] Borzì, A., and Schulz, V., Computational Optimization of Systems Governed by Partial Differential Equations, Society
for Industrial and Applied Mathematics, 2011. doi:10.1137/1.9781611972054, URL http://dx.doi.org/10.1137/1.
9781611972054.

[16] Akçelik, V., Biros, G., Ghattas, O., Hill, J., Keyes, D., and van Bloemen Waanders, B., “Parallel Algorithms for PDE-
Constrained Optimization,” Parallel Processing for Scientific Computing, edited by M. A. Heroux, P. Raghavan, and H. D.
Simon, Society for Industrial and Applied Mathematics, 2006, Chap. 16, pp. 291–322. doi:10.1137/1.9780898718133.ch16,
URL http://dx.doi.org/10.1137/1.9780898718133.ch16.

[17] Shahbazi, K., “An explicit expression for the penalty parameter of the interior penalty method,” Journal of Computational
Physics, Vol. 205, No. 2, 2005, pp. 401–407. doi:10.1016/j.jcp.2004.11.017, URL http://dx.doi.org/10.1016/j.jcp.
2004.11.017.

[18] Houston, P., Schwab, C., and Süli, E., “Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems,”
SIAM Journal on Numerical Analysis, Vol. 39, No. 6, 2002, pp. 2133–2163. doi:10.1137/S0036142900374111, URL
https://doi.org/10.1137/S0036142900374111.

[19] Fidkowski, K. J., and Darmofal, D. L., “A triangular cut-cell adaptive method for high-order discretizations of the compressible
Navier–Stokes equations,” Journal of Computational Physics, Vol. 225, No. 2, 2007, pp. 1653 – 1672. doi:https://doi.org/10.
1016/j.jcp.2007.02.007, URL http://www.sciencedirect.com/science/article/pii/S0021999107000757.

[20] Li, N., Saad, Y., and Chow, E., “Crout Versions of ILU for General Sparse Matrices,” SIAM Journal on Scientific
Computing, Vol. 25, No. 2, 2003, pp. 716–728. doi:10.1137/S1064827502405094, URL https://doi.org/10.1137/
S1064827502405094.

[21] Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and der Vorst,
H. V., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM, Philadelphia,
PA, 1994.

[22] Saad, Y., and Schultz, M. H., “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear
Systems,” SIAM Journal on Scientific and Statistical Computing, Vol. 7, No. 3, 1986, pp. 856–869. doi:10.1137/0907058, URL
https://doi.org/10.1137/0907058.

12

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

ul
y 

2,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

8-
41

62
 

http://www.sciencedirect.com/science/article/pii/S0021999116306969
http://www.sciencedirect.com/science/article/pii/004578259190125P
http://www.sciencedirect.com/science/article/pii/004578259190125P
http://dx.doi.org/10.1002/nme.1675
http://www.sciencedirect.com/science/article/pii/0377042795000577
https://doi.org/10.1137/S106482750241565X
http://dx.doi.org/10.1137/1.9781611972054
http://dx.doi.org/10.1137/1.9781611972054
http://dx.doi.org/10.1137/1.9780898718133.ch16
http://dx.doi.org/10.1016/j.jcp.2004.11.017
http://dx.doi.org/10.1016/j.jcp.2004.11.017
https://doi.org/10.1137/S0036142900374111
http://www.sciencedirect.com/science/article/pii/S0021999107000757
https://doi.org/10.1137/S1064827502405094
https://doi.org/10.1137/S1064827502405094
https://doi.org/10.1137/0907058

	Introduction
	Proposed method
	Problem formulation
	KKT system

	Convergence Study
	Model problem
	Discontinuous Galerkin discretization
	Numerical results

	Iterative solution of the KKT system
	Preconditioners for KKT matrix
	Numerical results

	Conclusion

