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ABSTRACT

The accurate representation of a problem domain in terms of a geometric model and its

effective discretization into a mesh plays an important role in achieving higher-quality sim-

ulation results and better computational efficiency. In this work, an automated modeling

and meshing infrastructure with adaptive mesh control is developed to support large-scale

fusion plasma simulations. The goal of the presented work is to develop a framework that

accurately constructs the tokamak geometric models and discretize these model such that

they meet the simulation needs of specific simulation codes. The modeling and meshing

procedures for two fusion plasma codes, XGC and M3D-C1, are presented.

An automated modeling and meshing framework, TOMMS, was developed to support

the magnetic field-aligned and one-element deep meshing requirements of XGC. Recent devel-

opments to extend this infrastructure to better support the near flux field following meshing

requirements of the XGC are presented. The first extension is a procedure to effectively

represent a general set of O-point and X-points configurations. The second extension is a

procedure to decompose the geometric model that includes the tokamak wall, selected flux

curves and the separatrix curves in a manner such that an appropriate set of mesh genera-

tion procedures can be applied to each sub-region. The third extension is the application of

appropriate mesh generation procedures in each sub-region to create the desired final mesh.

Also, the procedures to provide the mesh information needed for the efficient execution of

XGC computational operations are presented.

The M3D-C1 code requires unstructured high-order triangular elements on the 2D

poloidal plane for 2D simulations and 3D wedge elements which are constructed from the

extrusion of 2D elements in the toroidal direction for 3D simulations. As part of work to

extend M3D-C1 to a wide range of tokamak geometries, a generalized modeling and meshing

infrastructure was developed to support the modeling of tokamaks with any configuration

of physical features. The goal of this development is to support construction of model

geometries with an arbitrary number of model loops and better control on mesh property

settings on individual model entities. Moreover, a set of procedures to support a-priori mesh

modifications to generate the initial M3D-C1 meshes with desired resolution are presented.

In M3D-C1 simulations, the plasma equilibrium evolves over time. To effectively simulate

those changes in plasma during a simulation, the mesh needs to be adapted dynamically.

xiv



A mesh adaptation approach driven by an SPR error estimator is developed. 2.5D mesh

adaptation procedure to extend 2D error-based mesh adaptation approach to 3D is also

presented.

xv



CHAPTER 1

INTRODUCTION AND ORGANIZATION

1.1 Background and Motivation

The idea of fusion providing a solution to the world’s energy problems never seemed

as realistic as it does now. The recent achieving of net-positive energy from a fusion ig-

nition at the National Ignition Facility (NIF) is a major scientific breakthrough in fusion

research [1]. However, many challenges related to fusion plasma sustainability still need

to be addressed before fusion energy becomes practical. Traditionally, sustainable plasma

is achieved through magnetic confinement devices like tokamaks and stellarators [2]. The

well-established research in tokamaks has led to building the world’s largest tokamak, ITER

[3], through a multi-nation collaboration. In addition, the commercial fusion energy sector

is growing quickly, with over six billion dollars invested as of July 2023 [4].

Key tokamak modeling issues are related to the modeling of possible plasma instabili-

ties. These include the instabilities in the edge plasma region due to the interaction of the

hot plasma to the plasma facing components of tokamak and large-scale MHD instabilities.

Any such instability in the plasma leads to the deterioration of plasma confinement thus

damaging tokamak geometry and causing energy loss. Hence, it is important to understand

the physics that leads to such plasma instabilities. Studies of these instabilities are car-

ried out through the application of numerical simulations that require the use of large-scale

supercomputers. The advancements in high-performance computing provide an excellent

platform to physicists to perform the needed plasma simulations. There is a wide range of

codes for the numerical simulations of fusion plasma-related issues. This thesis focuses on

two such simulation codes; first is X-point Gyro-kinetic Code (XGC) [5] and second is M3D-

C1 [6] which is an extended magneto-hydrodynamics code. Both these codes use mesh-based

numerical methods, and the target of the work presented in this thesis is to provide effective

meshing technologies that meet the need of these codes.

XGC is an edge plasma particle-in-cell (PIC) code that is capable of performing turbu-

lence and neoclassical transport simulations. XGC uses a field-aligned mesh that is identical

on all the poloidal planes. The use of field-aligned meshes improves the particle tracking

along the field line with relatively coarser resolution in the toroidal direction (fewer number

of poloidal planes). A non-field aligned mesh would require a very high resolution in the

1
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toroidal direction for a similar level of accuracy [7]. The requirement of field-aligned mesh

in XGC led to the development of Tokamak Modeling and Meshing Software (TOMMS)

[8] at the Scientific Computation Research Center (SCOREC). The initial set of tools and

related results were presented in reference [9]. The work presented in the thesis is the ex-

tension of that mesh generation tool to meet the full set of requirements the XGC users

have for large-scale simulations addressing new physics questions. The work presented in

this thesis is focused on the implementation of methods for the optimized definition of the

physics components (critical points, flux curves) and physical components (tokamak wall).

Also, the work describes the methods to update the model topology to produce meshes of

higher quality in regions with unsatisfactory meshes. Furthermore, the methods to provide

the mesh information in a structured and efficient way for effective XGC simulations are

discussed in detail.

The M3D-C1 code is designed to study the large-scale MHD instabilities in tokamaks.

The M3D-C1 uses unstructured higher-order elements on the 2D poloidal plane, which are

extruded in a toroidal direction for the 3D mesh. The initial set of tools to support the

meshing needs of M3D-C1 were presented in reference [9]. This initial tool was limited to a

predefined number of configurations in terms of physical components. The recent advances in

M3D-C1 enabled the use of more complex physical tokamak components in the simulations

that posed a need of a generalized and more robust modeling and meshing tool. One of the

focuses of the work presented in this thesis is the development of a generalized and fully

automated modeling and meshing framework to support growing meshing needs of M3D-C1.

The unstructured meshes, if defined effectively, perform accurate simulations up to a certain

number of time steps. However, with the plasma equilibrium profiles changing with time,

the meshes need to be modified for accurate simulations. Adaptive mesh control based on

a-posteriori error estimates can effectively produce meshes that evolve with time. The other

focus of the presented work is the implementation of error-based adaptation methods both

in 2D and 3D simulation workflows in M3D-C1.

The work presented in this thesis targets the following outcomes:

• Accurate geometric representation of the tokamaks models through the implementation

of methods that identify and model both physics and physical features of interest to

the simulation procedures.
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• Discretizing tokamaks computational domain with high-quality meshes while still sat-

isfying the requirements placed on the mesh based on the specific simulation codes.

This requires producing high-quality field-aligned meshes in TOMMS and adapting

the meshes for accurate solutions in M3D-C1

• Define an automated modeling, meshing, and adaptive framework for the two fusion

plasma codes of interest that is unaffected by the changes in tokamak designs, meshing

resolutions, mesh modifications, and simulation parameters.

The key research contributions include:

• Implementation of generalized and robust geometry construction methods in TOMMS

that extended the support of TOMMS to new set of tokamak configurations.

• Development of methods for smooth transitions between different mesh sizes in key

regions of tokamak geometry. This led to well-defined field-aligned production meshes

for XGC.

• Implementation of a-posteriori mesh adaptation procedures based on error estimation

in M3D-C1. Such mesh adaptation procedures were not tried in fusion simulation codes

before.

1.2 Thesis Organization

This organization of this dissertation is provided in the following paragraphs.

Chapter 2 provides an overview of the XGC and its meshing requirements. A brief

introduction of the coordinate systems used in this work is also provided in this chapter.

Chapter 3 presents the technical details and workflow of TOMMS. This chapter dis-

cusses 2D poloidal model generation of a tokamak geometry from a given input plasma

equilibrium file and its meshing based on the specific meshing requirements in different ar-

eas of model. This chapter also summarizes developments carried out to optimize, automate,

and generalize the modeling and mesh generation procedures in TOMMS. A discussion of

the mesh data structure for XGC and effective mesh entity ordering scheme is also included.

Furthermore, this chapter briefly introduces the generation of meshes using the TOMMS

graphical user interface.
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Chapter 4 discusses the background of M3D-C1 code and its meshing needs along with

the introduction of 2D and 3D model and mesh generation workflows. A summary of recent

developments towards an automated and generalized modeling and meshing infrastructure

for M3D-C1 is presented. This chapter also discusses the a-priori mesh modification options

available for M3D-C1 meshes.

Chapter 5 presents the mesh adaptation based on the the estimated errors. Results of

the 2D and 3D adaptive M3D-C1 simulations are presented.

Chapter 6 summarizes the work carried out to support automated modeling and mesh-

ing infrastructures for two tokamak plasma simulation codes. Chapter 6 also discusses the

direction for future developments in TOMMS and M3D-C1 modeling and meshing.



CHAPTER 2

FUSION EDGE PLASMA SIMULATION AND XGC

2.1 Introduction

The goal of producing clean energy from the fusion plasma in a magnetic confinement

device is a challenging scientific problem. One of the key challenges is to understand the

physics of the edge plasma region outside of the hot plasma core that interacts with the wall

and other physical components of the tokamak. Topologically, the region with the closed

flux curves is the core plasma region, and the region with the open flux curves (including

separatrix) defines the plasma edge region [10]. Figure 2.1 demonstrates the classification of

the plasma into core and edge plasma regions. The plasma inside the last closed curve, as

shown in green in figure 2.1 is the core plasma, and the plasma outside the last closed curve,

as shown in red in figure 2.1 is the edge plasma.

In the plasma edge region, the plasma interacts with the reactor wall and other plasma

facing components (PFC). These interactions lead to issues related to the performance of

the confined plasma and the lifetime of the reactor and its components. Firstly, the erosion

of the material from plasma-facing components damages the reactor and compromises its

lifetime, and secondly, the eroded particles contaminate the core plasma, affecting the fusion

reaction’s performance by the loss of the heat [11]. To suppress the contamination issue,

a divertor is included to the system [12]. The idea is to minimize the contamination by

extracting the eroded particles and other impurities through the divertor. This is achieved

by the use of divertor magnets, which results in the diverting magnetic lines (separatrix).

The other approach to this problem is to minimize the erosion of the materials from the

plasma-facing components by injecting gas to cool down the plasma before it interacts with

the wall and other components [13].

The physics of the edge plasma region is extremely complex due to a number of reasons,

including the interaction of plasma with the plasma-facing components, the presence of

charged particles, injected gas particles, and eroded materials particles in the edge region,

and complications in the plasma transport due to the presence of the X-point [11]. An

accurate understanding of this complex physics of the plasma in the edge region is required

Portions of this chapter previously appeared as:
U. Riaz, E. Seegyoung Seol, R. Hager, and M. S. Shephard, “Modeling and meshing for tokamak edge

plasma simulations,” Comput. Phys. Commun., vol. 295, Feb. 2024, Art no. 108982.
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Figure 2.1: The classification of plasma regions in the tokamaks.

before large tokamaks like ITER are put in operation. The turbulent nature of plasma in the

edge plasma is a major focus of a number of codes designed to study the edge regions. XGC

[5] is an edge plasma PIC code that is capable of performing electromagnetic turbulence and

neoclassical transport simulations. SOLPS [14] is a 2D transport code to study the multi-

fluid plasma transport in the edge region [14]. SOLedge[15] is a high-order code that uses

Discontinuous Galerkin discretizations over unstructured meshes to simulate 2D transport

phenomenon in the scrape-off layer. UEDGE [16] is a suite of plasma codes that are focused

on the 2D transport of plasma in the edge region. TOKAM2D [17] is used to study the

turbulence of the plasma in the edge region in 2D. A number of codes are available for the

3D turbulence simulations of the edge plasma, including TOKAM3D [18], Hermes [19], and

GRILLIX [20]. The focus of this chapter is the XGC code. A brief introduction of XGC

and its meshing requirements are provided in sections 2.2 and 2.4 respectively. Section 2.3

provides an overview of commonly used coordinate systems in gyrokinetic codes.
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2.2 X-point Gyro-kinetic Code (XGC)

X-point included gyrokinetic code (XGC) [21], [22], [23], [24] is a suite of PIC codes

(XGC0, XGC1, XGCa) developed at Princeton Physics Plasma Lab (PPPL) to study the

transport mechanism in the edge region of the tokamaks. Although XGC specializes in the

edge plasma region, it is capable of simulating the full plasma domain, including all of the

core plasma region.

In the PIC method, the plasma is expressed by the motion of collections of the particles

as they flow in a tokamak. Although the understanding of the transport of a single particle

under the magnetic field is well established, the physics as a result of collection of large

number of charged particles in motion is complex due to the interaction of these particles with

each other. To understand the transport mechanism in a setting where instabilities due to

turbulence are present, the gyrokinetic equations can be used to describe the relevant physics.

The gyrokinetic equation derived from the Vlasov equation for the particle distribution

function f(x,v, t) describes the particle behavior in 6D. The Vlasov equation for f(x,v, t) is:

∂f

∂t
+

dx

dt
· ∂f
∂x

+
dv

dt
· ∂f
∂v

= C (2.1)

where x and v are the spatial and velocity vectors, and f describes the total particle

distribution function. The particle methods that approximate the total f are known as full-f

methods. To reduce the computational costs, equation 2.1 is simplified by the gyrokinetic

assumption and by the use of a delta-f particle scheme as follows:

1. Under the gyrokinetic assumption, the physics of the particle can be explained by

using the time scales that are much slower than the fast scale gyro-motion. This

allows the description of the particle distribution function using 5D variables. Using

this assumption, the f is defined by the variables X, µ, v|| [25], where X is guiding

center position of the particle, µ is the magnetic moment, and v|| is the component

of particle velocity parallel to the magnetic field B. The magnetic moment is defined

as µ =
mv2⊥
2B

, where m is the particle mass, v⊥ is the component of particle velocity

perpendicular to the magnetic field B, and B is the magnitude of the magnetic field B.

The evolution of guiding center position X and parallel velocity v|| with time describes

the motion of each particle. The governing equations are given as:
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dX

dt
=

1

1 +
v||
B
b · (∇× b)

[
v||b+

v2||∇B × b

B
+

B × (µ∇B −E)

B2

]
(2.2)

dv||
dt

=
1

1 +
v||
B
b · (∇× b)

(B + v||∇B × b) · (µ∇B −E) (2.3)

where B is the magnetic field vector, b is the unit vector along the magnetic field

vector B, and E is the electric field vector [25]. The particle trajectory and velocity

are evaluated using the equations 2.2 and 2.3.

2. Under the gyrokinetic assumption, the 5D gyrokinetic Boltzmann equation is solved to

describe the change in particle distribution function f(X, µ, v||) due to external source

and particle collisions. However, solving the full distribution function requires a large

number of particles to resolve the physics accurately. To avoid the high computational

costs associated with the use of a large number of particles, XGC uses the delta-f (δf)

method, in which the velocity distribution function f(X, µ, v||) can be described as the

sum of the two different contributions (f0 and δf).

f = f0 + δf (2.4)

where f0 is the time-independent distribution function also known as the equilibrium

Maxwellian-Boltzmann distribution function and δf is the time-dependent perturba-

tion. The δf method assumes that the background plasma is defined with an initial

equilibrium state (represented by f0 distribution function) that does not change dur-

ing the simulation. Since only the perturbations (δf) evolve with time, using this

assumption reduces the computational costs than the full-f methods.

In the XGC workflow, the particle charge density is calculated using the particle tra-

jectory, and velocity information and then collected on the background mesh. Given the

calculated charge density from the first step, the electrostatic potential field generated by

the charged particles is calculated using the Poisson equation [23], [25] and the corresponding

electric field is calculated on the mesh. The field information from the background mesh is

gathered at the particles and in the last step particle positions and velocities are updated

[23], [25].
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Most of the traditional gyrokinetic codes use the flux-coordinates system to simplify

the domain by not allowing the domain to approach the magnetic separatrix and magnetic

axis [22]. In order to simulate a realistic domain with the actual complexities of a tokamak,

the XGC code uses a cylindrical coordinate system to avoid the singularities at the magnetic

separatrix and magnetic axis [24]. The next section will provide an overview of both the

coordinate systems.

2.3 Coordinate Systems

The two coordinate systems that are frequently used in the gyrokinetic codes are mag-

netic flux coordinates and cylindrical coordinates. This section will provide a brief introduc-

tion to both the coordinate systems.

Figure 2.2: Magnetic flux coordinate system (ψ, θ, ϕ), where ψ is the flux label
of the flux curve and is constant along a flux curve, θ is the poloidal angle, and

ϕ is the toroidal angle.
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2.3.1 Magnetic Flux Coordinates

The magnetic flux coordinate system (ψ, θ, ϕ) is a popular choice for plasma-based

simulation codes such as GENE [26] and ORB5 [27]. In such plasma simulation codes,

meshes aligned along the magnetic field lines are desirable which could be achieved easily

by using the magnetic flux coordinates since one of the coordinates (ψ) is aligned with the

magnetic field lines. In magnetic flux coordinates, as demonstrated in figure 2.2, a point

on a flux surface is defined using a flux label ψ that is constant on the flux curve and does

not change along the magnetic field line, position along the poloidal direction defined by the

poloidal angle θ, and position along the toroidal direction defined by the toroidal angle ϕ. In

figure 2.2, a point p on the poloidal plane with ϕ = ϕ0 is defined by its flux label ψ1 and the

poloidal angle θ formed between the point and horizontal line passing through the magnetic

axis on the poloidal plane.

Although magnetic field-aligned meshes can be obtained using magnetic flux coordi-

nates in the core region, the presence of singularities at the magnetic axis and separatrix

with such a system makes it impossible to accurately model the separatrix. The separatrix

is one of the most critical parts of the edge plasma simulations, hence a meshing strategy

with an alternate coordinate system is desirable, that allows field-aligned meshes without

running into coordinate singularities. This is achieved using a cylindrical coordinate system.

2.3.2 Cylindrical Coordinates

In a right-handed cylindrical coordinate system (R,ϕ,Z), a point is defined spatially

using two coordinates R and Z on a poloidal plane and one coordinate ϕ for the toroidal

direction. In cylindrical coordinates, R defines the major radius of the torus, Z is the

vertical axis, and ϕ is the toroidal angles as shown in figure 2.3. The right-handed cylindrical

coordinates are used in XGC [23].

2.4 Magnetic Field Aligned Meshing

The use of cylindrical coordinates in XGC means that the metric tensor is free of

singularities in the simulation domain and that the whole volume inside the inner reactor

wall can be included without the complications arising for simulation codes based on flux-

coordinates [28]. Although XGC meshes are in principle unstructured, the placement of

vertices in a large part of the simulation domain is still guided by the topological entities of
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Figure 2.3: The (R,ϕ,Z) coordinate system where R is the major radius of the
torus, Z is the vertical axis, and ϕ is the toroidal angle.

the magnetic field, i.e., the critical points, flux surfaces, and magnetic field lines as explained

in references [8], [9], [23], [24]. This choice is rooted in the specific physics XGC is designed

to model as well as in the context of the entirety of numerical methods utilized in XGC.

In flux coordinates, for which one basis vector is parallel to the magnetic field, one

can easily exploit this anisotropy by drastically reducing the resolution of a the numerical

model in the parallel direction. A similar benefit can be achieved using non-flux-coordinates

by discretizing the model equations along the magnetic field via a magnetic field-following

map of mesh vertices to mesh elements on adjacent poloidal planes (compare the discussions

in references [24], [29]). In the case of particle-in-cell codes like XGC, this means choosing

shape functions that generate Voronoi volumes aligned with the magnetic field (as opposed to

the toroidal direction), and discretizing differential operators as a combination of derivatives

along and perpendicular to the magnetic field. This approach has also been dubbed “Flux

Coordinate Independent” (FCI) approach [30].
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Since not every mesh vertex can be mapped exactly to mesh vertices on the adjacent

poloidal planes due to critical points or constraints on the mesh size, this special numerical

discretization requires interpolation (e.g. reference [29]) and introduces interpolation error

and numerical dissipation. Since XGC to a large degree relies on linear shape functions,

keeping the mesh closely aligned with the structure of the magnetic field minimizes numerical

dissipation. GENE-X [31] is an example of an Eulerian global gyrokinetic code that utilizes

the FCI approach with regular cartesian meshes but higher order interpolation.

The approximately field-aligned mesh model used by XGC is also beneficial for solving

the electrostatic gyrokinetic Poisson equation (equation (8) in reference [21]), which requires

the accurate evaluation of the flux-surface averaged electrostatic potential ⟨ϕ⟩ in δϕ = ϕ−⟨ϕ⟩,
and it enables the use of Fourier filtering in flux-coordinates [24]. When only axisymmetric

physics are modeled with XGC [32], [33], [34], the mesh model is simplified by dropping the

approximately field-aligned vertex placement while retaining the flux-surface alignment.

2.4.1 Parametric Form of Magnetic Field Line

In order to generate a field following mesh for XGC, the locations of mesh vertices

along the flux curves on the poloidal cross-section are such that the magnetic field line

passes through these points at each poloidal plane. Figure 2.4 illustrates a magnetic field

aligned mesh such that the magnetic field line starts at a mesh vertex on the poloidal plane

with ϕ = ϕi and intersects the poloidal plane with ϕ = ϕi+1 at one of the mesh vertices on

the flux curve [24]. In order to trace points along the magnetic field line and project them

on the poloidal plane, a parametric form for 3D field line is defined.

The magnetic field B in terms of its components BR, BZ , and Bϕ along R,Z, and ϕ

directions respectively as shown in figure 2.5 is defined as:

B = BRR̂ +BZẐ +Bϕϕ̂ (2.5)

where R̂, Ẑ, ϕ̂ represent the directions along major radius R, vertical axis Z, and

toroidal axis ϕ respectively in the (R,ϕ,Z) coordinate system as shown in figure 2.5. The

magnetic field B for a given ψ and poloidal current density I(ψ) [9] is expressed as:

B = − 1

R

∂ψ

∂Z
R̂ +

1

R

∂ψ

∂R
Ẑ +

I(ψ)

R
ϕ̂ (2.6)
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Figure 2.4: Schematic representation of field-aligned meshing in XGC.

The position vector of any point on the 3D field line can be expressed in a parametric

form L(t) with respect to parameter t as shown in equation 2.7.

L(t) = [LR(t), LZ(t), Lϕ(t)] (2.7)

where its components are expressed in (R,ϕ,Z) coordinates.

If the trajectory of L(t) follows the field line, then dL(t)/dt is always parallel to the

B. By definition, the cross product of two parallel vectors is zero:

dL(t)

dt
×B = 0 (2.8)
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Figure 2.5: Demonstration of components of magnetic field B in R, Z, and ϕ
directions in a cylindrical coordinates system.

(dLR
dt

,
dLZ
dt

, R
dLϕ
dt

)
×
(
BR, BZ , Bϕ

)
= 0 (2.9)

In the cylindrical coordinate system, the expansion of the above cross product will

result in the following form along R,Z, and ϕ directions respectively:

(Bϕ
dLZ
dt
−BZR

dLϕ
dt

)R̂ = 0 (2.10)

(Bϕ
dLR
dt
−BRR

dLϕ
dt

)Ẑ = 0 (2.11)

(BZ
dLR
dt
−BR

dLZ
dt

)ϕ̂ = 0 (2.12)

Rearranging the equations 2.10, 2.11, 2.12 and representing the magnetic field compo-

nents BR, BZ , and Bϕ in terms of ψ and I(ψ) as shown in equations 2.6 results in equations
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2.13, 2.14, 2.15 that represents the change in the poloidal magnetic field with the unit change

of ϕ.

dLR
dt

=
RBR

Bϕ

= −∂ψ
∂Z

R

I(ψ)
(2.13)

dLZ
dt

=
RBZ

Bϕ

=
∂ψ

∂R

R

I(ψ)
(2.14)

dLϕ
dt

= 1 (2.15)

The numerical integration of the magnetic field line in equations 2.13, 2.14, and 2.15

using Runge-Kutta 4th Order (RK4) method results in points [LR(t), LZ(t), ϕ] on the flux

curves that are approximately field-following. For every value of ϕ, a point [LR(t), LZ(t)] is

projected to the flux curve on the original poloidal cross-section.



CHAPTER 3

MODELING AND MESHING FOR TOKAMAK EDGE

PLASMA SIMULATIONS

3.1 Introduction

The development of tokamak fusion systems capable of delivering power to the electric

grid requires an ability to effectively model the system’s plasma physics. A large percentage

of the current state-of-the-art plasma physics analysis codes employ a discretization of the

domain in terms of a mesh. In many cases, the meshes used are field-following structured

meshes that are mapped based on specific physics considerations to effectively account for the

anisotropy of the physics being modeled. Although field-following structured meshes support

highly efficient calculations that accurately solve the specific physics equations, they require

the development of specific mapping methods to distort a regular grid to the field-following

coordinates, often contain mapping singularities (e.g., at the O-point) and cannot deal with

the geometric complexity of real tokamak systems. On the other hand, unstructured mesh

generation techniques are capable of generating graded anisotropic meshes for fully general

3D domains. Specific tokamak physics codes directly use unstructured meshes to effectively

address tokamak physics cases. The M3D-C1 code uses unstructured higher-order finite ele-

ments in the poloidal plane for 2D simulations and extrudes those meshes in the toroidal di-

rection to create higher-order wedge elements for 3D simulations [35]. The SolEdge3X-HDG

code [15], [36] employs high-order Discontinuous Galerkin discretizations over unstructured

meshes to address plasma physics problems. The PetraM/MFEM code uses graded unstruc-

tured tetrahedral meshes to perform tokamak radio frequency (RF) simulations, including

detailed antenna geometries [37]. The GITRm code uses graded, anisotropic unstructured

tetrahedral meshes to perform impurity transport simulations [38]. In the case of the XGC

edge plasma particle-in-cell (PIC) code [22],[39], unstructured meshes capable of resolving

fully detailed poloidal plane geometries while maintaining a nearly field-following represen-

tation in the toroidal direction, are being used. This paper is a follow-up to reference [9],

which presented an unstructured mesh generation tool that met an initial set of meshing

Portions of this chapter previously appeared as:
U. Riaz, E. Seegyoung Seol, R. Hager, and M. S. Shephard, “Modeling and meshing for tokamak edge

plasma simulations,” Comput. Phys. Commun., vol. 295, Feb. 2024, Art no. 108982.
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requirements for M3D-C1 and XGC. The current paper is focused on recent developments

carried out to extend the Tokamak Modeling and Meshing Software (TOMMS) [40] to meet

additional meshing requirements of the current XGC gyrokinetic PIC code.

To model plasma physics in the entire tokamak domain XGC employs a 2D triangular

mesh defined on a poloidal plane which is then repeated on a set of poloidal planes [22], [39].

Unlike the 2D SolEdge3X-HDG [15], [36] and M3D-C1 [35] meshes, the XGC meshes are not

fully unstructured with respect to the placement of mesh nodes. By using approximately

field-following meshes, XGC can exploit the scale anisotropy of turbulence (Larmor radius

scale perpendicular to the magnetic field but device-scale along the magnetic field) and model

turbulence with high toroidal periodicity with relatively low toroidal resolution [23], [30] and

low-order numerical methods. To gain the advantage of a field following mesh [22],[39] in the

critical portions of the domain, a specific mesh generation process is applied in which the

mesh vertices are placed at critical points and on a selected set of flux curves. The placement

of the mesh vertices is such that as one traverse from one poloidal plane to the next, the

field following nature of the mesh is maintained. Further, the mesh defined between pairs

of closed flux curves is such that no additional mesh vertices are introduced between flux

curves until the region between the last closed curve and the separatrix, where additional

mesh vertices are introduced to control the mesh quality near the X-point. Similarly, there

are additional mesh vertices introduced between pairs of open flux curves, but only in areas

close to where those curves intersect the tokamak wall and in regions bounded by a single

flux curve and the tokamak wall. General unstructured meshes are generated in such areas

where mesh vertices are desired between pairs of flux curves or areas bounded by a single

flux curve and the tokamak wall. Section 3.2 gives an overview of the workflow in TOMMS.

To support the ability to automatically generate the desired poloidal plane meshes,

the TOMMS mesh generator requires a geometric model that includes a description of not

only the tokamak wall but the physics features of the O-point, X-point(s), separatrix curves

and selected flux curves. Section 3.3 presents the procedures used to construct the plasma

geometric model that consists of a set of model vertices, edges, loops, and faces that properly

represent the tokamak wall and the desired physics features. The procedures presented in

this paper are generalized to support a full range of O-point and X-point combinations, while

the previous procedures [9] were limited to specific predefined X-point configurations.

Section 3.4 briefly summarizes the mesh generation procedures originally developed
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to construct XGC meshes, the details of which are provided in reference [9]. The resulting

procedure is capable of producing good-quality meshes as long as the aspect ratios of elements

between pairs of flux curves are not too high. As the XGC code continued to be applied to

perform more accurate physics simulations, it became necessary to support mesh elements

with high aspect ratios between flux curves. As indicated in section 3.5, the generation of

satisfactory meshes for these cases required further developments with respect to refining

the topology of the plasma geometric model being meshed and the application of specific

mesh generation procedures on the resulting model faces.

The ability to effectively execute the various XGC computational operations requires

providing specifically structured sets of mesh information. Section 3.6 discusses providing

this data and having it ordered for efficient execution. Section 3.7 provides an overview of

the graphical user interface (GUI) of TOMMS supported through the Simmodeler.

3.2 TOMMS Workflow

Figure 3.1 illustrates the TOMMS workflow for the generation of flux-aligned meshes.

The plasma equilibrium file (GEQDSK) provided as an input to TOMMS contains the

poloidal flux function (ψ) on the background grid and a description of the tokamak wall

in terms of discrete edges. The discrete ψ field is used to construct C2 continuous field using

the PSPLINE library [41]. The discrete wall information is processed to generate a wall

curve based on a set of straight and curved edges using the procedures described in section

3.3.1. The continuous ψ field is used to search the critical points in the computational do-

main. These critical points are filtered by processing the critical points that lie inside the

wall curve. The details of the critical points search are presented in section 3.3.2.2. After

finding the critical points, the next step is to use the flux curves definitions provided in the

input parameters file and the continuous ψ field to find the starting points of the curves. The

flux curves are traced using these starting points and magnetic field information (evaluated

from continuous ψ field) as explained in section 3.3.2.3. Once the physics entities are de-

fined (critical points, flux curves), the model is defined by adding the model entities to these

physics entities. This includes defining model vertices on the critical points, start points of

the flux curve, and endpoints (if not periodic) of the flux curve, and also model edges to the

flux curves. After the model definition, the model areas are divided into regions driven by

the physics (plasma core, scrape-off layer, etc). The model just defined is suitable for the
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generation of high-quality meshes as long as the aspect ratios of elements between flux curves

are not too high. In such cases where it is high, the model topology needs to be updated

based on the complexity of the geometry using the procedures described in section 3.5. The

model is ready for meshing at this stage. The model is meshed using an one-element-deep

meshing procedure and a general unstructured meshing procedure based on specific require-

ments of different physics regions. The resulting mesh information is provided in terms of a

set of output files (node file, element file, and flux curves file) for use in XGC. The details

of the specific output requirements for the XGC simulations are presented in section 3.6.

Figure 3.1: TOMMS workflow for the generation of field-aligned tokamak
meshes.



20

3.3 Plasma Geometric Model Construction

The most general input to an automatic mesh generator is a boundary representation

of the domain to be meshed in terms of a topological description of the domain in which the

shape information is associated with the topological entities. In the case of a poloidal plane

cross-section of a tokamak, the topological model is a set of faces where each face is bounded

by loops of edges that are bounded by vertices.

To support the TOMMS user community, the plasma geometric model is constructed

from two commonly used community inputs. The first input is the discrete description of

the tokamak wall. The second is the poloidal flux function (ψ) field provided as the ψ values

at the vertices of a background grid that encloses the tokamak. The ψ field provided in

the GEQDSK equilibrium file is used to construct the physics geometric model entities of

O-points, X-points, separatrix curves and selected flux curves.

Figure 3.2: (a) A sample computational grid boundary (black) and actual
physical wall curve (red) of a DIII-D tokamak, (b) the (R,ϕ,Z) coordinate

system where R is the major radius of the torus, Z is the vertical axis, and ϕ is
the toroidal angle.

A sample computational grid boundary and physical wall curve of the DIII-D tokamak

[42] are shown in figure 3.2a. Figure 3.2b illustrates the (R,ϕ,Z) tokamak coordinate system
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used in this work.

3.3.1 Modeling Tokamak Wall Boundary

The input received for the wall geometry is a set of line segments defined between

consecutive points which could be directly used to define the loop associated with the wall

either as a single piecewise linear edge with a single model vertex at the starting point or

as a set of model edges where each input segment is a model edge bounded by two model

vertices. Neither of these options is ideal in that in the first case geometric features like model

corners would be lost and in the second case, the mesh generator would be constrained to

place mesh vertices at the locations of all of the large set of model vertices. The desired

tokamak wall loop would have model vertices only at the appropriate locations that represent

“corners” with edges of the appropriate shape defined between those model vertices. Since

such information is not provided, the input set of line segments is processed to extract the

desired set of model edges as follows:

Figure 3.3: (a) Actual wall geometry, (b) set of points before processing, (c)
final points used in the model.

The procedure begins by placing a model vertex at the start of the first line segment.
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The next line segment is then examined. If the angle between the two line segments is 180◦

to within a tight tolerance, the line segment is concatenated to the current edge that is

identified as a linear edge. The procedure examines line segments until one is found where

the angle is no longer close enough to 180◦. A model vertex is placed at the end of the

previous segment, and the current segment is considered to be the start of the next edge.

When the angle between two line segments is not 180◦, a decision needs to be made to

determine if there will be a model vertex placed between the two line segments or if the

segment should be concatenated to the previous segment and considered as part of a curved

edge. The procedure for making this decision is based on the algorithm presented in reference

[43]. Additional segments are considered part of the curved edge until either consecutive line

segments again meet the linear edge criteria, at which time they form the beginning of a

straight edge, or the angle change is so large that a model vertex is required, and then we

begin processing the next two line segments to determine if the next model edge is a straight

line or a curved edge.

Algorithm 1 provides a pseudo code for the method described above. The results

demonstrating the use of the above method are presented in figure 3.3. The set of line

segments defined in terms of their endpoints can be seen in figure 3.3b. The set of model

edges with their endpoints (red) after processing the points is presented in figure 3.3c.

3.3.2 Processing Magnetic Flux Function Field to Define the Physics Geometry

The poloidal flux function (ψ) field drives the construction of the physics components

of the plasma geometric model that consist of O-points, X-points, separatrix curves, and

selected flux curves. Figure 3.4a depicts a set of representative physics model entities gen-

erated on the rectangular grid that the flux field is defined over. Figure 3.4b represents a

completed plasma geometric model that can be given to mesh generation procedures.

The minimum point of the ψ field makes up the magnetic axis (O-point) of the domain

shown as V 1 in figure 3.4a. Topologically, the O-point is the model vertex with no adjacent

model edges. The X-points shown as V 2 and V 3 are the saddle points of the ψ field where

the magnetic flux curve diverges. The most common plasma geometric model configurations

contain one or two X-points. There are three types of physics curves in the domain. The

closed magnetic flux curves (C1) are the non-interesting curves constructed along the ψ field

in the core region (R1) of the tokamak. The separatix curves (C2 and C4) intersecting at X-
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Algorithm 1 Tokamak Wall Modeling

1: procedure BuildWallCurve(P (1:N)) ▷ N number of given points
2: P (1)← End Point(E) ▷ set first point as end point
3: for i = 2 to N do
4: Evaluate if P (i) is an End Point(E), Curve Point(C) or point on straight line(S)
5: M ← 1 ▷ Initiate M with 1
6: if P (i) = E and P (i− 1) = E then
7: Connect P (i) and P (i− 1) with a straight line
8: end if
9: if P (i) = C then
10: if P (i− 1) = E then
11: Save P (i− 1) and P (i) in Curve
12: else
13: Save P (i) in Curve
14: end if
15: M ←M + 1
16: end if
17: if P (i) = E and P (i− 1) = C then
18: Save P (i) in Curve
19: M ←M + 1
20: Fit a spline for M number of points in Curve
21: Clear the Curve for the next curve
22: M ← 1
23: end if
24: if P (i) = S then
25: if P (i− 1) = E then
26: S1← P (i− 1)
27: else
28: Ignore the point
29: end if
30: end if
31: if P (i) = E and P (i− 1) = S then
32: S2← P (i)
33: Connect S1 and S2 with a straight line
34: Clear the points S1 and S2 for next straight line points
35: end if
36: end for
37: end procedure
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Figure 3.4: (a) Physics components of plasma geometric model. V represents
model vertices, C represents curves, and R represents physics regions.V1 =

magnetic axis, V2, V3 = X-points, C1 = closed magnetic flux curves, C2, C4 =
separatrix curves, C3= open magnetic flux curves, R1 = plasma core region,
R2 = scrape-off layer, R3 = low field side edge region, R4 = near-vacuum

region, R5 = high field side edge region, R6 = near-vacuum region, R7 = lower
private region, R8 = upper private region, (b) physics model entities bounded

by a physical boundary (wall curve C5).

points split the domain into different physics regions. There is a separatrix curve associated

with each X-point in the domain. Topologically a separatrix curve consists of a set of model

edges in such a way that every X-point has three (two legs intersecting the wall and two

legs forming one closed model edge) or four (all four legs intersecting the wall edges) model

edges adjacent to it. The open flux curves are defined as the flux curves outside the outer

most separatrix curve and flux curves between two separatrix curves. The open flux curves
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(C3) intersect with the wall curves at their starting and ending points along the ψ field, and

they do not self-intersect at any point in the domain. The plasma core region (R1), which

is enclosed by the inner separatrix contains all the closed curves and magnetic axis. The

scrape-off layer between the inner and outer separatrix curves marked as R2 contains a set of

open curves. The magnetic field at the inboard plane (left of the magnetic axis) is stronger

than the magnetic field at the outboard plane (right of the magnetic axis) and plays an

important role in the definition of physics regions. The physics regions at the outboard are

low-field regions, and regions at the inboard planes are high-field regions. The low field side

edge region (R3) and high field side edge region (R5) are the regions containing the open

curves outside of the outer separatrix. These regions end with the last open flux curves. The

regions between the last open curves and wall curves are defined as near-vacuum regions (R4)

and (R6). The regions bounded by the two legs of separatix and a wall curve are defined as

private regions. Depending upon the Z-coordinates of X-points, one region is defined as a

lower private region (R7) and the other one as an upper private region (R8).

There are three steps involved in constructing the physics geometric model entities

from the flux field input of the ψ values at the vertices of the background. The first step

constructs a ψ field over the grid that is C2 continuous to support the operations of the

second step, which is to determine the locations of the critical points which are used in the

third step of defining the desired set of flux curves.

3.3.2.1 Discrete Field to Continuous Field

The ψ field is defined in terms of discrete values at the vertices of a background grid. A

C2 continuous bi-cubic spline ψ field is constructed using the PSPLINE routine [41]. Having

a C2 representation effectively supports the procedures used to determine the locations of

the O-points and X-points since they employ first and second-derivative evaluations. The

bi-cubic spline of ψ is the fundamental shape information defining the geometric shape of

the flux curves used as physics geometry in the plasma geometric model.

3.3.2.2 Critical Point Search Method

The critical points are needed to identify the physics regions in the domain and in the

construction of the desired set of flux curves. The O-point, also known as the magnetic axis

point, is defined as the minimum of the poloidal flux function ψ. The O-point represents
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the “center” of the core region that will be surrounded by a selected number of closed flux

curves in the construction of the plasma geometric model. The X-points, also known as the

magnetic null point, are saddle points of the ψ field. Since there can be multiple minima (only

one of which is at the O-point of the core) and multiple saddle points (X-points), an accurate

search method capable of identifying all critical points over the domain of the background

grid is required. The search method employed is the Downhill Simplex method [44]. The

method uses simplex cells, in 2D triangles. References [44], [45] provide a full description

of the method. To employ the Downhill Simplex method for extreme point search, the

background grid is subdivided into a fine search grid. The local extreme points are found

using Newton-Raphson root-finding [46] with the points evaluated by the Downhill Simplex

method as initial guesses for the Newton method. To find out if the point is a minimum

point (O-point) or saddle point (X-point), the Second Partial Derivative (Hessian (H)) test

[47] of the ψ field is used. The determinant of H is defined using:

detH = (
∂2ψ

∂R2
× ∂2ψ

∂Z2
)− (

∂2ψ

∂R∂Z
)2 (3.1)

• If detH < 0, it’s a saddle point (X-point)

• If detH > 0 and ∂2ψ
∂R2 > 0 , it’s a minimum point

• If detH > 0 and ∂2ψ
∂R2 < 0 , it’s a maximum point

The search method returns the number and type of each critical point along with the

location of critical points and ψ values at these points.

3.3.2.3 Flux Curves

The next step is to form the base definition of the flux curves in the domain. Given

the fact that we have a continuous definition of the ψ field over the background grid, the

base definition of the flux curves will consist of the determination of the ψ value of each flux

and separatrix, the topology of the model edge(s) that will represent the flux curves, and

the location of model vertices that must be found as part of determining the topology of the

edge(s) that represent the flux curves.

The input required for this process is the number of desired flux curves N and a

“normalized” ψ̃i value for each flux curve where ψ̃i > 0. The normalization is performed
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such that ψ̃i = 1 will correspond to the first separatrix. Given that, 0 < ψ̃i < 1 will

correspond to closed flux curves inside the first separatrix and ψ̃i > 1 correspond to open

flux curves outside the first separatrix. Since a flux curve will be generated for each separatrix

the total number of physics curves to be defined is Ntotal ≤ N +NX where NX is the number

of separatrix points found. In the common case of when there is a single separatrix with

ψ̃i = 1 the number of flux curves generated is N . The flux value associated with each of the

requested N flux curves is defined as

ψi = ψ̃i(ψsep − ψ0) + ψ0, i = 0, 1, 2, · · · , N − 1 (3.2)

Where ψ0 and ψsep are the ψ values at the O-point, and first separatrix curve (X-point),

respectively.

Figure 3.5: Demonstration of starting points for the definition of closed curves
for DIII-D case.
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After ψ values for the closed flux curves are determined from the input ψ̃i values, the

next step is to find the starting points of each closed flux curve along the outboard midplane

as shown in figure 3.5. The starting point of each closed flux curve is found by a bisection

procedure that iterates until a point on the outboard plane with the required ψ value is

found. The model edge defining the closed flux curve is bounded by a single model vertex

that is placed on the starting point on the outboard plane as shown in figure 3.5.

Separatrix curves are the flux curves that are self-intersecting at the X-point and also

intersect at the wall curve. There can be multiple X-points in the domain, and each X-

point has a ψ value already evaluated from the procedures in section 3.3.2.2. Note that

each separatrix curve is associated with one or more X points. Since the locations of the X-

points are already known, the topology of the separatrix curves can be defined by evaluating

the intersection of these curves with the wall shown as points i, ii, iii, iv in figure 3.6. To

find these intersections, all the possible points on the wall boundary with the ψ value of

the given separatrix curves are evaluated by a traversal of the wall geometry determining

locations where the ψ value is that of the flux curve of interest. The model edges defining

the separatrix curves are of three types, (a) model edge bounded by a single X-point model

vertex as shown in figure 3.6a, (b) model edge bounded by two model vertices, one at X-point

and the other one at the intersection of separatrix and wall, and (c) model edge bounded by

two X-points model vertices as shown in figure 3.6c.

Open flux curves are the flux curves that exist outside of the core region (ψ̃ > 1)

and intersect with the wall boundary. A single flux curve can have multiple intersections

with the wall boundary; therefore, an open flux curve can require the use of multiple model

edges to represent, as can be seen in figure 3.7, where one flux curve intersects the wall at

six locations, thus defining three model edges bounded by model vertices at the locations

where the flux curve intersects the wall. To define the topology and model vertex locations,

a method similar to that used for the separatrix-wall intersections is applied.

3.3.3 Example Models

The physics and physical model entities created using the procedure explained in the

preceding subsections produce the plasma geometric model.

Figure 3.8 illustrates the plasma geometric models for different tokamak geometries

created using procedures explained in this section. The figures 3.8a and 3.8b present base
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Figure 3.6: Construction of separatrix curves (a) inner separatrix curve, (b)
outer separatrix curve, (c) separatrix curve with two X-points. Note that in

this example the wall geometry is a simple rectangle.

models with one X-point and two X-points, respectively, where X-point is shown in the solid

black circle. Each color in the figure shows a different physics region with specific meshing

requirements. Figure 3.8c demonstrates a special case of two X-point model, where both the

X-points are on the same flux curve defined by the same ψ value.

The procedure for model generation explained in section 3.3, and the models presented

in figure 3.8 are in 2D. The 3D tokamak model, as required in some fusion simulation codes,

can be created by rotating the 2D plasma geometric model for the required toroidal angle.

Figure 3.9 presents the cross-sectional view of a 3D model created using 180◦ rotation of a

2D plasma geometric model with one X-point.
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Figure 3.7: A face on open curves of tokamak cross-section of DIII-D. The
inner loop consists of a flux curve with a single edge, and the outer loop

consists of a flux curve with multiple edges.

3.4 Original Mesh Generation Procedure

The original mesh generation procedures employed the plasma geometric model in

combination with a near field-following mesh vertex placement procedure and three specific

meshing tools [9].

The first step in this process is to place the desired field following mesh vertices on

the physics geometry of open and closed flux curves and separatrix curve(s). Each of the

model edges representing either all or part of a physics curve has at least one starting model

vertex. The model vertex will represent a mesh vertex on that physics curve and is assumed

to be the starting point of a field-following curve on the poloidal plane mesh. From there,

the field-following procedure given below will determine the location where a field-following

point starting at that mesh vertex will intersect the next poloidal plane. This intersection
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Figure 3.8: Plasma geometric model examples (a) DIII-D with one X-point, (b)
Korea Superconducting tokamak Advanced Research (KSTAR) with two

X-points, (c) SPARC with two X-points on the same flux curve.

Figure 3.9: The cross-sectional view of a 3D model generated from a 2D
plasma geometric model with one X-point.

will define the location of a new mesh vertex on the poloidal plane mesh. This process is

continued traversing all the poloidal planes until reaching the original poloidal plane. Since

the location of the field-following intersection on the original poloidal plane does not match
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the location of the original vertex, this process continues for a number of toroidal traversals

until the intersection on the original toroidal plane is sufficiently close to a mesh vertex that

has been defined on that poloidal plane mesh.

The field-following locations of mesh vertices are traced by placing the points on the

poloidal cross-section such that a magnetic field line passes through these points at each

poloidal plane. The magnetic field B in terms of its components BR, BZ , and Bϕ along R,Z,

and ϕ directions respectively is defined as:

B = BRR̂ +BZẐ +Bϕϕ̂ (3.3)

where R̂, Ẑ, ϕ̂ represent the directions along major radius R, vertical axis Z, and

toroidal axis ϕ respectively in the (R,ϕ,Z) coordinate system as shown in figure 3.2b. B for

a given ψ and poloidal current density I(ψ) is expressed as:

B = − 1

R

∂ψ

∂Z
R̂ +

1

R

∂ψ

∂R
Ẑ +

I(ψ)

R
ϕ̂ (3.4)

The position vector of any point on the 3D field line can be expressed in a parametric form

L(t) with respect to parameter t as shown in equation 3.5.

L(t) = [LR(t), LZ(t), Lϕ(t)] (3.5)

where its components are expressed in (R,ϕ,Z) coordinates.

If the trajectory of L(t) follows the field line, then dL(t)/dt is always parallel to the

B leading to the equations 3.6, 3.7, 3.8 that represents the change in the poloidal magnetic

field with the unit change of ϕ.

dLR
dt

=
RBR

Bϕ

= −∂ψ
∂Z

R

I(ψ)
(3.6)

dLZ
dt

=
RBZ

Bϕ

=
∂ψ

∂R

R

I(ψ)
(3.7)

dLϕ
dt

= 1 (3.8)

The numerical integration of the magnetic field line in equations 3.6, 3.7, 3.8 using

Runge-Kutta 4th Order (RK4) method results in points [LR(t), LZ(t), ϕ] on the flux curves
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that are approximately field-following. For every value of ϕ, a point [LR(t), LZ(t)] is projected

to the flux curve on the original poloidal cross-section.

The mesh vertex placement on the tokamak wall edges is based on the distance between

mesh vertices on the flux curves at the model vertex at the intersection of the flux curve

with the wall and an input wall maximum spacing. When the spacing on flux curves at the

model vertices at the wall intersection is finer than the maximum wall spacing, the distance

between mesh vertices on the wall edge is graded smoothly from the model vertex until

reaching the maximum wall spacing.

Figure 3.10: Mesh examples created with the original meshing procedures (a)
DIII-D with one X-point, (b) Korea Superconducting tokamak Advanced

Research (KSTAR) with two X-points, (c) SPARC with two X-points on the
same flux curve.

The meshes produced created with the original meshing procedures [9] at the level of

mesh coarseness shown in figure 3.10 are generally satisfactory. However, the meshes required

for the recent XGC production simulations demand a much tighter spacing of mesh vertices

on the flux curves relative to the spacing between flux curves. This produces elements with

a much higher aspect ratio between the flux curves. Although the base meshing procedure

produces the desired mesh in most of the areas between flux curves, the one-element deep

meshing procedure produces unacceptable elements near X-points and in areas where open

flux curves approach the tokamak walls (see figure 3.11). In particular, the application of
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the one-element deep procedure results in the creation of a poor quality meshed in those

areas.

Even the application of the local edge split and swap mesh modifications (previously

used around the X-points) did not provide a satisfactory mesh, given the high aspect ratio

elements between flux curves. To provide the level of mesh resolution and element shape

quality desired in those areas of the domain, procedures that modify the plasma geometric

model to provide additional model faces for the application of appropriate meshing operations

are required. The procedures to update the plasma geometric model and additional mesh

generation operations are described in the next section.

Figure 3.11: National Spherical Torus Experiment (NSTX) mesh areas with
flux curves interacting with the wall curve producing unsatisfactory meshes

when applying the original meshing procedures.

3.5 Model Topology Update and Mesh Generation

Although maintaining the one-element deep field-following mesh between flux curves

is important for the area between the closed flux curves and most of the area around the

separatrix curve and between open flux curves, the XGC models of the physics behavior
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near X-points and tokamak walls allows the use of more general mesh configurations. This

provides the opportunity to employ alternative mesh generation procedures in those areas

that yield higher quality meshes as desired to ensure accurate and stable solution results of

the mesh-based PDE solution.

Conceptually, the approach to produce the desired meshes in the problem areas is to

decompose the model faces between open flux curves and around X-points into multiple

faces. One face, which would consist of most of the original plasma geometric model face,

would continue to employ the one-element-deep meshing procedure. The remaining portions

of the original plasma geometric model face employ a general-purpose unstructured mesh

generator that is suited to producing well-controlled meshes, such as the one that is already

applied to model faces bounded by a single flux curve and a portion of the tokamak wall.

The application of this procedure alone is not satisfactory in that it still has the problem

of an immediate transition from a high aspect ratio mesh configuration to a more general

low aspect ratio element configuration as shown in figure 3.12. This problem is eliminated

by the introduction of a doubling transition procedure that is applied to transition from the

high aspect ratio one-element deep elements to a lower aspect ratio unstructured mesh.

3.5.1 Splitting Model Face Between Flux Curves

Given the plasma geometric model as constructed in section 3.3, the set of model faces

between two flux curves that include portions of the tokamak wall (figure 3.13a) and/or X-

points (figure 3.13b) are identified as the model faces that need to be decomposed into a set

of model faces in which the one-element deep procedure, the doubling transition procedure

(described below), and general unstructured mesh generation are applied. The goal is to

maintain the one-element deep structure for as much of the area between flux curves as

possible while being sure to transition to lower aspect ratio elements in the specific areas

where the mesh would not be satisfactory with the application of only the one-element deep

procedure. The key factors in determining the portions of the base model face between two

flux curves to which the doubling transition and unstructured mesh procedures need to be

applied are a function of the portion of the tokamak wall geometry that is part of the base

model face between two flux curves, or how much wider the base model face between flux

curves is in the vicinity of an X-point.

The model faces are decomposed into a set of new model faces by introducing model
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Figure 3.12: The immediate transition from one-element between flux curves to
an unstructured mesh using the given flux curve mesh vertex spacing will yield

unsatisfactory meshes, as shown here.

Figure 3.13: Types of model faces identified for doubling transitioning meshes,
(a) a model face bounded by two flux curves ψ1 and ψ2 and is adjacent to the

wall edge, (b) model faces bounded by two flux curves ψsep, ψinner, and ψsep,ψouter
respectively and are adjacent to the X-point.

edges across the face between two flux curves. Two new model edges are inserted to split the

face into three model face types; one-element-deep mesh face, transition mesh face(s), and

unstructured mesh face(s). The first model edge is introduced on the face at a distance ‘d’

from the tokamak wall or X-points. The distance d is a function of the length of the tokamak
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wall on the base model face or the width of the base model face in the vicinity of the X-point

for the model faces that are adjacent to X-point. The model edge is introduced on the face

by inserting two model vertices v1 and v2 on the flux curves ψ1 and ψ2 respectively such

that the new model edge is bounded by both vertices. This model edge splits the face into

two model faces, an unstructured mesh face and a one-element-deep mesh face as shown in

figure 3.14a. In case of faces adjacent to the X-point (except the ones in private region),

a vertex vs is inserted at a distance d (function of dmin in figure 3.15) on the two legs of

X-points which are not bounding private region. The model vertices vi and vo are inserted

on the inner flux curve (ψi) and outer flux curve (ψo), respectively, by finding the nearest

field following point on these flux curves to vs. The two model edges (one bounded by vi

and vs, and the other by vs and vo) split the corresponding faces into one-element-deep mesh

faces and an unstructured mesh face, as shown in figure 3.15. From this point, the newly

created faces are meshed with the doubling transition and unstructured mesh procedures.

The second model edge is introduced at a distance ‘dl’ from the first model edge, where

dl depends on the number of layers N required for the transition from the highly anisotropic

one-element-deep mesh to a more isotropic mesh. The number of transition layers N depends

on the approximate aspect ratio (Ar) of mesh elements on the one-element-deep mesh face

before transitioning starts and is defined as N = log2(Ar). The distance dl is evaluated by

moving N number of field-following points on the flux curve from the starting point (v1 in

the figure 3.14b). This second model edge is bounded by new model vertices va and vb as

shown in figure 3.14b.

To ensure the field-following property of the flux curves, every new model vertex added

to the flux curves is placed at one of the field-following points (already specified on flux curves

in the base model) on the flux curve.

3.5.2 Doubling Transition Procedure

The smooth transitioning of the mesh from the high aspect ratio elements produced

by the one-element deep meshing procedure to unstructured mesh is executed by applying a

doubling transition. The doubling transition is applied as many times as needed to produce

a number of mesh vertices between the flux curves that will allow the effective application

of general unstructured mesh generation for the remainder of the face between the two flux

curves. Figure 3.14c-e indicates the process of defining a set of mesh edges and vertices that
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Figure 3.14: Schematic view of 5 steps of decomposing a based model face into
three model faces to be meshed by the one-element-deep, doubling transition,
and unstructured meshing procedures. (a) Introduction of the face (yellow) for
unstructured mesh meshing, (b) introduction of the face (blue) needed for the

doubling transition mesh, (c) vertices (red) added to the flux curves, (d)
transition layers added, (e) vertices (purple) specified on the layers used by the

doubling transition procedure.

supports going from the high aspect ratio elements between the flux curves to a number of

mesh edges across the face yielding elements with a more acceptable aspect ratio for use by

a general triangulation procedure.

Figure 3.16 shows an example of the process of going from the one-element-deep mesh

(area a) to a satisfactory unstructured mesh (area c) by the application of four layers of the

doubling transition operator (area b). The number of doubling transitioning layers required

for smooth transition depends on the ratio of the distance between the field-following mesh

vertices on the flux curves to the distance between two flux curves at the location where the

doubling transition operator is applied. The goal is to add the transition layers until the

spacing of mesh vertices on the last transition layer is roughly equal to the spacing between

the field-following mesh vertices on the flux curves.

3.5.3 Comparison Meshes

The splitting of model faces between flux curves, followed by the application of the

doubling transition operator, aims to produce satisfactory meshes for a full range of desired

tokamak geometries and mesh configurations. The base mesh generation procedures pre-

sented in reference [9] have limitations in producing meshes of satisfactory quality due to

the need for high aspect ratio elements between flux curves for effective XGC simulations.
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Figure 3.15: Splitting of model faces adjacent to the X-point into a set of
model faces to be meshed by the one-element-deep, doubling transition, and

unstructured meshing procedures.

Figure 3.17 shows a close-up of a portion of a production simulation mesh produced by the

base mesh generation procedure compared to the mesh generated using the modifications

and extensions indicated in this section. Figure 3.18 shows a comparison of portion of a

mesh for a physics simulation in the areas adjacent to the X-point meshed by the original

mesh generation procedure with the mesh generated using the procedures described above.

Figure 3.19 shows a comparison of ratios of the area of the largest elements to the area

of the smallest element in its neighborhood (elements sharing an edge) on the flux faces using

original and current meshing procedures. The ratios were consistent in the core region inside

the last closed curve. The black curves in figure 3.19 represent the ratios with the updated

meshing procedures where transition layers were used. It can be seen that the peak value of

the ratio is 2.03 and the ratios are consistent throughout the domain. On the other hand, it
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Figure 3.16: Close-up of the use of the doubling transition mesh (area b), to
smoothly transition the mesh from the anisotropic elements in the one-element

between flux curves (area a) to the unstructured mesh (area c).

can be seen from the red curve that the ratios are inconsistent throughout the plasma edge

region with very sharp jumps in values. The peak value of the ratio is 381.59 for the element

highlighted in the figure 3.20. This peak value is much higher than the peak value of 2.03

achieved from the updated meshing procedure.

Figure 3.21 demonstrates the benefit of the new meshing procedures in XGC simula-

tions. For this demonstration, we exercised an axisymmetric (i.e., without micro-turbulence),

electrostatic XGC simulation using the geometry of the National Spherical Tokamak Exper-

iment (NSTX). The axisymmetric electrostatic potential in this situation is expected to vary

slowly (> 0.1m) along the flux curves away from the material wall, but very sharply (ion

Larmor radius scale) in close proximity to the wall. Note that XGC does not resolve the

Debye sheath, but instead uses a logical sheath boundary condition [48] for the marker par-
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ticles. The mesh produced with the new meshing procedures figure 3.21b reproduces this

expected behavior much better than the mesh produced with the original meshing proce-

dure figure 3.21a. The improved solution of the electrostatic potential, in turn, improves

the accuracy of the marker trajectories and affects the accuracy of physics observables such

as the divertor heat load. A reduction of the ion particle noise is observed as well. Figures

3.21c and 3.21d show the standard deviation of the marker particle weights divided by the

mesh vertex volume (a measure for the sampling error of the density) for the original (c) and

new (d) meshing procedures. Reduced marker noise near the wall improves the accuracy of

physics observables on the wall and of the neutral particle recycling model [49].

The close-up mesh images shown in figures 3.17 and 3.18 show a local increase in the

total number of elements in those areas of the mesh. It should be pointed out that the new

meshing procedures only increase the total number of elements in the mesh no more than

a couple of percent. Thus, there is only a small increase in the total XGC execution times

between the two meshing procedures.

Figure 3.17: Comparison of previous and current meshing procedures on a
National Spherical Torus Experiment (NSTX) production simulation mesh.
(Before) re-shows the portion of the mesh from figure 3.11 meshed with the
base meshing procedure, while (After) shows that portion of the domain
meshed with the updated meshing procedure presented in this paper.

3.5.4 Executing the Mesh Generator

The geometric model provided to the mesh generation procedures consists of the phys-

ical geometry of the wall curves and the physics geometry of the core O-point, the X-points

within the wall geometry, the separatrix curves, and the selected flux curves. Given the

appropriate GEQDSK equilibrium file with discrete wall geometry and a set of input pa-
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Figure 3.18: Comparison of original and current meshing procedures on a
National Spherical Torus Experiment (NSTX) production simulation mesh.
(Before) shows the portion of mesh on faces adjacent to the separatrix curve
meshed with the original meshing procedure, while (After) shows the same

area meshed with the meshing procedure presented in this paper.

rameters that define the desired set of flux curves, the geometric model is automatically

constructed in a matter of seconds in serial using the procedures described in section 3.3 in

combination with the procedures presented in section 3.5.1. The set of flux curves in the

geometric model can be defined in a number of ways, including (a) uniform spacing in terms

of normalized ψ value, (b) uniform spacing in terms of real distance in meters, (c) spacing

in terms of local ion gyro-radius, and (d) list of normalized ψ values for desired flux curves.

During the process of constructing the geometric model, the various geometric model

regions are attributed to indicate the specific mesh generation tool to be used to mesh that

area. The geometric model entities are also attributed with mesh control parameters indi-

cating node point placement and mesh gradation parameters based on a set of user-provided

input parameters. The user-provided mesh control parameters consist of spacing between

nodes on flux curves, node spacing control near X-points, and mesh size in unstructured

mesh regions. The node spacing on the flux curves can be defined in two ways: (a) constant

uniform spacing between nodes on all flux curves defined by a single value and (b) a list

indicating node spacing on each flux curve for better control. The actual mesh generation

process is fully automatic and takes a manner of seconds in serial.

The two options available for the execution of TOMMS are terminal execution, where

the inputs are provided in an editable ASCII file, and graphical user interface (GUI), where

input parameters are set interactively. Expert XGC users prefer the former method, whereas
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Figure 3.19: Comparison of the ratio of the area of an element with largest
area (AL) to the area of an element with minimum area (Aminn ) of n neighboring

elements using original and current meshing procedures on a National
Spherical Torus Experiment (NSTX) production simulation mesh. The number
of flux surfaces increases from inner most surface (bounding magnetic axis) to

the outermost flux surface.

new users tend to prefer GUI since it provides quick feedback on the mesh. The time required

to set up the input parameters ranges from one minute to a few, depending on the desired

control of flux curves and node spacing on these flux curves. To define flux curves using a

uniform spacing between flux curves and uniform node spacing requires modifying only two

parameters. On the other hand, for advanced control of flux curves (preferred by expert

XGC users), a list of flux curves and the desired node spacing on each flux curve which

requires manually adding each flux curve value in the input file, is provided to TOMMS.

Once the input parameters are set, executing TOMMS to generate a model and mesh takes

a few seconds in serial. The details on the use of TOMMS, both from terminal and GUI,

along with the details on input parameters, can be found in reference [40].
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Figure 3.20: The element highlighted in green with the peak value of ratio
AL/A

min
n .

3.6 Providing Mesh Information for Efficient XGC Execution

The execution of operations within an XGC simulation requires ordering and structur-

ing the mesh information as needed to support the effective execution of the XGC compu-

tations.

3.6.1 Mesh Data for XGC Mesh Based Operations

The ability of XGC to execute the field-following related calculations, such as flux

surface averaging and field-following Fourier filtering, requires specific ordered data related

to the set of mesh vertices on each of the flux curves. In addition, other operations take

advantage of the one-element between flux curves property of the mesh faces placed between

flux curves. As discussed in section 3.5, the one-element deep property is lost for portions of

the mesh between flux curves adjacent to X-points and for open flux curves as they approach

the tokamak walls. In these areas, specific knowledge of the mesh vertices that have been

placed between the flux curves to support the generation of acceptable meshes is needed.

The TOMMS mesh generator employs a mesh data structure that maintains explicit

knowledge of the association of each mesh entity (mesh vertex, edge, and face for a 2D mesh)

with the appropriate model entity (model vertex, edge, and face for a 2D model) [50]. This
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Figure 3.21: Electrostatic potential from an axisymmetric, electrostatic XGC
simulation using (a) the original and (b) current meshing procedures. Using
the mesh produced with the new meshing procedures better reproduces the
expected transition from slow variation along the flux-surfaces away from the
material wall to very short (ion Larmor radius) variation close to the wall. In
addition, the new meshing procedures reduce particle noise near the material
wall as shown by the standard deviation of the ion marker weights divided by
the mesh vertex volume for (c) the original and (d) new meshing procedures.

association information is referred to as mesh classification. The mesh data structure also

contains a complete mesh topology so it can efficiently provide information of any mesh

entity adjacency (e.g., the mesh vertices bounding a mesh edge, the edges bounded by a

mesh vertex, the mesh edges bounding a mesh face, etc.). This information supports the

efficient determination of the specific mesh information needed by XGC, which includes:

1. Mesh vertices bounding each mesh face (the standard mesh element connectivity in-

formation).

2. Ordered list of mesh vertices on each flux curve as shown in red in figure 3.22.
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3. Unstructured mesh vertices classified on the model faces that are bounded by two flux

curves and also on the model faces that are bounded by a single flux curve and wall

curve as shown in blue and green respectively in figure 3.22.

4. Mesh vertices on the wall curve as shown in maroon in figure 3.22.

5. Mesh vertex classified on the X-point model vertex as shown in orange in figure 3.22.

Figure 3.22: Classification of mesh vertices in XGC.
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The ordered list of mesh vertices on each flux curve segment is provided using the mesh

classification information. The procedure uses a traversal of the mesh edges and collects the

set of mesh edges and their bounding vertices on the closure of the model edges that are part

of the flux curves. In the case of closed flux curves, the flux curve is represented by a single

closed model edge. In this case, the ordered list of mesh vertices is determined by executing

a traversal starting at the mesh vertex classified on the single model vertex for that closed

model edge. Using mesh vertex to edge mesh adjacency, the mesh edge classified on that

model edge using the mesh vertex is found. The other mesh vertex bounding that mesh

edge is then the next mesh vertex. The process is continued until the starting mesh vertex

is reached. In the case of an open flux curve, the starting point is a mesh vertex classified

on a model vertex that is classified on a model edge that is a wall edge. In this case, the

traversal terminates when the next vertex found is classified on a wall curve.

The mesh vertices that are classified on the model faces bounded by two flux curves

must be collected and associated with the appropriate flux curve. To determine if a model

face is between two flux curves, the model edges bounding that model face are traversed,

and if two different ψ values are found for the model edges that are part of flux curves in

the face loop, then the model face is between those two curves. The mesh vertices classified

on the model face between two flux curves are collected and evaluated to determine their

association with the flux curve it is closest to. The algorithm for the above procedure is

presented in algorithm 2.

3.6.2 Ordering Mesh Data for Efficient Cache Performance

The computational efficiency of numerical operations on GPU-accelerated parallel com-

puters is strongly dictated by the time spent accessing the data required for the execution

of stimulation. The “closer” the data is, the more efficient the access will be, with access to

data in the various levels of cache memory being orders of magnitude faster than access to

data in main memory. Within XGC, the placement of mesh data in memory is based on the

labeling that data is given by the mesh generation procedure. Thus, it is desirable to assign

labels to the mesh vertices and faces that will optimize memory access.

Due to the field-following aspects of the XGC operations, a potentially advantageous

labeling of the mesh vertices and faces is to label the vertex at the core O-point first, and

then selecting a mesh vertex on the first flux curve and labeling it followed by labeling the
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Algorithm 2 Mesh Vertices Classified on Face

1: procedure MeshVerticesOnFace(model)
2: N ← number of model faces
3: for i = 1 to N do
4: NumEdges = Number of Edges on the face F (i)
5: for j = 1 to NumEdges do
6: if E(j) = OnWall then
7: continue
8: end if
9: ψ ← psi value on E(j)
10: push ψ to setPsi ▷ set will only save unique values
11: end for
12: S ← size of setPsi
13: if S = 2 then ▷ face bounded by two flux curves
14: NumVert = Number of Vertices on F (i)
15: for k = 1 to NumVert do
16: if V (k) = OnFluxCurve then
17: continue
18: else if V (k) = OnFace or V(k) = OnWallEdge or V (k) = OnModelVer-

texOnWall then
19: Indx ← Index of V (k)
20: Flux Curve 1 ← closest flux curve to V (k) with ψ = setPsi(1)
21: Flux Curve 2 ← closest flux curve to V (k) with ψ = setPsi(2)
22: Report Indx along with flux Curve 1 and flux Curve 2
23: end if
24: end for
25: end if
26: if S = 1 then ▷ face bounded by single flux curve (wall face)
27: NumVert = Number of Vertices on F(i)
28: for k = 1 to NumVert do
29: if V (k) = OnFluxCurve then
30: continue
31: else if V (k) = OnFace or V (k) = OnWallEdge or V (k) = OnModelVer-

texOnWall then
32: Indx ← Index of V (k)
33: end if
34: end for
35: end if
36: end for
37: end procedure
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other vertices on that flux curve in order, based on the edge adjacent to the last labeled

vertex, until all mesh vertices on that flux curve are labeled. As the mesh vertices on the

flux curve are being labeled, the mesh faces that are bounded by the mesh vertices on the

flux curve are also labeled. Afterward, the mesh vertices on the next flux curve and the

mesh faces between the two flux curves are labeled, starting with a mesh vertex that bounds

an edge with the first mesh vertex labeled on the previous flux curve bounds. This process

is easily supported for the closed flux curves up to the last closed flux curve before the first

separatrix using the classification and mesh adjacency information stored in the mesh data

structure used in TOMMS. After that point, the loss of the one-element deep between flux

curves property, as well as having general mesh between flux curves and wall, means that

an alternative method must be applied to label the mesh vertices and faces outside the last

closed flux curve before the first separatrix.

The desired labeling of the remaining mesh vertices and faces would continue to follow

the strategy of labeling them “spiraling out” from the core O-point. The procedure imple-

mented to do this is built on the adjacency-based ordering algorithm presented in reference

[51]. That adjacency-based algorithm employs a queue of the mesh vertices such that the

unlabeled mesh vertices on the other end of the edge bounding the recently labeled vertices

are put in the queue.

In the application cases given in reference [51], that queue was initiated at the start

of the process with a single mesh vertex on the outer boundary of the domain. To have

that algorithm produce the “spiraling out” labeling desired for the XGC meshes, that queue

is initiated with the ordered set of mesh vertices on the last closed flux curve before the

first separatrix. Since the procedures will label the entities in the queue in order and add

unlabeled edge adjacent vertices to the queue, this ordering process will continue to label in

a spiraling manner.

Figure 3.23 shows a coarse mesh example of the resulting reordering of the mesh ver-

tices. Initial testing indicates that this ordering does improve memory access time thus

improving particle push execution time by 10% on average. However, it had only a marginal

effect on total XGC solution time over using the previous less optimized ordering where the

ordering of the mesh entities outside the last closed flux curve before the first separatrix

was more random. It was determined that was a small increase in load imbalance countered

the memory access improvements. Additional investigation is underway to consider poten-



50

tial changes to the load balancing scheme so take better advantage of the memory access

benefits.

Figure 3.23: “Spiral ordering” of mesh vertices for a very coarse mesh example.

3.7 TOMMS Graphical User Interface

The TOMMS graphical user interface (GUI) is supported through Simmetrix Simmod-

eler. The TOMMS GUI can be accessed through the Fusion tab in Simmodeler as shown in
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figure 3.24. The Fusion tab in the Simmodeler allows the users to interactively provide the

inputs, set the modeling and meshing parameters, and control the outputs. The TOMMS

GUI requires two inputs at minimum, the first one is the TOMMS binary executable, and

the second is the plasma equilibrium file (geqdsk). With these two files provided, TOMMS

GUI can generate a mesh with the default modeling and meshing parameters. The users

can modify these modeling and meshing parameters using the “Meshing Parameters” tab as

shown in figure 3.25.

Figure 3.24: Fusion tab in Simmetrix Simmodeler with input and output
options.

The TOMMS GUI is a convenient way for new users to generate meshes since it provides

quick feedback on the model and mesh, and also provides a way to interactively modify it by

changing different input parameters. A sample DIII-D model and corresponding relatively

coarser mesh using TOMMS GUI are presented in figure 3.26. Moreover, the GUI gives the

model adjacency information along with the modeling attributes and geometric properties.
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Figure 3.25: An interface to set the modeling and meshing parameters in
TOMMS GUI.

This is a helpful feature in debugging the issues both for developers and users. The details

of TOMMS GUI with step-by-step instructions to use it can be found in TOMMS user

document [40].

3.8 Closing Remarks

This paper has presented a set of developments required to advance TOMMS to meet

the mesh generation needs of the XGC gyrokinetic particle-in-cell code. The developments

carried out include:

1. Extending the tokamak model construction process to support general combinations

of O-points and X-points. This includes the development of methods for effective

critical point search, modeling of the tokamak wall curve, and the construction of flux
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Figure 3.26: A view of (a) DIII-D model, (b) corresponding mesh on TOMMS
GUI.

curves for a number of tokamak configurations. The critical point search method uses

a combination of the Downhill Simplex method and Newton-Raphson method of root

finding to ensure the full set of critical points. The wall modeling procedures employ

a set of geometric properties to identify the key features of model vertices and model

edges that are either straight lines or curves. The flux curve construction methods

have been updated to support a general configuration of tokamak geometric features.

2. The mesh generation procedures were extended to support the creation of better-

conditioned XGC meshes. These extensions first modified the model topology to split

the faces between flux curves that included X-points or portions of the tokamak wall

on their boundary into multiple faces where the additional faces were created near the

X-point or where the flux curves approached the tokamak wall. As the X-point or wall

face is approached, one of the newly created faces is meshed using a doubling transition

procedure to go from high aspect ratio elements to low aspect ratio elements. This

allowed the effective application of a general triangulation procedure to create a quality
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mesh in the remaining face that included the X-point or portion of the wall curve on

its boundary.

3. Providing the mesh data in a form, and with an ordering, as needed for the efficient

XGC PIC-based simulations.

The resulting modeling and meshing tool, TOMMS, is being applied by XGC users to

produce the meshes required for critical fusion plasma physics studies.

It should be pointed out that XGC is under continuous development to extend its ability

to effectively address additional physics behavior. Some of these development will require

new capabilities be added to the TOMMS mesh generation tool to provide the required

meshes. A development that is in the planning stage is the selective application of mesh

vertex motion and local mesh modification to account for large local gradients and evolving

field. These procedures will be similar to those presented in reference [52].



CHAPTER 4

AN AUTOMATED MODELING AND MESHING

FRAMEWORK FOR M3D-C1

4.1 Background

M3D-C1 [53] is a fusion plasma code developed at Princeton Physics Plasma Lab

(PPPL) that solves the extended magneto-hydrodynamics (MHD) equations to study the

large-scale plasma instabilities in tokamaks. These instabilities can degrade the magnetic

confinement of the plasma, leading to loss of energy and/or damage to tokamak components

[54]. The M3D-C1 code is used to study a wide range of instabilities and their mitigation

techniques [54], [55], [56], [57], [58]. Some of the instabilities and mitigation techniques that

can be studied in M3D-C1 are:

• Edge localized mode (ELM) is an MHD instability that occurs at the edge of the

plasma. The ELMs cause the discharge of particles and energy from the plasma at the

edge [59].

• Vertical displacement events (VDEs) are the MHD disruptions that occurs when plasma

loses vertical stability. In such events, plasma moves upward or downward vertically

and interacts with the walls of the tokamak leading to the abrupt release of the stored

energies [35], [56].

• Tokamak sawtooth cycle is a type of MHD instability in which the plasma current

increases to a limit where it becomes unstable to an internal kink mode. In such

disruptions, the plasma current density and temperature drop in the center of the core

[59], [60]. The process repeats again after the current density and temperature drop

and is cyclic in nature.

• Pellet injection to the plasma is a disruption mitigation technique in tokamaks. In

this method, impurities are added to the plasma as soon as disruptions are detected

[54]. The study of the stabilization of plasma using the pellet injection is supported in

M3D-C1.

To solve the fourth-order MHD partial differential equation (PDE’s), M3D-C1 uses

reduced quintic elements with an inter-element continuity of C1 [53] on the poloidal cross-

55
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section. The 3D elements between two poloidal planes are constructed using C1 cubic Her-

mite polynomials in the toroidal direction [60]. The meshing data structure for the M3D-C1

meshing needs is provided by Parallel Unstructured Mesh Infrastructure (PUMI) [61], [62] de-

veloped and maintained at Scientific Computation Research Center (SCOREC) at Rensselaer

Polytechnic Institute (RPI). The initial unstructured mesh generation is done in Simmetrix

[63]. PUMI provides the parallel mesh infrastructure and an adaptive mesh framework to

the M3D-C1 which performs three types of simulations [59] as the following.

• The 2D linear simulation considers a single poloidal plane and assumes that the model

equations are linearized in such a way that a set of field equations independent of the

toroidal direction is obtained.

• The 2D nonlinear simulation considers a single poloidal plane and assumes that the

solution is symmetric in the toroidal direction.

• The 3D nonlinear simulation considers a full 3D domain discretized with wedge ele-

ments. The wedge element is constructed by using cubic Hermite polynomials between

two 2D reduced quintic triangular elements.

This chapter provides an overview of M3D-C1 and discusses recent developments in

model and mesh generation in M3D-C1. Section 4.2 presents an overview of the set of

equations used in the extended MHD model. An overview of finite element discretization

are presented in section 4.3. Sections 4.4 and 4.5 review the details of fully automated

simulation workflows for M3D-C1 in 2D and 3D respectively. The recent developments in

terms of model and mesh generation for M3D-C1 are summarized in section 4.6. The details

of a-priori mesh modifications in M3D-C1 are presented in section 4.7. Section 4.8 discusses

mesh modifications on the model faces of interest and mesh size transitions in neighboring

faces.

4.2 MHD Governing Equations

M3D-C1 solves fourth-order PDE’s derived from the extended MHD equations that

describe plasma as an electricity-conducting fluid of ions and electrons. This section provides

an overview of the PDE’s solved in M3D-C1 and their weak form formulation. For simplicity,

the representation given here does not include two-fluid terms (separate representation of
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ions and electrons), and particle source. The strong form of fourth-order PDE for 2D stream

function U = U(R,Z) and poloidal magnetic flux ψ = ψ(R,Z) solved for M3D-C1 is stated

as

−ρ∇2∂U

∂t
+ ρ < ∇2U,U > − < ∇2ψ, ψ > +µ∇4U = 0 (4.1a)

−∇2∂ψ

∂t
+∇2 < ψ,U > η∇4ψ = 0 (4.1b)

where ρ is the ion mass density, µ is the dynamic viscosity, η is the electrical resistivity,

and the Poisson bracket [64] < F,G > is defined as

< F,G > ≡ −(∇F ×∇G) · ϕ̂ ≡ ∂F

∂R

∂G

∂Z
− ∂F

∂Z

∂G

∂R
(4.2)

The formulation of the weak form from the strong form of fourth-order PDE’s presented

in equation 4.1 assumes homogeneous Dirichlet boundary conditions for U and ψ such that

U = ∇U · n̂ = 0 and ψ = ∇ψ · n̂ = 0 at the boundary. The weighting function space is

defined as:

V = {ν|ν ∈ H2, ν = ∇ν · n̂ = 0 at dΩ} (4.3)

The solution space is defined as:

W = {ω|ω ∈ H2, ω = ∇ω · n̂ = 0 at dΩ} (4.4)

The weak form of the fourth-order PDE in equation 4.1 is defined as:

Find (U, ψ) ∈ W ×W , ∋ ∀ (ν, q) ∈ V × V .

∫
Ω

{
ρ∇∂U

∂t
· ∇ν + ρ∇2U < U, ν > −∇2ψ < ψ, ν > +µ∇2U∇2ν

}
dΩ = 0 (4.5a)∫

Ω

{
∇∂ψ
∂t
· ∇q −∇ < ψ,U > ·∇q + η∇2ψ∇2q

}
dΩ = 0 (4.5b)

where the initial condition is defined as (U, ψ) = (U0, ψ0) at t = 0. See reference

[64] for the integration identities used in the formulation of weak form from the strong form
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of the PDE.

4.3 Finite Elements in M3D-C1

The fourth-order MHD PDE’s are discretized using the C1 finite elements. M3D-C1

uses a C1 reduced quintic triangle elements on the 2D cross-section of the poloidal plane

[53]. The 3D wedge elements are constructed between two consecutive poloidal planes using

C1 cubic Hermite polynomials in the toroidal direction [60]. This section overviews the

properties of 2D reduced quintic triangle elements and 3D wedge elements with C1 continuity.

Figure 4.1: 2D reduced quintic triangle element.

4.3.1 Reduced Quintic Triangle Element

Consider the reduced quintic triangle element on a poloidal R-Z plane as shown in the

figure 4.1. The origin of the local (ξ, η) coordinates is (R0, Z0) as shown in the figure. The

mapping between the local and global coordinates is defined as
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R
Z

 =

cos(θ) − sin(θ)

sin(θ) cos(θ)

ξ
η

+

R0

Z0

 (4.6)

There are six degrees of freedom (DOF) defined on each of the three vertices of the

traingle. These DOF’s include the field values, first derivatives, and second derivatives. The

six DOF’s (U , U,ξ, U,η, U,ξξ,U,ξη, U,ηη) evaluated at each of the vertex are in local (ξ, η)

coordinate system. The desired DOF’s (U,UR, UZ , URR, URZ , UZZ) are in global coordinate

system. Hence, the local DOF’s are required to map to global coordinates according to the

expression given in equation 4.6. The details of the construction of the reduced quintic basis

functions such that the element satisfies C1 inter-element continuity is covered in references

[53], [65].

4.3.2 3D Wedge Element

Consider the 3D wedge element in (R,Z, ϕ) coordinates as shown in figure 4.2. A cubic

Hermite polynomial in the ϕ direction along with the reduced quintic in the R-Z plane are

used to construct a 3D wedge element. The mapping between local toroidal coordinate (ϕ̃)

and global toroidal coordinate (ϕ) between two poloidal planes at the toroidal angles of ϕ1

and ϕi+1 is defined as:

ϕ = ϕi + (ϕi+1 − ϕi)ϕ̃ (4.7)

The overall mapping between the local (ξ, η, ϕ̃) and global coordinates (R,Z, ϕ,)is de-

fined as


R

Z

ϕ

 =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 ϕi+1 − ϕi



ξ

η

ϕ̃

+


R0

Z0

ϕi

 (4.8)

There are twelve DOF’s defined on each of the six vertices of the wedge elements. The

field values corresponding to twelve DOF’s in local and global coordinates evaluated at each

of the six vertices are given in table 4.1. The mapping between the local DOF’s and global

DOF’s is done using the expression given in equation 4.8.
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Figure 4.2: 3D wedge elements in a right-handed cylindrical coordinate system.

Table 4.1: The field values corresponding to twelve DOF’s in local and global
coordinates.

Local DOF U U,ξ U,η U,ξξ U,ξη U,ηη
Global DOF U U,R U,Z U,RR U,RZ U,ZZ
Local DOF U,ϕ̃ U,ξϕ̃ U,ηϕ̃ U,ξξϕ̃ U,ξηϕ̃ U,ηηϕ̃
Global DOF U,ϕ U,Rϕ U,Zϕ U,RRϕ U,RZϕ U,ZZϕ

4.4 2D Simulation Workflow

The M3D-C1 uses a set of specific software tools for a complete simulation loop as

shown in figure 4.3. This section provides an overview of all the software tools and necessary

steps required to support the meshing needs in M3D-C1. The three software components in

the workflow are:

• Simmetrix: The initial 2D model and mesh generation is done in Simmetrix [63]. The

definition of the model in Simmetrix requires a set of model loop geometries and a set

of model faces with the information of bounding loops. The mesh generation requires

the mesh size information on the model entities and global mesh control parameters.

A detailed discussion of model and mesh generation is provided in section 4.6.



61

Figure 4.3: M3D-C1 workflow.

• PUMI: The geometric modeling interface and mesh data structure for the M3D-C1 are

provided by PUMI. The geometric model information provided to a M3D-C1 simulation

is the number of loops with the geometry of loops defined by a set of points on the 2D

plane. The loops in the model are represented by the splines fitted to a set of input

points. The Geometric Model Interface (GMI) in PUMI supports the model queries

for the M3D-C1 simulations such as the calculation of normal vectors and curvatures

on the boundaries etc.. The initial mesh generated in Simmetrix is loaded to PUMI to

support the full range of meshing capabilities (mesh queries, mesh partitioning, mesh

adaptation, etc.).

• M3D-C1: The set of MHD equations in the weak form, the boundary conditions over
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the domain, and the initial conditions are provided for problem definition. Once the

mathematical model is defined and the mesh is loaded, the next step is the discretiza-

tion of the governing PDE’s with C1 elements. The contributions to the stiffness

matrix and force vector from the elements are calculated. The plasma equilibrium file

provides the input field information for elemental level contribution in the initial time

step. After the first time step, the field information at each time step is collected from

the previous time step. The elemental level contributions from all the elements in the

mesh are assembled in the global stiffness matrix and force vector. The global system

of equations is solved using the PETSc solver [66] to get the desired solution fields at

each time step.

The steps in the workflow are:

• Model Generation (A in figure 4.3): The geometry input in the form of loops and

faces is provided to the Simmetrix for the generation of 2D poloidal geometric model.

Furthermore, the physical attributes for the model entities are provided to the model

generation process for the definition of physics regions in the model (wall, vacuum

etc.).

• Mesh Generation (B in figure 4.3): The 2D geometric model is meshed in Simmetrix

using the mesh size information on the model entities and other global mesh parame-

ters.

• Conversion to PUMI meshes (C in figure 4.3): The mesh data structure for the M3D-C1

is supported through PUMI. All the mesh queries, mesh distribution, and mesh adap-

tation in M3D-C1 are done in PUMI. Therefore, the initial model and mesh generated

in Simmetrix need to be converted to PUMI readable model and mesh.

• a-priori Mesh Modification (D in figure 4.3): In certain cases, the initial mesh needs to

be modified based on the needs of a particular problem. This is done by setting the a-

priori size field information for the mesh modification. This information can come from

the input plasma equilibrium file, the location of impurities (pellets) in the domain, or

the position of the tokamak wall in the domain. The desired size field information is

communicated to PUMI for the mesh modification operations. A detailed discussion

of a-priori mesh modification is provided in section 4.7.
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• Error Estimation (F in figure 4.3): After the computation of solution fields, a decision

to improve the meshes is made based on an estimation of the solution error field. The

error from the a-posteriori error estimation method is used to compute the error on

the mesh vertices.

• Size-field Computation (G in figure 4.3): Once the error is evaluated on the nodes,

the scaler elemental size field is evaluated for every mesh element in the domain. The

details of size field evaluation are presented in section 5.2.

• Mesh Adaptation (H in figure 4.3): The size field information is used by the mesh

modification procedures to adapt the mesh at the desired time steps. A comprehensive

discussion of error estimation with adaptive results is presented in chapter 5. The

solution fields are mapped onto the new mesh after the mesh is adapted.

4.5 3D Simulation Workflow

The workflow for a 3D automated simulation loop is presented in figure 4.3. The basic

set of software components required for a 3D simulation are those of the 2D simulation

(see section 4.4 for the description of these components) with the addition of 3D element

construction. Aside from the mathematical model and an initial 2D model and mesh, an

additional input defining the desired number of poloidal planes is required. The 2D poloidal

plane mesh, either from Simmetrix or modified using a-priori mesh modification, is extruded

for the desired number of planes to get a 3D mesh. The resulting mesh contains C1 wedge

elements, such that a wedge is defined between the matching 2D elements on two consecutive

poloidal planes. If the number of elements on the 2D poloidal plane mesh is n, and the total

number of planes is P , the number of 3D wedge elements in the mesh is n× P .
In terms of a-posteriori mesh adaptation in a 3D simulation loop, the desired size field

from all the poloidal planes is collected at the master plane, and the smallest size for each

node is selected for adapting the 2D master poloidal plane. After the adaptation, the 3D

mesh is reconstructed and the solution fields are mapped onto the new 3D mesh. The details

of mesh adaptation and solution transfer for the 3D simulations are presented in section 5.4.
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4.6 Model and Mesh Generation

The model and mesh generation of the tokamak geometries for M3D-C1 is supported

through a combination of Simmetrix and PUMI tools. The initial model and mesh gener-

ation are done using the Simmetrix tools, and mesh parallelization and mesh information

management in M3D-C1 are supported by PUMI. Two options are available for defining the

M3D-C1 geometry and associated mesh control information.

• Option 1: Five predefined model configurations with a maximum of three model faces

and a minimal set of mesh control parameters are available.

– Configuration 1: A single-face model with the vacuum boundary parameterized

using an analytic expression.

– Configuration 2: A single-face model with the vacuum boundary defined by piece-

wise linear points.

– Configuration 3: A single-face model with the vacuum boundary defined by piece-

wise polynomials.

– Configuration 4: A three-face model with three curves (inner wall, outer wall, and

vacuum) defined from the spline fitting of a set of points.

– Configuration 5: A three-face model with three curves (inner wall, outer wall, and

vacuum). The set of points are provided for the inner wall and an offset distance

from the inner wall is provided for the outer wall. The points on the outer wall

are evaluated using the offset distance and inner wall points. The resulting three

curves are obtained by the spline fitting of the set of the points.

• Option 2: A more generalized model and mesh generation procedure supports an arbi-

trary number of model faces. The model faces are defined by providing the information

on the bounding loops for each face. The mesh control parameters [67] are defined on

each loop and face for an effective starting mesh.

The original geometry and mesh control tools were limited to a standard three-region

configuration. As part of this work, the generalized model generation procedure was devel-

oped that can handle any number of model faces representing different physics regions.
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4.6.1 Generalized Model Generation for Multi-face Geometries

The following information is required to generate a model with an arbitrary number

of model loops and faces in M3D-C1.

• A set of model loop geometries.

• A set of model faces defined in terms of the set of bounding loops.

The 2D model is defined in terms of a set of model faces.

4.6.1.1 Model Vertices

A model vertex is defined at the starting point of each model loop. If the loop is defined

by a set of discrete line segments, a model vertex is placed at the starting point of the first

segment. If the loop is parameterized, a model vertex is placed at the point defined by the

parameter t = 0. Since all the loops are periodic, only a single model vertex will bound each

loop. Figure 4.4 demonstrates the model vertices defined on each model loop, where each

loop represents a physical component in the SPARC tokamak [68].

• L1: First wall that bounds the region containing the plasma.

• L2, L3: Outer boundaries of lower and upper passive plates respectively. The pas-

sive plates are conducting plates (usually copper) that are placed near the plasma to

stabilize it.

• L4, L5: Inner and outer boundaries of the first vessel wall.

• L6, L7: Inner and outer boundaries of the second vessel wall.

• L8: Outer boundary of vacuum region.

4.6.1.2 Model Loops

A model loop can be defined in three different ways.

• A set of discrete line segments.
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Figure 4.4: Demonstration of model vertices defined on the set of model loops.

• A parameterized vacuum loop that is defined from a set of five input parameters. For

given five parameters (R0, R1, R2, Z0, Z1), the vacuum boundary with respect to

parameter t is defined as:

R(t) = R0 +R1 cos (t+R2 sin (t)) (4.9a)

Z(t) = Z0 + Z1 sin (t) (4.9b)
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Figure 4.5: (a) Internal angle between the two incident line segments is less
than 180◦, (b) internal angle between the two incident line segments is greater

than 180◦.

• A loop created by the offset of a loop already defined in the geometry. The inputs

required for the offset loop are the original input loop and the offset distance (DO).

This option is used to create a finite-thickness wall in the model, however, it can be used

to create any offset loop for any given loop. Given the offset distance (DO), an offset

point Oi on the offset curve from the point Pi (on the intersection of line segments

(Pi−1, Pi) and (Pi, Pi+1)) on the input curve can be evaluated using the equations

[69],[70] provided below.

Oi = Pi +
ei+1 − ei
|ei+1 − ei|

· DO

sin( θi
2
)

if (0 < θ < 180) (4.10a)

Oi = Pi +
ei − ei+1

|ei − ei+1|
· DO

cos(π−θi
2

)
if (θ > 180) (4.10b)

where ei =
Pi−Pi−1

|Pi−Pi−1| , ei+1 =
Pi+1−Pi
|Pi+1−Pi| , and θi is the angle between the two line segments.

If the point is on a straight line (θ = 0, 180), the point is ignored and no offset point

is evaluated. Once the raw offset points are found, the next step is to find the invalid

offset line segments. The two types of invalidity that can arise are:

– Invalid direction where the direction of an offset line segment is opposite to the

direction of the parent line segment in the original curve.

– Invalid position where the offset line segment lies completely in the offset area,

i.e., the shortest distances from both ends of offset line segments to parent curve
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are less than the offset distance.

The corrective measures taken to eliminate any invalidity depend on the type of in-

validity and the number of invalid line segments between each pair of valid line seg-

ments. The details of which can be found in reference [69]. Figures 4.6, 4.7, and 4.8

demonstrate the results of the implementation of the curve offset algorithm for offset

distances of 0.04m, 0.1m, and 0.2m respectively. For the sharp corners as demonstrated

in zoomed-in regions of three figures, the invalid segments increase with increasing the

offset distance and the resulting raw offset curve can have multiple self-intersecting

segments between a pair of valid segments as shown in figure 4.8.

Figure 4.6: The parent and offset curves with an offset of 0.04m (a) raw offset
curve with invalid offset segments, (b) corrected offset curve with no invalidity.

The curve points evaluated from any of the above methods are processed by fitting the

cubic B-splines. Since the degree of the splines is 3, the resultant curve ensures C2 continuity

between model vertices.

4.6.1.3 Model Faces

A model face is defined by providing the information of bounding model loops. The

convention for the generation of the model face in Simmetrix is to define the outermost
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Figure 4.7: The parent and offset curves with an offset of 0.1m (a) raw offset
curve with invalid offset segments, (b) corrected offset curve with no invalidity.

Figure 4.8: The parent and offset curves with an offset of 0.2m (a) raw offset
curve with invalid offset segments, (b) corrected offset curve with no invalidity.

loop in the counter-clockwise direction and any inner loops in the clockwise direction. The

input loops may be given in either counter-clockwise or clockwise directions, and hence it is

necessary to find the direction of each input loop before defining a model face. The direction
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of an arbitrary curve can be found using algorithm 3. An example model generated from

eight loops and eight resulting model faces is presented in figure 4.9. The list of model faces

(labeled with F in figure 4.9) with the information of bounding loops (labeled with L in

figure 4.9) is provided.

• F1: L1

• F2: L2

• F3: L3

• F4: L1, L2, L3, and L4

• F5: L4, and L5

• F6: L5, and L6

• F7: L6, and L7

• F8: L7, and L8

Algorithm 3 Curve Direction

1: procedure curveOrientation(P (1:N)) ▷ N number of given points
2: total area ← 0
3: for i = 2 to N do
4: area under line segment ← (xi − xi−1)× (yi + yi+1)
5: total area ← total area + area under line segment
6: end for
7: if total area > 0 then
8: curve is clockwise
9: else
10: curve is counter-clockwise
11: end if
12: end procedure

4.6.2 Mesh Generation and Examples

The mesh size on each loop and each face is defined for effective mesh resolution.

Moreover, the global mesh control parameters such as gradation rate can be defined for

better control of mesh sizes. These mesh control parameters [67] can be directly provided
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Figure 4.9: A model defined from a set of model loops and model faces
including vacuum region.

with the input file or could be interactively modified by using Simmetrix Simmodeler GUI.

Once the model is defined and mesh control parameters are set, Simmetrix generates the

mesh.

Figure 4.10 demonstrates two meshes with three model faces each. Figure 4.10a shows

a mesh with no vacuum region and figure 4.10b presents a mesh with a vacuum region.

A mesh with eight model faces is demonstrated in figure 4.11a, along with a zoomed-in

view of the inner tokamak region (minus vacuum face) in figure 4.11b and a closeup of the

top quarter of the mesh in figure 4.11c.
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Figure 4.10: (a) A mesh with three loops and three model faces where all three
loops are defined as a set of discrete points, (b) a mesh with three loops and
three model faces where two loops are defined as a set of discrete points and

vacuum loop is parameterized using an analytical expression.

Along with the generalized framework for mesh generation, control of mesh generation

and mesh gradation is also needed to generate a mesh with desired resolution. One of

the critical areas in M3D-C1 is the finite-thickness wall area. A high resolution is desired

through the wall thickness but defining an isotropic mesh size results in meshes with a

very high number of undesired elements in, and near, the wall. An anisotropic layered

mesh procedure was introduced to allow the desired refined mesh resolution through the

wall thickness without compromising the coarser mesh resolution in the rest of the domain.

Figure 4.12 demonstrates a comparison of two meshes, one without layered mesh on the wall

face (figure 4.12a) and one with an anisotropic layer mesh on the wall face (figure 4.12b).

The resulting layered mesh has 4.9 thousand elements as compared to 19 thousand elements

on the original mesh with isotropic mesh size on the wall face.
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Figure 4.11: (a) A mesh on a model which is defined from a set of model faces
including vacuum region, (b) a magnified view of the region bounded by inner

vacuum loop, (c) zoomed-in view of the top quarter of the mesh in (b).

Figure 4.12: (a) A mesh with an isotropic mesh size on the wall face, (b) a
mesh with an anisotropic mesh size on the wall face, (c) a close-up of the wall

face for two meshes.
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4.7 A-priori Mesh Modifications

The initial mesh generation procedure requires mesh size definition on the model enti-

ties. The other way to get desired mesh sizes is to modify a given mesh by defining a new

size field on that mesh and executing mesh modification. A-priori procedures allow the users

to modify the meshes using a mesh size field based on the knowledge of plasma equilibrium,

pellet locations, wall location, or an analytic expression before the actual simulation loop.

The most frequently used a-priori mesh modification procedure is the use of a magnetic flux

field (ψ) from the plasma equilibrium to specify the mesh size field. A normalized field ψ̃ is

defined as

ψ̃ =
ψ − ψ0

ψ1 − ψ0

(4.11)

where ψ0 and ψ1 are the flux field values at the magnetic axis and plasma boundary.

An expression based on the normalized flux value evaluates the mesh size field in different

regions based on ψ̃. The normal mesh size h1 and tangent mesh size h2 on every node are

defined as:

h−1
i = h̃−1

i +
1

lci

(
1 + ψ̃−ψc

Wc

)2 , i = 1, 2 (4.12)

where lci, Wc, ψc are constants and h̃i is defined based on what region the node lies

[64]. If the node exists in the region bounded by the flux curve defined by a1, then h̃i is

defined as:

h̃i = bi[1− e−| ψ̃
a1

−1|a2
] + di, ψ̃ < a1 (4.13)

If the mesh node is in the region outside of the flux curve defined by a1, then h̃i is

defined as:

h̃i = ci[1− e−| ψ̃
a1

−1|a3
] + di, ψ̃ > a1 (4.14)

where the constant a1 splits the mesh in two physics regions (mostly a1 = 1 and

signifies the separatrix curve). The constants bi and a2 are used to modify the mesh sizes in

the region defined by ψ̃ < a1 and the constants ci and a3 do the same for the region defined
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by ψ̃ > a1. The constants di controls the aspect ratio of the modified elements. Figure 4.13

demonstrates the a-priori modification of a mesh by defining a size field from the ψ̃ field.

The demonstration shows the meshes for a1 = 1.0 and a1 = 0.5 by keeping all the other

constants the same.

Figure 4.13: (a) Original mesh, (b) modified mesh with a1 = ψ̃ = 1, (c) modified
mesh with a1 = ψ̃ = 0.5.

Certain areas in the plasma are critical to the simulation results and a refined mesh

is needed for such critical areas. One example is the introduction of impurities (pellets)

to plasma for disruption mitigation requires fine mesh sizes in local regions. To support

the modification of the mesh based on a size field evaluated from a-priori knowledge of the

problem, a general mesh modification framework is developed. This framework requires the

definition of a size field (two edge lengths and one unit vector along one of the edges) on
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every node of the mesh. This size field could be evaluated using an analytic expression

based on a-priori knowledge of problems such as pellet locations, coil locations, etc., and

provided to the mesh modification framework for mesh modifications. Figure 4.14 shows the

modification of a mesh based on the size field defined from an arbitrary analytical expression.

Figure 4.14: (a) Original coarse mesh, (b) modified mesh based on size field
defined from an arbitrary analytical expression.

4.8 Selected Face Modification and Mesh Size Transitions

In certain cases, the mesh modification is desired only on certain model faces based on

the a-priori knowledge of the physics (most commonly plasma core region). In such cases,

it is desirable to modify the mesh only in such key areas with minimal altering the mesh in

other areas. This is achieved using the PUMI mesh modification functionality by altering the
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Figure 4.15: (a) The initial starting mesh with no modifications, (b) the mesh
modified in the plasma core face and neighboring face.

mesh size in the face of interest. To ensure smooth mesh transitions, the mesh on the selected

face is modified as requested and the mesh on neighboring faces starting from the common

boundaries to the modified face is modified as needed to ensure a smooth mesh transition.

Figure 4.15 demonstrates an example where the mesh size in the core plasma region was made

finer in a specific spatially based manner over that face. The mesh modification procedures

modified the mesh in that face to satisfy the requested mesh size as well as in neighboring

faces as needed to ensure a smooth mesh size transition.



CHAPTER 5

ERROR ESTIMATION AND MESH ADAPTATION IN M3D-C1

5.1 Introduction

Modeling analytically insoluble complex physical systems with governing differential

equations requires numerical methods such as the finite element methods (FEM) to solve

equations. Since the numerical methods approximate the solutions there are discretization

errors in the solution. The focus of this chapter is the application of adaptive mesh control to

reduce discretization error in the solution of a system solved by FEM. Since the exact solution

is unknown in problems that are numerically solved, the exact error cannot be determined,

however a-posteriori estimates of the error can be used to determine how to improve mesh

most effectively to reduce the error. The a-posteriori error estimators employ the solution

on the current mesh to determine element-level contributions to the discretization error.

The commonly used error estimators are divided into two basic types, residual-based

error estimators and recovery-based error estimators. Common residual-based error esti-

mators include explicit [71], [72], and implicit [73], [74] error estimators. In explicit error

estimation, the residual from the approximated solution on the current mesh and problem

data are used directly to estimate the error in the solution [75]. On the other hand, in

implicit error estimation, the solution to auxiliary boundary value problems that employs

the residuals are used to compute the estimated error [75]. An alternative method that

is used in this work is a recovery-based error estimator [76], [77] often referred to as the

Super-convergent Patch Recovery (SPR) method. In SPR, a typical C−1 field variable is

“recovered” as a C0 field that in some cases has been shown to be more accurate than the

C−1 finite element field. The field values at the nodes are recovered by doing a least-square

polynomial fit to integration point values of the select field using the integration points of the

patch of elements that bound the node. The error for individual elements is then calculated

by an element-level integration of the difference between the recovered and finite element

fields.

In the M3D-C1 adaptive simulation loop, the SPR method is used to estimate more

accurate nodal values of plasma current density J . A new mesh size field is defined using

the elemental error estimates at selected time steps in the simulations. The mesh is updated

based on the new mesh size field and the next simulation time step in the loop uses the

78
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updated mesh.

This chapter provides an overview of the SPR error estimation and its application to

mesh adaptation in M3D-C1 simulations. Section 5.2 overviews the SPR error estimator and

evaluation of the desired mesh size field from the estimated error. This section also discusses

the solution field used for the estimation of the error. Section 5.3 summarizes the workflow

for 2D mesh adaptation in M3D-C1 and presents related results. The 2.5D mesh adaptation

workflow and results are presented in section 5.4 and section 5.5 respectively.

5.2 SPR Error Estimation and Size Field Computation

Fundamentally, the discretization error e is the deviation of the finite element solution

εh from the exact solution ε and can be expressed as an L2 norm of this deviation as shown

in equation 5.1.

||e||L2 =
( ne−1∑

e=0

∫
Ω

(ε− εh)
T (ε− εh)dΩ

) 1
2

(5.1)

where ne is the number of elements in the domain Ω. Since the exact solution ε of

the problem is not available, standard practice of mesh adaptation is to employ a-posteriori

error estimators that numerically obtain an improved approximate solution ε∗ for the selected

field. The idea of estimated error e∗ from the approximated solution ε∗ can be represented

as:

||e∗||L2 =
( ne−1∑

e=0

∫
Ω

(ε∗ − εh)
T (ε∗ − εh)dΩ

) 1
2

(5.2)

We employ a super-convergent patch recovery process proposed and developed by

Zienkiewics and Zhu [76], [77] (SPR or Z-Z error estimator) for the recovery of solution

at nodes that are used to fit a C0 field defining ε∗ . In finite elements, there are certain

points within each element where the accuracy of the field derivative is higher. Since the

numerically obtained solution at these points converge faster compared to any other point,

these points are referred as super convergent points [76]. The key goal of SPR is to recover

a more accurate solution of the field at a node by “interpolation”, using the field values at

super-convergent points or near super convergent points of the elements in the nodal patch,

where a nodal patch for a mesh vertex n is defined by the elements that contain n as one
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of their vertices as shown in figure 5.1. This task of recovering the solution at node n is

performed by a least-square fitting of a polynomial to the integration points of the nodal

patch. The following paragraph overviews the procedure of field recovery at nodes.

Figure 5.1: An example of patch defined at node n constituting (a) 2D
triangular elements, (b) 2D quadrilateral elements.

At a given node n, let ε∗n denote a component of the continuous field ε∗ defined inside

the nodal patch Ω (of node n). Within the patch, in order to eliminate the inter-elemental

discontinuities, the structure of the scalar values field ε∗n is assumed to be a p order polynomial

in two variables as shown in equation 5.3. The order of polynomial p depends on the number

of integration points in the elements of the patch.

ε∗n = P (R,Z)α (5.3)

where (R, Z) notation is consistent with the coordinate system used in this work. As

illustrated in figure 2.3, for a torus, the labels (R, Z, ϕ) correspond to the major radius,

vertical axis and the toroidal angle, respectively. For 2D triangular elements with three

integration points, we use quadratic polynomial fit to recover nodal values. For a quadratic

fit, the vector of polynomial terms P and coefficients terms α is written as:
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P = [1, R, Z,R2, RZ, Z2] (5.4)

α = [α0, α1, α2, α3, α4, α5]
T (5.5)

The task of recovering the nodal values to be used to define a C0 continuous field

translates to the evaluation of the unknown coefficients α. For a nodal patch, this is done by

formulating a least-square fit as shown in equation 5.6. For each component of the solution

field, the unknown coefficients (α) are obtained such that the sum of the squared deviation

of the finite element solution εh and recovered solution ε∗n is minimal. Mathematically, the

least-square problem can be represented as shown below,

Minimize J (α) =
nk∑
i=1

(εh(Ri, Zi)− ε∗n(Ri, Zi))
2 (5.6)

where (Ri, Zi) are the coordinates of the integration points in the patch, n is the number of

elements in the patch Ω and k is number of integration points in each element.

To minimize J (α) in equation 5.6, the partial derivatives of J (α) with respect to the

coefficients in the vector α must be zero.

∂J (α)

∂α
=
∂J (α)

∂α0

,
∂J (α)

∂α1

, · · · , ∂J (α)

∂αK−1

= 0 (5.7)

where K is the number of coefficients in the vector α. Substituting expression 5.6 in

equation 5.7, we obtain the following:

∂J (α)

∂α
=

nk∑
i=1

2
(
εh(Ri, Zi)− P (Ri, Zi)α

)(
− P (Ri, Zi)

)
= 0 (5.8)

Expanding and rearranging the above equation, we obtain the relationship shown in

equation 5.9.

nk∑
i=1

P T (Ri, Zi)P (Ri, Zi)α =
nk∑
i=1

P T (Ri, Zi)ε
h(Ri, Zi) (5.9)

The vector α is the polynomial coefficients that are determined by solving

Aα = b (5.10)
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Here, A =
∑nk

i=1 P
T (Ri, Zi)P (Ri, Zi) and the vector b =

∑nk
i=1P

T (Ri, Zi)ε
h(Ri, Zi).

Rewriting the above in a matrix form, we have

A =



1 1 . . . 1

R1 R2 . . . Rm

Z1 Z2 . . . Zm

R2
1 R2

2 . . . R2
m

R1Z1 R2Z2 . . . RmZm

Z2
1 Z2

2 . . . Z2
m




1 R1 Z1 R2

1 R1Z1 Z2
1

1 R2 Z2 R2
2 R2Z2 Z2

2

...
...

...

1 Rm Zm R2
m RmZm Z2

m

 (5.11)

b =



1 1 . . . 1

R1 R2 . . . Rm

Z1 Z2 . . . Zm

R2
1 R2

2 . . . R2
m

R1Z1 R2Z2 . . . RmZm

Z2
1 Z2

2 . . . Z2
m




εh(R1, Z1)

εh(R2, Z2)
...

εh(Rm, Zm)

 (5.12)

where m = nk. To avoid a singular matrix A, total number of integration points m in

the patch must be greater than that of coefficients of the polynomial.

Once the solution ε∗n at nodes is recovered using the above procedure, a continuous

smooth recovered field ε∗ that is used for the evaluation of discretization error is constructed.

For each element, a continuous smooth field ε∗ from ε∗n is defined as:

ε∗(ξ, η) =
ne∑
n=1

N e
n(ξ, η)ε

∗
n (5.13)

where ne is the number of nodes in the element, andN e
a are the element shape functions.

From the recovered field ε∗, an L2 norm is used to compute the discretization error over the

element as shown in equation 5.14.

||e∗||L2 =
(∫

Ωe

(ε∗ − εh)
T (ε∗ − εh)dΩe

) 1
2

(5.14)

The scaler elemental size field from the estimated error e∗ is evaluated using the ex-

pression:
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hnewe = hcurrente ||e∗||
− 2

2p+d
e

(
η̂2||ε∗||2∑ne−1

e=0 ||e∗||
2

2p+d
e

) 1
2p

(5.15)

where hnewe is the desired element size, hcurrente is the current element size defined by

longest edge, ||e∗||e is the discretization error over an element, d is the element dimension, p

is the polynomial order of the recovered field, η̂ is a threshold parameter for adaptivity, and

ne is the number of elements in the mesh.

5.2.1 Solution Field Used for Error Estimation

Plasma equilibrium is of prime importance in the operation of tokamaks. The magnetic

forces and pressure of the plasma must be balanced to achieve equilibrium in the plasma.

The current density (J), along with the magnetic field B, defines the plasma pressure.

Hence, the accurate calculation of plasma current density during the simulations is critical

in studying the equilibrium in plasma [78]. The plasma current density is closely related to

other plasma-defining quantities, including plasma shape and toroidal magnetic field [79];

therefore, an accurate representation of the current density plays a critical role in studying

the confinement of plasma and its stability. In the permeability normalized implementation

in M3D-C1, the plasma current density (J) is calculated from the curl of the magnetic field

(B) as

J = ∇×B (5.16)

Expanding equation 5.16 gives:

J = ∇×B = −∂Bϕ

∂Z
R̂ + (

∂BR

∂Z
− ∂BZ

∂R
)ϕ̂+

1

R

∂(RBϕ)

∂R
Ẑ (5.17)

where BR, BZ , and Bϕ are the components of the magnetic field in the R, Z, and toroidal

direction ϕ respectively as shown in figure 2.5. The plasma current density can be described

in terms of poloidal current density (Jp) and toroidal current density (Jϕ) as

J = Jp + Jϕ = [−∂Bϕ

∂Z
R̂ +

1

R

∂(RBϕ)

∂R
Ẑ] + [(

∂BR

∂Z
− ∂BZ

∂R
)ϕ̂] (5.18)

The toroidal current density is defined in terms of components of the magnetic field as
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Jϕ = (
∂BR

∂Z
− ∂BZ

∂R
) (5.19)

The components of the magnetic field (BR and BZ) along R and Z directions in terms of

magnetic flux field (ψ) are

BR = − 1

R

dψ

dZ
(5.20)

BZ =
1

R

∂ψ

∂R
(5.21)

Substituting the values of BR and BZ in equation 5.19 gives

Jϕ =
∂

∂Z
(− 1

R

∂ψ

∂Z
)− ∂

∂R
(
1

R

∂ψ

∂R
) (5.22)

Jϕ = −
1

R
[
∂2ψ

∂Z2
− 1

R

∂ψ

∂R
+
∂2ψ

∂R2
] (5.23)

The toroidal current density is defined in term of an elliptic operator (∇∗) operating on ψ

as:

Jϕ = −
1

R
.∇∗ψ (5.24)

The primary fields in M3D-C1 are C1 continuous, which are continuous in value and

first derivative. Hence, the fields that are defined by the second-order derivatives are the

first ones to be C−1. Since the Jϕ is directly related to the second-order derivatives of the ψ

field, a field depending on the gradient of the ψ,R and ψ,Z is used in the error estimation.

5.3 2D Mesh Adaptation

The 2D M3D-C1 simulations are carried out on 2D poloidal plane meshes. In a 2D

adaptive workflow, the target solution field (∇(ψ,R, ψ,Z)) for error estimation from the cur-

rent mesh is collected at predefined time-step (defined by an interval n). The SPR error

estimation method is used to recover a more accurate solution field at the nodes from the

given solution field and is also used to compute the discretization error at the element level.

The estimated error from SPR is used to compute a new mesh size field by using the equation
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5.15. Afterwards, the new mesh size field is used to adapt 2D poloidal plane mesh using

the PUMI mesh adaptation procedures [61], [62]. This adapted mesh is used in the next

time-steps as the input mesh until we adapt mesh again at the next predefined time-step.

Note that a better algorithm to define the interval at which mesh adaptation operation is

carried out is in the future plans (see chapter 6).

Figure 5.2: 16-part initial tokamak mesh.

The a-posteriori mesh adaptation procedures described in the sections above are applied

to a coarse 16-part tokamak mesh as shown in figure 5.2 in a 2D M3D-C1 simulation. The

initial mesh is adapted at an interval of 10 time-steps and simulation was run for a total

of 701 time-steps. The results for the field of interest (toroidal current density (Jϕ)) are

provided. The adapted meshes at every 100th time-step are shown. Also, the solutions at

very next time-step from mesh adaptation are provided.
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Figure 5.3: The initial and adapted meshes and solutions at time-step 101, 201.
Note that the mesh was adapted using the solution field from time-step 100,

200.

The plasma profile changes over the time in the M3D-C1 simulations and the goal

of the mesh adaptation is to track the change in equilibrium profile and refine the mesh

accordingly for high quality simulation results. Figure 5.3 represents the mesh adapted at

time-step 100 in the region where the lowest Jϕ values define a distinct region (marked as

blue). The adapted mesh in this region resulted in a smoother result compared to the non-

adapted mesh at time-step 101 as shown in 5.3. The Jϕ changes over time and mesh is being

refined in the region that marks the outer boundary of the profile at time-step 201 as shown

in figure 5.3. There is some noise in the solution, but it is visibly less in all the regions for

the adapted mesh over that of the solution on non-adapted mesh at time-step 201.

The results on the adapted meshes demonstrate minimal noise at time-steps 301 and
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Figure 5.4: The initial and adapted meshes and solutions at time-step 301, 401.
Note that the mesh was adapted using the solution field from time-step 300,

400.

401 as shown in figures 5.4. At time-step 501, an inner circle showing the Jϕ profile is

starting to be established, and the mesh is refined accordingly in that region as shown in

figure 5.5 resulting in well-defined results at time-step 501. At time-steps 601 and 701, the

profile rings that are aligned with flux curves are visible on the adapted mesh as shown in

figures 5.5 and 5.6. At this stage, the resulting solution on the adapted mesh shows a well

defined current density profiles with no distortion. On the other hand, the solution on the

non-adapted initial mesh is clearly not defining the distinct density profiles.

Figure 5.7a shows a comparison of simulation times on the original and adapted meshes.

The time difference and the element count in initial 200 time-steps is insignificant. However,

the plasma profile starts to change rapidly somewhere between time-steps 200 and 300 as
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Figure 5.5: The initial and adapted meshes and solutions at time-step 501, 601.
Note that the mesh was adapted using the solution field from time-step 500,

600.

can be confirmed from the earlier presented results too, and to account for those changes

the mesh is extremely refined in certain critical areas of the mesh. This increase in the

refinement of the mesh results in much higher simulation times as can be seen in figure 5.7a.

Figure 5.7b demonstrates the count of elements on the adapted mesh at different steps as

compared to the number of elements on the original mesh. The mesh is most refined at

time-step 570 with 105 thousand elements which is roughly 40 times higher than the original

mesh. In the present simulation, the plasma changes gradually for the first 500 time-steps

and after that the change in the plasma profile is drastic. This trend is visible in figure 5.7b,

where it can be seen that the number of elements are oscillating to account for those drastic

changes in the plasma between time-step 500 to time-step 700.
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Figure 5.6: The initial and adapted meshes and solutions at time-step 701.
Note that the mesh was adapted using the solution field from time-step 700.

Figure 5.7: (a) Comparison of simulation time on original and adapted meshes,
(b) comparison of number of elements on original and adapted meshes. The

number of elements on original mesh stays constant throughout the simulation.
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Figure 5.8: Comparison of number of elements on adapted mesh and uniform
mesh with a size equal to smallest edge length in adapted mesh.

The smallest edge length Ls in the adapted mesh during the simulation is 0.000677

meters. The parts of mesh refined to this size at time-step 570 when number of elements were

105 thousand. A uniform mesh was generated with a mesh size equal to Ls, which resulted

in 43.73 million elements. To get a similar accuracy in results with a uniform mesh as was

shown with the adapted mesh, the simulation requires roughly 400 times more elements

and computing time than the adapted mesh. A comparison of the number of elements is

demonstrated in figure 5.8.
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5.4 2.5D Mesh Adaptation

For 3D simulations, wedge elements are constructed on between 32 to 128 poloidal

planes using C1 cubic Hermite polynomials in the toroidal direction, which when combined

with the C1 triangular elements, yields the desired C1 volume elements. Since there are

multiple planes, the target mesh size field based on the error estimate is different on all the

planes. However, since the only available 3D element is a wedge, all poloidal planes must

be refined to be the same using a single poloidal plane mesh size field. To achieve this, the

method used is to collect the size fields from all the planes to the master plane and set the

size field to the smallest of the requested size field from all the planes for every node yielding

a 2.5D mesh adaptation procedure. The workflow for the 2.5D mesh adaptation for N planes

is presented below:

• Extract the target solution field for error estimation from N planes.

• Transfer the fields requested for solution transfer from non-master to master plane.

• Compute element error for each of the N planes.

||e∗||(e,p) =
(∫

Ω(e,p)

(ε∗ − εh)
T (ε∗ − εh)dΩ(e,p)

) 1
2

(5.25)

where e ranges from 0 to ne − 1, and p ranges from 0 to N − 1.

• Compute the desired size field (new edge length hnew(e,p)) for each element of N planes

using equation 5.15.

• Set the size field on every node of the master plane (N = 0) to the minimum of the N

size fields.

hnew(e,0) = min
(
hnew(e,p)

)
(5.26)

• Adapt the 2D mesh on the master plane.

• As the mesh is being adapted, the local solution transfer is carried out for each of the

poloidal planes.

• Reconstruct the adapted 3D mesh by extrusion.
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5.5 2.5D Results

This section demonstrates the application of 2.5D mesh adaptation procedures to two

M3D-C1 simulation cases. In the first case, resonant magnetic perturbations (RMPs) are

used to control the edge-localized modes (ELMs) instabilities in the plasma. The second test

case uses pellet injections to mitigate the plasma disruptions.

5.5.1 RMP

Figure 5.9: Initial mesh with four poloidal cross sections.

The a-posteriori 2.5D mesh adaptation procedure are applied to a 128-part mesh with

4 poloidal plane as shown in figure 5.9. The 3D mesh is created by the extrusion of a 32-part

mesh on a circular cross section to 4 poloidal planes. The mesh is adapted at an interval

of 50 time-steps and simulation was run for a total of 251 time-steps. The results for the
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toroidal current density (Jϕ) and its derivative in toroidal direction (Jϕ,ϕ) after every mesh

adaptation step are presented here.

Figure 5.10: The initial and adapted meshes and solutions at time-step 51 for
the RMP case. Note that the mesh was adapted using the solution field from

time-step 50.

Figures 5.10, and 5.11 show that the toroidal current density profile is smoothly defined

on the adapted mesh as compared to the profile on the original mesh. As can be seen from

the results, the plasma profile doesn’t change significantly over time. However, the rate

of change in toroidal current density along the torus has significantly complex profile, that

needs fine mesh resolution for the accurate representation. It can be seen in figures 5.12,

5.13, and 5.14 that mesh resolution is changing dynamically with time-steps to accurately

simulate Jϕ,ϕ profiles. The simulations on the adapted mesh showed improved results as

compared to the simulations on the original mesh for all time-steps.

Figure 5.15a shows a comparison of simulation times on the original and adapted

meshes. The simulation time on the adapted mesh started to increase significantly after first
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Figure 5.11: The initial and adapted meshes and solutions at time-step 101 for
the RMP case. Note that the mesh was adapted using the solution field from

time-step 100.

adaptation at time-step 50. However, the time curve slope became even steeper after second

mesh adaptation at time-step 100 due to big jump in the number of elements as can be seen

in figure 5.15b. Since there are no big changes in plasma profile, once the desired resolution

to effectively simulate plasma is achieved, the changes in mesh resolution in the next mesh

adaptation iterations are small which are visible from the plot line in figure 5.15b.
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Figure 5.12: The initial and adapted meshes and solutions at time-step 151 for
the RMP case. Note that the mesh was adapted using the solution field from

time-step 150.
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Figure 5.13: The initial and adapted meshes and solutions at time-step 201 for
the RMP case. Note that the mesh was adapted using the solution field from

time-step 200.
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Figure 5.14: The initial and adapted meshes and solutions at time-step 251 for
the RMP case. Note that the mesh was adapted using the solution field from

time-step 250.
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The smallest edge length Ls in the adapted mesh during the RMP simulation is

0.007627 meters. A uniform mesh was generated with a mesh size equal to Ls, which resulted

in 6.27 million elements. To get a similar accuracy in results with a uniform mesh as was

shown with the adapted mesh, the simulation requires roughly 62 times more elements than

the adapted mesh. A comparison of the number of elements is demonstrated in figure 5.16.

Figure 5.15: (a) Comparison of simulation time on original and adapted meshes
for RMP case, (b) comparison of number of elements on original and adapted
meshes. The number of elements on original mesh stays constant throughout

the simulation.

5.5.2 Pellet Case

The RMP case presented above is stable with no major changes in plasma profile. The

plasma profile in Pellet case presented in this section changes significantly over time. An

initial 32-part 2D poloidal plane is extruded to 4 poloidal plane to get a 128-parts 3D mesh

as shown in figure 5.17. The mesh is adapted at an interval of 50 time-steps and simulation

was run for a total of 251 time-steps. The results for the toroidal current density (Jϕ) and

its derivative in toroidal direction (Jϕ,ϕ) after every mesh adaptation step are presented.

Figure 5.18 shows that Jϕ profile on the initial mesh at time-step 50 is well defined,

however the Jϕ profile at time-step 100 started to show a noise on the original mesh as can be

seen in figure 5.19. This distortion in profile became more evident in later time-steps which is
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Figure 5.16: Comparison of number of elements on adapted mesh and uniform
mesh with a size equal to smallest edge length in adapted mesh for the RMP

case.

visible in figures 5.20, 5.21, and 5.22. However the results on the adapted mesh show smooth

Jϕ profiles at all time-steps demonstrating the effectiveness of mesh adaptation procedures

in these simulations. On the other hand, the (Jϕ,ϕ) profiles on the original mesh at all time-

steps are poorly defined while on the adaptive mesh they are significantly improved. These

improvements are more prominent at time-step 101, and 151 as shown in figures 5.19 and

5.20 where the distortions in the (Jϕ,ϕ) profiles at the original mesh were large.

Figure 5.23a shows a comparison of simulation times on the original and adapted

meshes. The simulation time curve on the adapted mesh shows nearly linear trend after

mesh is adapted first time at time-step 50. The total simulation time on adapted mesh is

nearly 9 times higher than that of the initial mesh. Since the number of elements on the
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Figure 5.17: Initial mesh with four poloidal cross sections.

adapted mesh are roughly 8-10 higher than that of the original mesh for major part of the

simulation, the total simulation time has direct relation to the number of elements in the

mesh. Since the plasma profile changes significantly over time in this simulation, the number

of elements fluctuates as shown in figure 5.23b to compensate for these changes.
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Figure 5.18: The initial and adapted meshes and solutions at time-step 51 for
the pellet case. Note that the mesh was adapted using the solution field from

time-step 50.
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Figure 5.19: The initial and adapted meshes and solutions at time-step 101 for
the pellet case. Note that the mesh was adapted using the solution field from

time-step 100.
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Figure 5.20: The initial and adapted meshes and solutions at time-step 151 for
the pellet case. Note that the mesh was adapted using the solution field from

time-step 150.
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Figure 5.21: The initial and adapted meshes and solutions at time-step 201 for
the pellet case. Note that the mesh was adapted using the solution field from

time-step 200.
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Figure 5.22: The initial and adapted meshes and solutions at time-step 251 for
the pellet case. Note that the mesh was adapted using the solution field from

time-step 250.
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The smallest edge length Ls in the adapted mesh during the pellet case simulation is

0.005713 meters. A uniform mesh with a mesh size equal to Ls was created, which resulted in

1.2 million elements. For a similar accuracy in results with a uniform mesh as was shown with

the adapted mesh, the pellet case requires roughly 12 times more elements and computing

time than the adapted mesh. A comparison of the number of elements is demonstrated in

figure 5.24.

Figure 5.23: (a) Comparison of simulation time on original and adapted meshes
for pellet case, (b) comparison of number of elements on original and adapted
meshes. The number of elements on original mesh stays constant throughout

the simulation.
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Figure 5.24: Comparison of number of elements on adapted mesh and uniform
mesh with a size equal to smallest edge length in adapted mesh for the pellet

case.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This thesis presented tools to meet the mesh generation and mesh adaptation needs

of selected fusion plasma simulation codes. The first tool is the TOMMS mesh generator to

support complex geometries and generate well-controlled meshes for production scale XGC

simulations. The second tool supports the generation of M3D-C1 meshes for more general

configurations. The third tool is a framework to support M3D-C1 adaptive simulations.

In chapter 2, a brief introduction to the fusion edge plasma simulations, the governing

equations in XGC and the coordinate systems used in this work is presented. This was

followed with a review of the specific meshing requirements of XGC that includes field-

aligned mesh vertices on the flux curves and maintaining one-element deep meshing between

flux curves. A discussion of the magnetic field aligned meshing in XGC is also provided in

this chapter.

In chapter 3, an overview of the TOMMS workflow and recent developments to support

field-aligned meshing of more-complex tokamak geometries are presented. In this work, the

methods to find the set of critical points (X-points, and O-points) are extended to effectively

search any combinations of X-points and O-points for any configurations of divertors. This

enabled the generation of meshes for new configurations of divertors in tokamaks such as

SPARC. The development of new methods to model the tokamak wall boundary improved

the quality of meshes on the tokamak boundaries. In production meshes for XGC simula-

tions, where mesh vertices on the flux curves are tightly spaced, the one-element deep mesh

requirement between the flux curves results in unsatisfactory elements near the X-point

and in the areas where open flux curves approaches tokamak wall. The mesh generation

procedures are updated to support a transition of one-element deep meshes to well-defined

unstructured meshes in such areas between the flux curves. This is done by decomposing

the model faces that interact with the tokamak wall, in such a way that the specific meshing

procedures can be applied in each sub-region. The meshes as a result of this development

showed significant improvements with no unsatisfactory elements. This is confirmed from

the study of the ratios of the area of the largest element on a model face between flux curves

to the area of an element with minimum area of all neighboring elements. The peak ratio on
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an NSTX production scale mesh decreased from 381 to 2 when transition layers procedures

were applied. The XGC simulations results presented in this work also showed the improve-

ments in the quality of simulations as a result of the new meshing procedures. The XGC

operations requires the structuring of the mesh data in a way that is flux curve driven. The

ordering of the mesh vertices starts with the magnetic axis, and then it spirals outward with

the increasing values of ψ of flux curves. The methods to order the mesh data in a way that

is most suitable to the XGC operations and present mesh data in a flux curve based data

structure were developed in this work.

Chapter 4 summarises the recent developments in model and mesh generation in M3D-

C1. The original mesh generation procedures were limited to a standard three-region config-

urations. In this work, an automated and generalized modeling and meshing infrastructure

is developed to support the meshing of the tokamak geometries with any combination of

physical loops and model faces. As part of this work, a new curve offset algorithm is de-

veloped that can model tokamak finite thickness walls of any complexity. The improved

mesh controls on the model entities resulted in well defined tokamak meshes for M3D-C1

simulations. The development of this generalized framework with superior mesh control

extended the application of M3D-C1 to a broader range of tokamak geometries with any

number of geometric loops and physics regions. A set of a-priori mesh modifications options

is developed in this work. This includes the mesh modification based on a size-field from

the magnetic flux field (ψ). This modification operation refines the mesh in the areas where

plasma changes are maximum, thus improving the quality of simulations in such areas. In

some cases, mesh modification is required only on certain physics regions (mostly plasma

core region) based on the a-priori knowledge of problem. The mesh modification options

in M3D-C1 allow the adaptation of mesh in the desired regions with smooth transition of

mesh to the neighboring region. This allows more control on the resolution of meshes by

modifying only the regions that are desirable.

In chapter 5, an a-posteriori error-based mesh adaptation procedure based on SPR

error estimation is given. A procedure to evaluate a desired mesh size field from the a-

posteriori error estimation is developed for 2D and 3D simulations. In 2D simulations, a

mesh size field from the estimated error dictates the mesh adaptation on a poloidal plane.

In 3D simulations, the target size field is different on all the poloidal planes. To handle this,

a 2.5D mesh adaptation framework is developed, where master poloidal plane is adapted
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by using the smallest size field on a node from all the poloidal planes. The 3D mesh is

reconstructed by extrusion of adapted master poloidal plane plane. The 2D and 3D M3D-

C1 simulations demonstrating the improvements in the simulations as a result of error-based

mesh adaptation are presented. The results showed significant improvements in the quality

of plasma profiles as a result of mesh adaptation.

6.2 Future Work

6.2.1 TOMMS

1. As demonstrated in chapter 3, a separatrix curve is generated by pushing out four

vectors out of the X-points, such that these vectors are at a right angle to each other

and have a length equal to desired mesh vertices spacing on the separatrix curve. As

can be seen in the figure 6.1a, the end points of these pushed vectors marked as point

1,2,3, and 4 are not exactly on the separatrix curve and have different poloidal flux

field values marked as ψ1, ψ2,ψ3, and ψ4 as compared to ψsep on separatrix. These

points are projected to the separatrix curves by using an iterative method that tries

to find a point on the desired flux curve (ψsep). While this method works for most of

the cases, it has the following two limitations:

(a) If the two legs of the separatrix curve are at a roughly equal distance from a

pushed point as shown in figure 6.1, the point might get projected to the wrong

leg of the separatrix. This might result in two points on the same leg and zero

point on one of the other legs failing the construction of the valid separatrix curve.

(b) This method is limited to four legged X-points and will not work for an arbitrary

number of separatrix legs. In some special cases such as snow-flake divertors,

the number of legs coming out of an X-point is six. In order to handle more

complicated tokamak configurations, a method is required that is not limited to

a predefined number of legs but can handle any arbitrary number of separatrix

legs.

In order to overcome the above mentioned limitations, we propose a method that will

directly find the points on the separatrix curves instead of points being projected to

separatrix curve and also not restricted to any predefined number of legs. In this

method, we traverse a circle with a radius equal to the desired node spacing on the
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Figure 6.1: The emanation of points from the X-point in (a) current method,
(b) proposed method.

separatrix, and evaluate all the points with ψsep on this circle. A fine step size along

the circle ensures that all the points with ψsep are detected correctly. This idea is

demonstrated in figure 6.1b.

2. The XGC meshes generated by TOMMS [8] are approximately field-following in nature.

To understand this, we define the safety factor q as shown in equation below.

q =
m

n
(6.1)

where m is the number of toroidal circuits and n is the number of poloidal circuits.

The safety factor says that for every poloidal circuit, the q number of toroidal circuits

are required to get a field line back to the point where it started. The field line error

means that the magnetic field line doesn’t hit on the starting point of the field line

on the primary poloidal plane after q number of toroidal circuits (for every poloidal

circuit).

The effects of field line error (misalignment of field line as described above) on the
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simulation results can be reduced/eliminated by using a set of strategies including:

(a) Slightly adjust the ψ value of each flux curve such that the safety factor q is a

rational number (the number of toroidal circuits m and poloidal circuit n are

integers). If q is adjusted such that it is a rational number, there will be no

field-alignment error.

(b) Use flux surfaces as given in the input but distribute the alignment error over the

whole flux surface such that the magnetic field line is slightly off at each vertex.

This will not let all the error concentrated at one vertex.

3. The current version of TOMMS can generate models and meshes of most frequently

used tokamak configurations. Lately, plasma scientists have been exploring new con-

figurations of the divertors, few of which are extremely complex. The current methods

of critical points search and flux curves tracing can handle such cases effectively. The

next step is to generate the model entities (model vertices, edges, and faces) from

given physics entities. The model generation capabilities in its current state can only

construct models for predefined divertors configurations. The next step is to develop

a generalized automated framework for the generation of geometric models with an

arbitrary number and configuration of X-points.

4. Extending TOMMS to generate field-aligned poloidal plane meshes for stellarators. As

opposed to a single poloidal plane mesh for tokamaks, in stellarator version, there will

be multiple poloidal plane meshes for a single case.

6.2.2 M3D-C1

The frequency of mesh adaptation can play an important role in the accuracy of solu-

tion fields on the adapted meshes. A mesh adapted after very few time steps increase the

computational costs which also depends on the size of the solution data to be transferred;

however, mesh adaptation after a large number of time steps can lead to fairly inaccurate

results as can be seen at time-step = 300 and time-step = 500 in figure 6.2. On the other

hand, at time-step = 400 in figure 6.2, the results show minimal difference between the cur-

rent density profiles on the meshes adapted after 10 and 50 time steps. This shows that a

mesh needs to be adapted more frequently at time-steps where plasma profile shifts rapidly.
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However in the same simulation, there are certain patches of the time where mesh adaptation

is not required frequently.

Figure 6.2: The adapted meshes and corresponding current density solution at
time-step 300, 400, and 500. Mesh adapted every (a) ten time-steps, and (b)

fifty time-steps.

To account for this, future work should develop a robust mesh adaptation method that

can dynamically adjust the frequency of the mesh adaptation during simulation.
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