
Coverage of Material in Chapter 3  
 
The material we will cover and order it will be covered is 
as follows: 
 

1. Continuity Requirements – section 3.1 
2. Lagrange interpolation – section 3.6 
3. Construction of 2-D 4-sided elements (also hexes) 

– sections 3.2, 3.5, 3.6, 3.7 
4. Area coordinates – Appendix 3.I 
5. Triangle/tet. Shape functions – Appendix 3.I (not 

3.4) 
6. Mapping of coordinates – section 3.3  
7. Numerical Integration – section 3.8, notes from 

Numerical Analysis, 5th edition Burden and Faires, 
PWS-Kent Publishing 

8. Hermite shape functions – Section 1.16 
9. P-version shape functions – notes from Finite 

Element Analysis, Szabo and Babuska, Wiley 
1991 

10. Isogeometric shape functions – notes from 
Isogeometric Analysis: Toward the Integration of 
CAD and FEA, Cottrell, Hughes, Bazilevs, Wiley, 
2009. 



Chapter 3 – Selection of shape functions, natural 
coordinates, isoparametric elements, numerical 
integration. 
 
Before discussing the methods to construct shape 
functions, we want to be sure to understand the 
conditions that must be met by the shape functions used 
to represent the trial and weighting functions.  
 
In particular we will cover three requirements the text 
refers to as C1, C2, C3: 

C1 – Intraelement Continuity – level of continuity 
within an element 

C2 – Interelement Continuity – level of continuity 
between elements 

C3 – Completeness – the ability of the function to 
exactly represent a given order polynomial  

 
Intraelement Continuity Condition C1 
Looking at the most demanding term – the energy inner 
product 
 

 
we see we have derivatives of order n  on w  and order 
m on u . Lets assume m ≥ n  (our most common case is 
m = n ). Clearly for our inner product to be meaningful we 
must have a meaningful integrand, thus we have to be 
able to take m derivatives. When using polynomials 
shape functions over elements this will be met by 
requiring Cm  continuity within the element. 

ae (w,u) = Dn (w)Dm (u)dΩ
Ωe∫



Interelement Continuity Condition C2 
As already mentioned in Chapter 1, we would like to 
ensure that we can replace the integral over the entire 
domain of the sum of element contributions with the sum 
of element integrals without the need to account for 
interelement boundary contributions. That is we want: 
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Assuming again m ≥ n , this condition will be satisfied 
when the jumps in the m th order derivatives between 
elements are finite (so the integral of them as the 
boundary thickness goes to zero is zero), This condition 
is met if our shape functions are Cm−1 continuous 
between elements.  
 
This condition will not be hard to meet for our m =1 case 
since that requires only C 0  interelement continuity. It is 
also not hard to meet the  C1 (continuous value and 
continuous first derivative) for the 1D m = 2  case. 
However,  meeting the condition of continuous normal 
slope between elements in 2D and 3D for the m = 2 case 
is quite hard. (As we will discuss at the end of the 
semester – this makes developing “plate” and “shell” 
elements for structural mechanics hard. 
 



Completeness Condition C3 
The math associated with this condition is complex. 
However, a simple description is that as the element size 
approaches zero, the integrand in the energy inner 
product converges to a constant and that our finite 
elements must be able to exactly integrate a constant. 
Taking the common case of m = n , this indicates that we 
need to be able to exactly represent a constant after 
taking m derivatives. When using polynomial shape 
functions this indicates we need to be able to exactly 
represent an m th order polynomial. We will discuss this a 
bit more below. 
 
For the m =1 case this says we must be able to exactly 
represent a linear polynomial. For nsd = 2 

u = a0 + a1x+ a2 y  
 

For the m = 2  case this says we must be able to exactly 
represent a quadratic polynomial. For nsd = 2 

u = a0 + a1x+ a2 y + a3x
2 + a4xy + a5y

2  
  

Other Possibly Desirable Conditions to Meet  
 

Completeness of Polynomial Order  
Our rate of convergence is a function the highest order 
polynomial order we complete, not the highest order 
polynomial terms we may have. View Pascal’s triangle – 
prefer to finish a row before going to the next. 
 

Geometric Isotropy  
One would think one wants balance with respect to the 
polynomial terms – that is of you have x2  you have y2 . 



 



Some more discussion on completeness requirement C3 
 

Consider a 1D FE with uh = Na
a=1

nen
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e  where Na  are 

interpolating shape functions, thus da
e = u(xa ) . For our 

m =1 case we need to be able to exactly represent: 
uh (x) =C0 +C1x  

Evaluating at the nodes we have 
uh (xa ) =C0 +C1xa = da

e  
putting that back into the FE expansion we have 
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∑ = x  we get the desired result of 

uh (x) =C0 +C1x  
Note: This result is specifically for the case of 
interpolating shape functions. If you do not have that, 
you have to check directly. 
 
Same for nsd = 2,3 
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Consider our 1D linear shape functions N1 = 12 (1−ξ )  

and N2 = 12 (1+ξ ) . N1 + N2 =1. Thus is we select to 

define the coordinate mapping for the element to be 

x(ξ ) = Na
a=1

nen

∑ xa , we are sure to be able to exactly 

represent a linear function (in the case of using 
interpolating shape functions). Using the same shape 
functions for the coordinate mapping as is used for the 
finite element basis is referred as using isoparametric 
elements. 
 
If the shape functions are not interpolating, you have to 
perform the algebraic operations needed to show that for 
u = a0 + a1x+ a2 y  in the 2D case.  
 
As mentioned previously we will write our element shape 
functions in a local element coordinate system and use 
mappings, such as isoparametric mappings, to account 
for the actual element shapes. 
• Different element topologies will use different local 

coordinates (for example we will see a difference 
between quadrilaterals and triangles). 

• There are different options for the definition of 
element coordinate systems on even a single 
element topology. 

 


