
 1

Can we do better than the standard FE error
estimates? The answer is yes if you intelligently construct
the mesh. It is clear that if you grade the mesh so there
are smaller elements in area where the “action is” and
large elements where there is “little to no action” you get a
better answer for the same number of elements. But is it
possible to even obtain better convergence rates?

There are two aspects to how you may actually get better
convergence. One is the method you use to improve the
mesh (typically referred to as refinement). The error
estimates we have so far are for uniform h-refinement.
However, we can do p-refinement in which we increase
the polynomial order.

We can also be “intelligent” about how we refine all the
way to the development of “optimally” refined meshes. It
turns out that to get to an optimally refine mesh for general
problems one has to employ a posteriori error estimates
and associated mesh correction indicators within and
adaptive analysis loop.

Common methods of mesh enrichment
• Uniform h-refinement – Subdivide element into

smaller elements. The common method is to cut all
edges in half.

• Adaptive h-refinement – employ an adaptive method
to refine the mesh as needed to be optimal (e.g., to
equilibrate the error per element which is optimal for
linear self adjoint problems).

• Uniform p-refinement – increase the order of the
elements in a fixed mesh topology.

 2

• Adaptive p-refinement – selectively increase the order
of elements in a fixed mesh topology as dictated by
an adaptive method that drives the mesh to an
optimal element order distribution.

• Adaptive hp-refinement – selectively refine elements
and selectively increase polynomial order, as driven
by an adaptive procedure, to create an optimal
distribution of element sizes and order. Such a
procedure needs both local error estimates and local
correction indicators that can indicate which of the two
methods to enrich the mesh should be applied locally.

Note to compare the different methods of mesh
enrichment we need a common basis for defining
convergence – we only have an equation that has hα
where α is a function of p. The ideal would be total
solution time. However, this is a strong function of details
of implementation of the numerical procedures used to
solve the finite element problem.

The closest we can come-up with as a common basis for
describing the convergence is the total number of
unknowns which we will denote as N . The main problem
with N is that it does not account for the fact that as you
increase p the stiffness matrix becomes less sparse that
when you decrease h. However, for a good selection of
numerical methods used, the influence is not that
noticeable.
The Szabo and Babuska text book provides information on
the comparison of the methods:

 3

For nsd = 2
p = k = order of complete polynomial of elements
λ = a measure of the strength of a singularity if one exists
β = convergence rate
note: p controls for problems with a smooth exact solution
and λ controls if the exact solution is not smooth,

Convergence rates:

Uniform h-refinement

 ,

Where e
E
= a(e,e)

1
2

Adaptive h-refinement

 , β = 12 p

basically eliminate the influence of the singularity

Uniform (or adaptive) p-refinement for smooth problems

 , is a constant, θ ≥ 12

Uniform p-refinement for singular problems

β = 1

2
λ if the singularity in inside the element, β = λ if

the singularity in on element boundary.

e
E
≤
c
N β

β = 1
2
min(p,λ)

e
E
≤
c
N β

e
E
≤

c
exp(γN θ)

γ

e
E
≤
c
N β

 4

Adaptive hp-refinement for singular problems.

 , is a constant, θ ≥ 13

This case requires very carefully constructed meshes. For
example for a 1D 1

r
 singularity, what one has with a

linear elastic crack tip, a geometrically graded mesh is
needed with a factor of 0.15. That is the first element is
85% of the domain.

e
E
≤

c
exp(γN θ)

γ

 5

We are often interested in the most accurate values of
point wise quantities. In general some locations provide
more accurate values than others. For example, we saw in
1D that the nodal values were exact and the derivative
value was exact at some location in the element. What
about 2D and 3D? The nodal values are not exact, but
they tend to be more accurate with the values elsewhere
typically not being dramatically less accurate.

However, the derivative values are more problematic. We
care about this since there are “engineering” quantities of
great interested like the values of stresses. As with the
function itself, we do not know of any exact value existing.
The more problematic part is that: (A) Although the
stresses may be quite accurate at some specific points,
they can be highly inaccurate at other points in the
element. (B) Even if there are points which are more
accurate, they are not the nodes, and worse than that, we
do not know exactly where they are.

There are optimal sampling points for derivative values.
There are even what are referred to as super-convergent
points where they converge at a higher rate than they do
elsewhere. Determination of super-convergence points is
really hard even for simple problems on regular meshes.
There has been work to try to generalize the question to
find regions of “better convergence” done by Babuska and
Strouboulis. However, even if one can follow what they
talk about, the method is very complex to apply. On the
more positive side, we do have some useful guidelines
and some methods that work pretty well.

 6

Lets start with the basic – Optimal 1D sampling points

The best approximation theory says the FE soln., uh , is
the best fit to the exact solution, u , WRT to the energy
norm, a(uh ,uh) . We can therefore think of uh as a
weighted (due to material parameters) least squares fit to
the m th derivatives for the simple cases of a(uh ,uh) we
have seen in the text. The theory of least squares says
that a polynomial approximation, gh (ξ) , of order l that is a
least squares fit to the function g(ξ) will agree at the l +1
points corresponding to the zero’s of the Legendre
polynomial Pl (ξ) . Yes, these are the same locations we
were finding for the Gauss quadrature points.

Recall our simplest case a(u,u) = uxux dx0

1
∫ we have what

looks like a least squares case. With material parameters,
it is now “weighted” a(u,u) = uxκux dx0

1
∫ .

Extrapolating this idea to the derivative terms in a(uh ,uh)
we say uh is a best least squared fit polynomial of order
k −m to the m th derivative of the exact solution u . Thus the
m th derivation of uh agrees with the m th derivative of the
exact solution u at the k −m+1 points corresponding to the
zeros of the polynomial P(k−m+1) (ξ) .
Note – this is only 1D but the 2D and 3D cases tend to
have better values at these locations also.

 7

Consider some elements:
4 noded, bi-linear quadrilateral – k −m+1=1 says the zero
of P1(

!
ξ) which is at

!
ξ = 0 . (Which is not the integration rule

we typically want to use.)

8 noded quadratic quadrilateral – k −m+1= 2 says the
zero of P2 (

!
ξ) which correspond to the locations of the 2x2

Guass quadrature rule (which we like to use).

 8

Interpretation of derivative values

Recall: !
ξ = Bde !
σ = DBde

Although these quantities are close to best integral least
squares fits, we have just seen the direct evaluation of
these expressions at any point in the element can give
really poor values. We are looking for methods to define
better (more accurate) distributions of these quantities
over the elements in the mesh. Ideally we can base that
on some pointwise evaluations of the above equations.

Consider some possibilities:

Direct evaluation at specific locations:
1. Node points: Would be the most convenient. First

issue is each element sharing the node is a different
value. More importantly, is that the node is one of the
least accurate places to evaluate derivative values.

2. Other points on element boundaries: pretty much the
same story as the nodal values.

3. Element Centroids: Often better, often at the location
of one of the “optimal” (based on the simplified
analysis) locations. Also typically within the portion of
the element the Babuska and Strouboulis method
would indicate is “good”. However, not always ideal.
See the “cantilever” beam example above – the
average shear stress is not even of the correct sign at
the center of the elements.

 9

4. Gauss integration points: What is most commonly
used. As we saw the points often used for the
reduced integration for elements are optimal in terms
of what the simple analysis says.

5. Optimal stress evaluation points: Would be great if we
knew them, but in reality we only have guidance on
their locations.

Averaging the nodal and or other boundary values:
That is evaluate the values for each element that has the
point of interest on its boundary. Then do a straight or
weighted (i.e., based on element size) average. In some
cases that may not be the bad. In others it is poor, look the
beam example above. It clearly demonstrates that:

(bad value A + bad value B)/2 = bad value C

Finite difference relations:
Apply difference equations using the nodal values of the
continuous FE field to define derivatives of that solution
field. Not hard to apply to a uniform quad or hex mesh and
may give reasonable values. However, we are typically
using much less structured meshes, thus easy to use
difference equations that are accurate are not available.

Projection Methods:
Build off the fact that the finite element is a best
approximation in an integral sense of derivative quantities.
One way to look at these methods is can we define
another distribution that will end up being a more accurate
point wise representation that we match to the finite
element solution in an integral least squares sense.

 10

Looking at the beam example what do we see as “issues”
with the direct evaluation of the FE stresses:
• They are discontinuous between elements.
• They tend to be noise (higher order than desired) in

the element.
We would like a method that addresses these things is
some manner.

Three approaches:

1. Global projections onto a C 0 continuous derivative
field This would likely be the most accurate method.
However, it is quite expensive. As far as I know, no
one uses it in widely distribute code.

2. Elemental projections using a lower order set of
derivative shape functions. Will still be discontinuous
between elements in general. From there one applies
nodal averaging to make it C 0 continuous on the
domain. Unlike straight nodal evaluation and
averaging, the assumption is you are averaging much
more accurate values. Has been used heavily in the
past to be able to make the nice continuous color
stress plots one gets from commercial codes.

3. Patchwise projections to define unique nodal values,
the apply the original shape functions to define the C 0

derivative field. When a “lower order” fit is used on
the patch level, this method is addressing, in a
manner, both of the “issues” indicated above.

 11

Global Projection:

σ̂ = N̂ A
A=1

nnp

∑ σ A
* eq. 1

σ̂ is a C 0 derivative or stress field
N̂ A are C 0 nodal shape functions (assume interpolating)
σ A
* are the nodal values of the C 0 derivative or stress field

σ h is the finite element stress field (used below)

We need to select the nodal shape functions and define
the criteria by which we determine the values of σ A

* .
Following the approach of Oden and Brauchi, we will use
the same shape functions as used for the original field
(since we are doing things globally this is not a problem in
terms of being too high an order) and define an integral
least squares fit.

Define
Χ(σ A

*) = σ h − σ̂()
2

Ω∫ dΩ eq. 2
as the function we want to minimize. Note that the only
terms that can vary are the σ A

* terms. Thus the minimum
is found by setting.

∂Χ(σ A
*)

∂σ A
*

= 0 for A =1(1)nnp

Employing eq 2 with eq 1 substituted in we have:

0 = ∂

∂σ A
*

σ h − N̂Bσ B
*()
2
dΩ

Ω∫
⎡
⎣⎢

⎤
⎦⎥ for A =1(1)nnp

0 = 2 NA σ
h − N̂Bσ B

*()dΩΩ∫ for A =1(1)nnp

 12

0 = N̂ Aσ
h dΩ

Ω∫ − N̂ AN̂Bσ B
* dΩ

Ω∫ for A =1(1)nnp eq. 3
taking a bit of liberty on notation the vector can be written
as
σ h = [B]{d} for derivatives or σ h = [D][B]{d}for stresses

where [B] is the required derivative operators, [D] is the
material matrix and {d} is the vector of nodal values of the
solved for finite element field. Putting this in eq 3 we get

 N̂ AN̂Bσ B
* dΩ

Ω∫ = N̂ A[D][B]dΩΩ∫ {d} for A =1(1)nnp
collecting for all A, and putting things in vectors and
matrices we have

[N̂]T [N̂]dΩ
Ω∫ {σ *}= [N̂]T [D][B]dΩ

Ω∫ {d}

defining [Mσ]= [N̂]T [N̂]dΩ
Ω∫ we have

{σ *}= [Mσ]
−1 [N̂]T [D][B]dΩ

Ω∫ {d}
Note that the cost of solving this is on the order of the
solution to the original finite element problems. Unlike the
finite element stress field, σ h , that correspond to a field in
overall equilibrium, the stress field solved for here, σ̂ , is
not in overall equilibrium. Thus an improvement that has
been applied to this is to supplement it with “equilibrium
iterations”. The same strategy of “equilibrium iterations”
can be applied in the other two methods.

Elemental projections with lower order shape
functions followed by averaging:

σ̂ e = N̂a
e

a=1

nen

∑ σ a
e* eq. 4

 13

σ̂ e is a element level derivative or stress field
N̂a
e are element level shape functions, typically selected to

be one order lower that finite element field shape functions
(assume interpolating)
σ a
e* are element level nodal values of the derivative or

stress field
σ h is the finite element stress field

The process will be same as before, but just at the
element level. Define

Χ(σ a
*) = σ h − σ̂ e()

2

Ωe∫ dΩe eq. 5
as the function we want to minimize. Note that the only
terms that can vary are the σ a

* terms. Thus the minimum is
found by setting.

∂Χ(σ a
*)

∂σ a
*

= 0 for a =1(1)nen

Employing eq 5 with eq 4 substituted in we have:

0 = ∂

∂σ a
e*

σ h − N̂b
eσ b

e*()
2
dΩe

Ωe∫
⎡
⎣⎢

⎤
⎦⎥ for a =1(1)nen

0 = 2 N̂a σ
h − N̂bσ b

e*()dΩe
Ωe∫ for a =1(1)nen

0 = N̂aσ
h dΩe

Ωe∫ − N̂a N̂bσ b
e* dΩe

Ωe∫ for a =1(1)nen eq. 6
taking a bit of liberty on notation the vector can be written
as
σ h = [B]{d e} for derivatives or σ h = [D][B]{d e}for stresses

 14

where [B] is the required derivative operators, [D] is the
material matrix and {d e} is the vector of element nodal
values of the solved for finite element field. Putting this in
eq 6 we get

N̂a
e N̂b

eσ b
e* dΩe

Ωe∫ = N̂a
e[D][B]dΩ

Ωe∫
e
{d e} for a =1(1)nen

collecting for all a , and putting things in vectors and
matrices we have

[N̂]T [N̂]dΩe
Ωe∫ {σ e*}= [N̂]T [D][B]dΩe

Ωe∫ {d e}

defining [Mσ
e]= [N̂]T [N̂]dΩ

Ωe∫
e
 we have

{σ e*}= [Mσ
e]−1 [N̂]T [D][B]dΩe

Ωe∫ {d e}
Note that now the systems to solve are very small so the
cost is a function of the number of elements and much
less than solving the global system. Still have
discontinuous values between elements, thus this step is
followed by nodal averaging. Since the element values are
more accurate (at least that is what they typically are) the
averaged values can be accurate.

Patch wise least squares fit:
Developed by Zienkiewicz and Zhu (actually for use in a
posteriori error estimation). Instead of defining the local
problem over the element, the focus is on the individual
node. Every node is surrounded by a patch of elements. A
least squares fit to the values over the patch to some
selected polynomial function defined over the patch is
carried out and the nodal value obtained by evaluating this
fitted function at the node point.

 15

Patch of elements around node A

The polynomial selected to be fit to can be as simple as a
tailor series

σ̂ p =C0 +C1x+C2 y +C3x
2 +C4xy +C5y

2 + ...
In this case the problem is to minimize

Χ(Ci) = σ h − σ̂ p()
2

Ωe∫ dΩe
and the process follows the same steps as we saw in the
previous cases. Like the element level one, this one yields
a one small system to solve per node to produce a unique
nodal value. The stress field over the domain is then
defined by using these nodal values with a set of C 0 nodal
shape functions.

Note that since these methods employ numerical
integration it is easy to see the statement of the local
methods, particularly the patch wise one, as a discrete

A

 16

least squares fit. This is useful in determining what order
you may want for σ̂ p . For example if we are to sample at
one point per element in the above, then we most likely
want to use a linear σ̂ p since the patch would only have
four points of evaluation. If we used quadratic σ̂ p we do
not have sufficient conditions for a discrete least squares
fit.

Extraction Techniques
These methods employ appropriate Green’s functions in
the original FE integral forms to extract point wise
quantities of interest that, in specific cases, are shown to
converge at the rate of convergence of the energy norm.
Some specific point wise stress extractions techniques
have been defined. The problem is that there are no
generalized Greens functions to extract everything
desired. The methods are complex to implement and
reasonably expensive. However, they do yield highly
accurate results. Not likely these methods will ever be
more than an academic exercise.

