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Can we do better than the standard FE error 
estimates? The answer is yes if you intelligently construct 
the mesh. It is clear that if you grade the mesh so there 
are smaller elements in area where the “action is” and 
large elements where there is “little to no action” you get a 
better answer for the same number of elements. But is it 
possible to even obtain better convergence rates? 
 

There are two aspects to how you may actually get better 
convergence. One is the method you use to improve the 
mesh (typically referred to as refinement). The error 
estimates we have so far are for uniform h-refinement. 
However, we can do p-refinement in which we increase 
the polynomial order.  
 

We can also be “intelligent” about how we refine all the 
way to the development of “optimally” refined meshes. It 
turns out that to get to an optimally refine mesh for general 
problems one has to employ a posteriori error estimates 
and associated mesh correction indicators within and 
adaptive analysis loop.  

 

Common methods of mesh enrichment 
• Uniform h-refinement – Subdivide element into 

smaller elements. The common method is to cut all 
edges in half. 

• Adaptive h-refinement – employ an adaptive method 
to refine the mesh as needed to be optimal (e.g., to 
equilibrate the error per element which is optimal for 
linear self adjoint problems). 

• Uniform p-refinement – increase the order of the 
elements in a fixed mesh topology. 
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• Adaptive p-refinement – selectively increase the order 
of elements in a fixed mesh topology as dictated by 
an adaptive method that drives the mesh to an 
optimal element order distribution. 

• Adaptive hp-refinement – selectively refine elements 
and selectively increase polynomial order, as driven 
by an adaptive procedure, to create an optimal 
distribution of element sizes and order. Such a 
procedure needs both local error estimates and local 
correction indicators that can indicate which of the two 
methods to enrich the mesh should be applied locally. 

 
Note to compare the different methods of mesh 
enrichment we need a common basis for defining 
convergence – we only have an equation that has hα  
where α  is a function of p. The ideal would be total 
solution time. However, this is a strong function of details 
of implementation of the numerical procedures used to 
solve the finite element problem. 
 
The closest we can come-up with as a common basis for 
describing the convergence is the total number of 
unknowns which we will denote as N . The main problem 
with N  is that it does not account for the fact that as you 
increase p the stiffness matrix becomes less sparse that 
when you decrease h. However, for a good selection of 
numerical methods used, the influence is not that 
noticeable.  
The Szabo and Babuska text book provides information on 
the comparison of the methods: 
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For nsd = 2  
p = k =  order of complete polynomial of elements 
λ =  a measure of the strength of a singularity if one exists 
β = convergence rate  
note: p  controls for problems with a smooth exact solution 
and λ  controls if the exact solution is not smooth, 
 
Convergence rates: 
  

Uniform h-refinement 

   ,  
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E
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Adaptive h-refinement 

 , β = 12 p  

basically eliminate the influence of the singularity  
 

Uniform (or adaptive) p-refinement for smooth problems 

 ,  is a constant, θ ≥ 12  

Uniform p-refinement for singular problems 
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Adaptive hp-refinement for singular problems. 

 ,  is a constant, θ ≥ 13  

This case requires very carefully constructed meshes. For 
example for a 1D 1

r
 singularity, what one has with a 

linear elastic crack tip, a geometrically graded mesh is 
needed with a factor of 0.15. That is the first element is 
85% of the domain.  
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We are often interested in the most accurate values of 
point wise quantities. In general some locations provide 
more accurate values than others. For example, we saw in 
1D that the nodal values were exact and the derivative 
value was exact at some location in the element. What 
about 2D and 3D? The nodal values are not exact, but 
they tend to be more accurate with the values elsewhere 
typically not being dramatically less accurate.  
 
However, the derivative values are more problematic. We 
care about this since there are “engineering” quantities of 
great interested like the values of stresses. As with the 
function itself, we do not know of any exact value existing. 
The more problematic part is that: (A) Although the 
stresses may be quite accurate at some specific points, 
they can be highly inaccurate at other points in the 
element. (B) Even if there are points which are more 
accurate, they are not the nodes, and worse than that, we 
do not know exactly where they are.  
 
There are optimal sampling points for derivative values. 
There are even what are referred to as super-convergent 
points where they converge at a higher rate than they do 
elsewhere. Determination of super-convergence points is 
really hard even for simple problems on regular meshes.  
There has been work to try to generalize the question to 
find regions of “better convergence” done by Babuska and 
Strouboulis. However, even if one can follow what they 
talk about, the method is very complex to apply. On the 
more positive side, we do have some useful guidelines 
and some methods that work pretty well. 
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Lets start with the basic – Optimal 1D sampling points 
 
The best approximation theory says the FE soln., uh , is 
the best fit to the exact solution, u , WRT to the energy 
norm, a(uh ,uh ) . We can therefore think of uh  as a 
weighted (due to material parameters) least squares fit to 
the m th derivatives for the simple cases of a(uh ,uh )  we 
have seen in the text. The theory of least squares says 
that a polynomial approximation, gh (ξ ) , of order l  that is a 
least squares fit to the function g(ξ )  will agree at the l +1 
points corresponding to the zero’s of the Legendre 
polynomial Pl (ξ ) . Yes, these are the same locations we 
were finding for the Gauss quadrature points.  
 
Recall our simplest case a(u,u) = uxux dx0

1
∫  we have what 

looks like a least squares case. With material parameters, 
it is now “weighted” a(u,u) = uxκux dx0

1
∫ . 

 
Extrapolating this idea to the derivative terms in a(uh ,uh )  
we say uh  is a best least squared fit polynomial of order 
k −m  to the m th derivative of the exact solution u . Thus the 
m th derivation of uh  agrees with the m th derivative of the 
exact solution u  at the k −m+1 points corresponding to the 
zeros of the polynomial P(k−m+1) (ξ ) .   
Note – this is only 1D but the 2D and 3D cases tend to 
have better values at these locations also. 
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Consider some elements: 
4 noded, bi-linear quadrilateral – k −m+1=1 says the zero 
of P1(

!
ξ )  which is at 

!
ξ = 0 . (Which is not the integration rule 

we typically want to use.) 
  

8 noded quadratic quadrilateral – k −m+1= 2  says the 
zero of P2 (

!
ξ )  which correspond to the locations of the 2x2 

Guass quadrature rule (which we like to use).  
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Interpretation of derivative values 
 

Recall:  !
ξ = Bde  !
σ = DBde   

Although these quantities are close to best integral least 
squares fits, we have just seen the direct evaluation of 
these expressions at any point in the element can give 
really poor values. We are looking for methods to define 
better (more accurate) distributions of these quantities 
over the elements in the mesh. Ideally we can base that 
on some pointwise evaluations of the above equations. 
  

Consider some possibilities: 
  

Direct evaluation at specific locations: 
1. Node points: Would be the most convenient. First 

issue is each element sharing the node is a different 
value. More importantly, is that the node is one of the 
least accurate places to evaluate derivative values.  

2. Other points on element boundaries: pretty much the 
same story as the nodal values. 

3. Element Centroids: Often better, often at the location 
of one of the “optimal” (based on the simplified 
analysis) locations. Also typically within the portion of 
the element the Babuska and Strouboulis method 
would indicate is “good”. However, not always ideal. 
See the “cantilever” beam example above – the 
average shear stress is not even of the correct sign at 
the center of the elements. 
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4. Gauss integration points: What is most commonly 
used. As we saw the points often used for the 
reduced integration for elements are optimal in terms 
of what the simple analysis says. 

5. Optimal stress evaluation points: Would be great if we 
knew them, but in reality we only have guidance on 
their locations. 

 
Averaging the nodal and or other boundary values:  
That is evaluate the values for each element that has the 
point of interest on its boundary. Then do a straight or 
weighted (i.e., based on element size) average. In some 
cases that may not be the bad. In others it is poor, look the 
beam example above. It clearly demonstrates that:  

(bad value A + bad value B)/2 = bad value C 
 
Finite difference relations:  
Apply difference equations using the nodal values of the 
continuous FE field to define derivatives of that solution 
field. Not hard to apply to a uniform quad or hex mesh and 
may give reasonable values. However, we are typically 
using much less structured meshes, thus easy to use 
difference equations that are accurate are not available.  
 
Projection Methods: 
Build off the fact that the finite element is a best 
approximation in an integral sense of derivative quantities. 
One way to look at these methods is can we define 
another distribution that will end up being a more accurate 
point wise representation that we match to the finite 
element solution in an integral least squares sense.  
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Looking at the beam example what do we see as “issues” 
with the direct evaluation of the FE stresses: 
• They are discontinuous between elements. 
• They tend to be noise (higher order than desired) in 

the element. 
We would like a method that addresses these things is 
some manner.  
 
Three approaches: 

1. Global projections onto a C 0  continuous derivative 
field This would likely be the most accurate method. 
However, it is quite expensive. As far as I know, no 
one uses it in widely distribute code. 

2. Elemental projections using a lower order set of 
derivative shape functions. Will still be discontinuous 
between elements in general. From there one applies 
nodal averaging to make it C 0  continuous on the 
domain. Unlike straight nodal evaluation and 
averaging, the assumption is you are averaging much 
more accurate values. Has been used heavily in the 
past to be able to make the nice continuous color 
stress plots one gets from commercial codes.  

3. Patchwise projections to define unique nodal values, 
the apply the original shape functions to define the C 0

derivative field. When a “lower order” fit is used on 
the patch level, this method is addressing, in a 
manner, both of the “issues” indicated above.  
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Global Projection: 

σ̂ = N̂ A
A=1

nnp

∑ σ A
*  eq. 1 

σ̂  is a C 0  derivative or stress field 
N̂ A  are C 0  nodal shape functions (assume interpolating) 
σ A
*  are the nodal values of the C 0  derivative or stress field 

σ h  is the finite element stress field (used below) 
  

We need to select the nodal shape functions and define 
the criteria by which we determine the values of σ A

* . 
Following the approach of Oden and Brauchi, we will use 
the same shape functions as used for the original field 
(since we are doing things globally this is not a problem in 
terms of being too high an order) and define an integral 
least squares fit. 
 

Define  
Χ(σ A

* ) = σ h − σ̂( )
2

Ω∫ dΩ     eq. 2 
as the function we want to minimize. Note that the only 
terms that can vary are the σ A

*  terms. Thus the minimum 
is found by setting.  

∂Χ(σ A
* )

∂σ A
*

= 0 for A =1(1)nnp  

Employing eq 2 with eq 1 substituted in we have: 

0 = ∂

∂σ A
*

σ h − N̂Bσ B
*( )
2
dΩ

Ω∫
⎡
⎣⎢

⎤
⎦⎥ for A =1(1)nnp   

0 = 2 NA σ
h − N̂Bσ B

*( )dΩΩ∫  for A =1(1)nnp  
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0 = N̂ Aσ
h dΩ

Ω∫ − N̂ AN̂Bσ B
* dΩ

Ω∫  for A =1(1)nnp  eq. 3 
taking a bit of liberty on notation the vector can be written 
as  
σ h = [B]{d} for derivatives or σ h = [D][B]{d}for stresses 

where [B] is the required derivative operators, [D] is the 
material matrix and {d} is the vector of nodal values of the 
solved for finite element field. Putting this in eq 3 we get  

 N̂ AN̂Bσ B
* dΩ

Ω∫ = N̂ A[D][B]dΩΩ∫ {d} for A =1(1)nnp  
collecting for all A, and putting things in vectors and 
matrices we have 

[N̂ ]T [N̂ ]dΩ
Ω∫ {σ *}= [N̂ ]T [D][B]dΩ

Ω∫ {d} 

defining [Mσ ]= [N̂ ]T [N̂ ]dΩ
Ω∫  we have 

{σ *}= [Mσ ]
−1 [N̂ ]T [D][B]dΩ

Ω∫ {d} 
Note that the cost of solving this is on the order of the 
solution to the original finite element problems. Unlike the 
finite element stress field, σ h , that correspond to a field in 
overall equilibrium, the stress field solved for here, σ̂ , is 
not in overall equilibrium. Thus an improvement that has 
been applied to this is to supplement it with “equilibrium 
iterations”. The same strategy of  “equilibrium iterations” 
can be applied in the other two methods.  
 
Elemental projections with lower order shape 
functions followed by averaging: 

σ̂ e = N̂a
e

a=1

nen

∑ σ a
e*  eq. 4 
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σ̂ e  is a element level derivative or stress field 
N̂a
e  are element level shape functions, typically selected to 

be one order lower that finite element field shape functions 
(assume interpolating) 
σ a
e*  are element level nodal values of the derivative or 

stress field 
σ h  is the finite element stress field 
 
The process will be same as before, but just at the 
element level. Define  

Χ(σ a
*) = σ h − σ̂ e( )

2

Ωe∫ dΩe  eq. 5 
as the function we want to minimize. Note that the only 
terms that can vary are the σ a

* terms. Thus the minimum is 
found by setting. 

∂Χ(σ a
*)

∂σ a
*

= 0  for a =1(1)nen  

Employing eq 5 with eq 4 substituted in we have: 

0 = ∂

∂σ a
e*

σ h − N̂b
eσ b

e*( )
2
dΩe

Ωe∫
⎡
⎣⎢

⎤
⎦⎥ for a =1(1)nen  

0 = 2 N̂a σ
h − N̂bσ b

e*( )dΩe
Ωe∫  for a =1(1)nen  

0 = N̂aσ
h dΩe

Ωe∫ − N̂a N̂bσ b
e* dΩe

Ωe∫  for a =1(1)nen  eq. 6 
taking a bit of liberty on notation the vector can be written 
as  
σ h = [B]{d e} for derivatives or σ h = [D][B]{d e}for stresses 
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where [B] is the required derivative operators, [D] is the 
material matrix and {d e} is the vector of element nodal 
values of the solved for finite element field. Putting this in 
eq 6 we get 

N̂a
e N̂b

eσ b
e* dΩe

Ωe∫ = N̂a
e[D][B]dΩ

Ωe∫
e
{d e} for a =1(1)nen  

collecting for all a , and putting things in vectors and 
matrices we have 

[N̂ ]T [N̂ ]dΩe
Ωe∫ {σ e*}= [N̂ ]T [D][B]dΩe

Ωe∫ {d e} 

defining [Mσ
e ]= [N̂ ]T [N̂ ]dΩ

Ωe∫
e
 we have 

{σ e*}= [Mσ
e ]−1 [N̂ ]T [D][B]dΩe

Ωe∫ {d e} 
Note that now the systems to solve are very small so the 
cost is a function of the number of elements and much 
less than solving the global system. Still have 
discontinuous values between elements, thus this step is 
followed by nodal averaging. Since the element values are 
more accurate (at least that is what they typically are) the 
averaged values can be accurate.  
 
Patch wise least squares fit: 
Developed by Zienkiewicz and Zhu (actually for use in a 
posteriori error estimation). Instead of defining the local 
problem over the element, the focus is on the individual 
node. Every node is surrounded by a patch of elements. A 
least squares fit to the values over the patch to some 
selected polynomial function defined over the patch is 
carried out and the nodal value obtained by evaluating this 
fitted function at the node point.  
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Patch of elements around node A   

The polynomial selected to be fit to can be as simple as a 
tailor series 

σ̂ p =C0 +C1x+C2 y +C3x
2 +C4xy +C5y

2 + ...   
In this case the problem is to minimize  

Χ(Ci ) = σ h − σ̂ p( )
2

Ωe∫ dΩe   
and the process follows the same steps as we saw in the 
previous cases. Like the element level one, this one yields 
a one small system to solve per node to produce a unique 
nodal value. The stress field over the domain is then 
defined by using these nodal values with a set of C 0  nodal 
shape functions.  
 
Note that since these methods employ numerical 
integration it is easy to see the statement of the local 
methods, particularly the patch wise one, as a discrete 

  
A 
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least squares fit.  This is useful in determining what order 
you may want for σ̂ p . For example if we are to sample at 
one point per element in the above, then we most likely 
want to use a linear σ̂ p  since the patch would only have 
four points of evaluation. If we used quadratic σ̂ p  we do 
not have sufficient conditions for a discrete least squares 
fit.  
 
Extraction Techniques 
These methods employ appropriate Green’s functions in 
the original FE integral forms to extract point wise 
quantities of interest that, in specific cases, are shown to 
converge at the rate of convergence of the energy norm. 
Some specific point wise stress extractions techniques 
have been defined. The problem is that there are no 
generalized Greens functions to extract everything 
desired. The methods are complex to implement and 
reasonably expensive. However, they do yield highly 
accurate results. Not likely these methods will ever be 
more than an academic exercise.  
 
 


