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Accuracy of the Finite Element method 
 
We will cover Appendix 4.I.2-4.I.4 (already covered 4.I.1), 
section 4.1 and some added material. 
 
We will not attempt to go into full mathematical detail, our 
more modest goals are: 
• Introduce you to a bit more of the terminology you will 

see when you read papers 
• Inform you of the basics convergence properties of 

finite element methods. 
 
Appendix 4.I.2 Sobolev Norms 
 
Consider a domain Ω⊂ℜnsd , nsd ≥1 (will be the spatial 
dimension – 1D, 2D, 3D), and let u,v :Ω→ℜ (note – 
scalar fields) 
  

The L2 Ω( )  (or equivalently Ho Ω( )) inner product and 
norm are defined by  

u,v( ) = u,v( )0 = uvdΩ
Ω∫  

u = u,u( )
1
2  

  

The H 1 Ω( )  inner product and norm are defined by  

u,v( )1 = uv+u,iv,i( )dΩΩ∫  (sum 1≤ i ≤ nsd ) 

u
1
= u,u( )1

1
2  
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The H s Ω( )  inner product and norm are defined by  

u,v( )s = uv+u,iv,i +u,ijv,ij + ...+u,ij ...kv,ij ...k( )dΩΩ∫   

where the u,ij ...kv,ij ...k  indicates taking s  derivatives 

u
s
= u,u( )s

1
2  

 
When dealing with vector fields !u  and !v  we have to 
account for components so in that case: 
The H s Ω( )  inner product and norm are defined by  

!u, !v( )s = uivi +ui , jvi , j +ui , jkvi , jk + ...+ui , jk ...lvi , jk ...l( )dΩΩ∫  

where the ui , jk ...lvi , jk ...l  indicates taking s  derivatives on the 
components 

!u
s
=
!u, !u( )s

1
2  

 
There are time one refers to the semi norm, which is just 
the last term 
 

!u
s
= ui , jk ...lui , jk ...l dΩΩ∫( )

1
2  

 
The s th Sobolev space, denoted H s , is the collection of 
functions !u :Ω→ℜn  where n  is the number of 
components of !u  which is ≥ nsd , it is = nsd  in things we 
have been looking at. You will also hear the term Hilbert 
spaces in that Sobolev spaces are Hilbert spaces. 
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Note that Hilbert spaces satisfy the inclusion property: 
H r ⊂ H s ,r > s  

For example if you can take up through 6 derivatives, you 
can certainly take 4 or 5.  
 
Sobolev Imbedding Theorems 
 
A key result of importance to us is to relate these integral 
space properties to the more classical definition of 
continuous functions. 
 
Definition (of a continuous function): Let Cb

k ,k ≥ 0 , be the 
space of functions !u :Ω→ℜn  which are: 
• Bounded (that is less than infinity) 
• Continuous, and have continuous and bounded 

derivatives of order j , 1≤ j ≤ k  
 
Sobolev Imbedding Theorem: If Ω is an open set in ℜnsd  
(and not a hyper surface – that is “full dimension” and not 

something like just a surface in 3D) and  s > nsd 2 + k  (note 

the dependence on  nsd ) then 
H s ⊂Cb

k  
Examples: 
Ω = a,b⎤⎦ ⎡⎣ ⊂ ℜ1. Then for H 1  we have 1> 12 + k  thus k = 0  

and we are working with Cb
0  functions, for H 2  we have 

2 > 1
2
+ k  thus k =1 and we are working with Cb

1 functions. 
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Ω = bi −unit − sqaure⎤⎦ ⎡⎣ ⊂ ℜ2 . Then for H 2  we have 

2 > 2
2
+ k  thus k = 0  and we are working with Cb

0  

functions. Note with the increased dimension we only get 
Cb
0  and not Cb

1. The dimension of the domain makes a 
difference (or more simply, 1D is easier than 2D and 3D). 
 
The imbedding theorem is sharp in the sense that if 

s ≤ nsd
2
+ k , there exists H s  functions that are not Cb

k .  

 
The range of space, ℜn   (n  is the number of components 
of !u  which is ≥ nsd  in the vector case) plays no role in the 
imbedding theorem.  
 
4.I.3 Approximation properties of finite element spaces in 
Sobolev norms 
 
We want to answer the question: Given a Sobolev space 
H r  and a finite element space δ h , how well are we able to 
approximate u ⊂ H r  if we are allowed to pick any member 
of δ h? To go through this in detail is beyond what we are 
prepared to cover, thus we will state the key results and 
indicate their importance. 
 
The key result we want to state will indicate how the error 
decreases (in terms of convergence rate) as we “refine” 
the mesh, where, for now, refine means to make elements 
of a given order finite element mesh smaller.  
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Consider a set of finite elements in the finite dimensional 
space δ h  where we have some measure of the element 
size, h , as δ h | h ⊂]0,D]{ } where D  is the diameter of the 
element (more on this later). If we have two meshes with 
element sized h1 and h2 , where h1 < h2 , we can think of δ h1  
as a refinement of δ h2 , with the dimension of δ h1  being 
greater than δ h2 . 
 
A common example of this is you have an initial mesh  
δ h2  and you create the refined mesh by subdividing the 
elements in half (in each dimension) to create the mesh  
δ h1  which has elements “½ the size”.  
 
A definition and the first key result (just stated): 
A collection of finite element spaces is k ,m-regular (or 
simply regular) if for each fixed h  (note - k  will be the 
order on complete polynomial for our finite element and m 
is to highest order partial in our energy functional) 

a) δ h ⊂ Hm  
b) For every u ⊂ H r , r ≥ 0 , and for all s  such that 
0 ≤ s ≤min{r,m}, there exists an approximate 
solution, U h ∈ δ h  and constant c , independent of u  
and h , such that 

u−U h

s
≤ chα u

r
 eq.1 

where α =min(k +1− s,r − s)  is the convergence rate 
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Remarks: 
• This result is a cornerstone of the FE error equation.  
• The essence of eq. 1 is that the more refined the 

mesh, the better the solution. 
• The highest rate of convergence is in the H 0  norm of 
u  while the rate of convergence decrease with 
increasing s . This means that the first derivatives 
converge at a rate one less than the value (in the 
norm) and the second derivatives one less than the 
first derivatives, etc. 

• The rate of convergence is influence by the 
“smoothness” of the exact solution, u . If u  is smooth 
enough, the rate is dictated by the order of the finite 
element, k . If it is not smooth enough it is dictated by 
the smoothness of the exact solution, r . This is of 
great importance to us since in many problems of 
interest we have analytic singularities (singularities 
with finite energy so we can solve them) where 
r < k +1. 

• Convergence of the solution only guaranteed if the 
refinement is quasi-uniform which maintains a limit on 
the minimum element aspect ratio – elements must 
get smaller in all directions. 
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Examples: 
 
Let δ h  be a piecewise linear FE space (k =1) over N  
elements. The collection {δ h | h =1/ N}, where N  is a 
positive integer, is 1,1-regular. That is for h =1/ N  
• δ h ⊂ H 1 
• For every u ⊂ H 2  (making sure u  is smooth enough) 

there exists a U h ∈ δ h  such that  
u−U h

0
≤ ch2 u

2
 

u−U h

1
≤ ch u

2
 

where it happens to be a semi norm on the right 
which is even tighter than the full norm. 

   

  

   

  

Uniform	refinement 

Not	quasi-uniform	refinement 
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Let δ h  be a piecewise quadratic FE space (k = 2 ) over N  
elements. The collection {δ h | h =1/ N}, where N  is a 
positive integer, is 2,1-regular. That is for h =1/ N  
• δ h ⊂ H 1 
• For every u ⊂ H 3 there exists a U h ∈ δ h  such that  

u−U h

0
≤ ch3 u

3
 

u−U h

1
≤ ch2 u

3
 

Let δ h  be a Hermite cubic FE space (k = 3 with continuous 
value and first derivative) over N  elements to be used for 
the beam problem. The collection {δ h | h =1/ N} where N  
is a positive integer is 3,2-regular. That is for h =1/ N  
• δ h ⊂ H 2  
• For every u ⊂ H 4  there exists a U h ∈ δ h  such that  

u−U h

0
≤ ch4 u

4
 

u−U h

1
≤ ch3 u

4
 

u−U h

2
≤ ch2 u

4
 

Let δ h  be an isoparametric FE space of complete order k  
on a domain Ω⊂ℜnsd ,nsd ≥1. In the case where there is no 
geometric approximation of the mesh to the domain 
(Ω≡ ∪ e=1

nel Ωe ) and only slightly curved elements for k ≥ 2 , 
the finite element space, δ h , is k,1-regular 
• δ h ⊂ H 1 
• For every u ⊂ H k+1 there exists a U h ∈ δ h  such that  

u−U h

0
≤ chk+1 u

k+1
, u−U h

1
≤ chk u

k+1
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4.I.4 Hypotheses on a(•,•)  - use of equivalence of norms 
 
To make use of the stuff we have seen so far we need to 
relate it to our finite element problem 

a( !w, !u) = ( !w,
!
f )+ ( !w,

!
h)

Γ   ∀
!w∈V ⊂ H0

m  
The subscript 0 on H0

m  is to indicate the satisfaction of the 
homogeneous (zero) version of the essential B.C. 
 
Definition: Two norms, •

(1)
 and •

(2)
, on a linear space A, 

are referred to as equivalent if there exists constants c1 
and c2  such that ∀x ∈ A 

 c1 x
(1)
≤ x

(2)
≤ c2 x

(1)
    

Our hypothesis is that we will assume !w
m
 and a( !w, !w)

1
2  

define equivalent norms ∀ !w∈V ⊂ H0
m   

 c1
!w
m
≤ a( !w, !w)

1
2 ≤ c2

!w
m
    

This will be true for all the a( !w, !w)  we have seen so long 
as the associated material tensors (e.g., κ ,EI ,κ ij ,cijkl ) are 
positive definite.  
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A quick summary of what we have form this: 
• Under the right conditions, refining the mesh increase 

the accuracy and we converge to the exact solution in 
the limit (h→ 0 ) 

• The rate of convergence is a function of the highest 
order complete polynomial order, or the space of the 
exact solution (whichever is more restrictive). 

• For smooth exact solutions our convergence rate 
increase as we increase the elements complete 
polynomial order. 

• The higher the order of derivative desired the lower 
the rate of convergence. 
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Section 4.1  Standard FE Error Estimate 
 
Our weak form: Find u ∈ δ  such that 

a( !w, !u) = ( !w,
!
f )+ ( !w,

!
h)

Γ   ∀
!w∈V ⊂ H0

m  
Our finite element Galerkin form: Find uh ∈ δ h  such that  

a( !wh , !uh ) = ( !wh ,
!
f )+ ( !wh ,

!
h)

Γ   ∀
!wh ∈V h ⊂ H0

m  
where 
• δ h ⊂ δ , V h ⊂V  
• a(•,•),(•,•),(•,•)

Γ
 are symmetric and bilinear (will use 

those properties in proofs) 
• a(w,w) ≥ 0  and a(w,w) = 0  iff w = 0 (pos. definite) 

• !w
m
 and a( !w, !w)

1
2  define equivalent norms on V  

 
Define the error as !e = !uh − !u . We will show that 
 
(A) a( !wh , !e) = 0   ∀ !wh ∈V h . The error is orthogonal to our 
weighting space WRT a(•,•) . This says that !uh  is the 
projection of !u   onto V h  WRT a(•,•) . 
 
(B) a(!e , !e) ≤ a(

!
U h −

!u,
!
U h −

!u),∀
!
U h ∈ δ h . This is the best 

approximation property – says the FE solution is the best, 
WRT a(•,•)  ,since no other member of δ h  give a smaller 
error norm value.  
 
(C) In the case of homogeneous essential boundary 
conditions (where we have δ h =V h ) we will have 
a( !u, !u) = a( !uh , !uh )+ a(!e , !e)  and a( !uh , !uh ) ≤ a( !u, !u)   
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Proof of (A) 
From the FE solution we have: 

a( !wh , !uh ) = ( !wh ,
!
f )+ ( !wh ,

!
h)

Γ     eq.3 
since δ h ⊂ δ  we can also write 

a( !wh , !u) = ( !wh ,
!
f )+ ( !wh ,

!
h)

Γ    eq.4  
Subtracting eq. 4 from eq. 3 we get 

a( !wh , !uh )− a( !wh , !u) = 0  
employing bi-linearity we have 

a( !wh , !uh − !u) = a( !wh , !e) = 0   
and we are done with the proof of (A). 
 
 
Proof of (B) 
Consider  

a(!e + !wh , !e + !wh ) = a(!e , !e)+ 2a(!e , !wh )+ a( !wh , !wh )  eq. 5 
Note that by symmetry and the result to (A) we have 
a(!e , !wh ) = a( !wh , !e) = 0. 
Recalling that a(w,w) ≥ 0  we can use eq. 5 to write 

a(!e , !e) ≤ a(!e + !wh , !e + !wh )  eq. 6 
Note that any 

!
U h ∈ δ h  can be written as 

!
U h =

!uh + !wh   
Thus we can write  

!e + !wh = !uh − !u + !wh =
!
U h −

!u  
substituting this into eq. 6 we have 

a(!e , !e) ≤ a(
!
U h −

!u,
!
U h −

!u)  
and we are done with (B). 
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Proof of (C) 
From (A) we have  

a( !wh , !e) = 0  
Noting that !e = !uh − !u  we can write !u = !uh − !e  which we 
substitute into eq. 6 and to get 

a( !u, !u) = a( !uh − !e , !uh − !e) = a( !uh , !uh )− 2a( !uh , !e)+ a(!e , !e)  
From (A) we have that a( !wh , !e) = 0 . Since δ h =V h  can write 
this as a( !uh , !e) = 0 , thus 

a( !u, !u) = a( !uh , !uh )+ a(!e , !e)     eq. 7 
and we are done with (C). 
Since  a(!e , !e) ≥ 0  we can see from eq.7 that  

a( !uh , !uh ) ≤ a( !u, !u)  
says the FE solution underestimates the exact energy. 
 

We use these results in writing the finite element error. We 
will focus on the “Standard FE error” where we are 
interested in errors up to !e

m
 (m is highest order 

derivative in a(•,•) ) and we consider !u ∈ H r ,r >m .  
 
Restating the convergence equation given before: 
For every !u ⊂ H r , there exists a 

!
U h ∈ δ h  and constant c , 

independent of !u  and h , such that 
!u −
!
U h

m
≤ chα !u

r
 eq.8 

where α = k +1−m  is the convergence rate. We want to go 
from here to the finite element error equation for our 
elliptic boundary value problems which is:  

!e
m
≤ chα !u

r
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Proof 
!e
m
≤
1
c1
a(!e , !e)

1
2    (equivalence of norms) 

!e
m
≤
1
c1
a( !u −

!
U h , !u −

!
U h )

1
2   (best approximation theorem) 

!e
m
≤
c2
c1

!u −
!
U h     (equivalence of norms) 

!e
m
≤ c c2
c1
hα !u

r
= chα !u

r
 (error equation – eq. 8) 

where α = k +1−m  for !u ∈ H r ,r >m  
 
Comment: As long as k +1>m  and r >m  (this means that 
!u ∈ H k+1 we have optimal convergence in the Hm  norm 
(that is the r − s  term will not dictate convergence). 
 
With some more math we can show that when !u ∈ H k+1 we 
can write the error in lower H s  norms 0 ≤ s ≤m as 

!e
s
≤ chβ !u

k+1
 

where the constant c  is independent of u  and h , and 
β =min(k +1− s,2(k +1−m))  
 
Remember that we do not always have r >m  in which 
case we do not have optimal convergence since 
α =min(k +1− s,r − s)  for s th norm. 
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Note that with this we can state the finite element error for 
common finite elements (Actually restate them now in 
terms of the finite element error). 
Let δ h  be our linear (k =1) finite element. For u ⊂ H 2  we 
have 

e
0
≤ ch2 u

2
 

e
1
≤ ch u

2
 

Let δ h  be our quadratic (k = 2 ) finite elements. For u ⊂ H 3 
we have 

e
0
≤ ch3 u

3
 

e
1
≤ ch2 u

3
 

Let δ h  be isoparametric elements of order k . In the case 
where there is no geometric approximation of the mesh to 
the domain (Ω≡ ∪ e=1

nel Ωe ) and only slightly curved elements. 
For u ⊂ H k+1 we have 

e
0
≤ chk+1 u

k+1
  

e
1
≤ chk u

k+1
 

 


