Will cover text sections 1.2to 1.10 and 1.12 to 1.16 will also
cover Appendix 4.1.1

1D ODE

(Ku’x)x+f=0 in Q

u - the dependent variable
f - forcing function

K - material parameter

Q - domain
2
=i (Ku ) =i K@ if k constant (Ku ) =Ku =1<M
T dx “xdx\ dx "X " dx’
Intext k=1

In a 1D domain from ato b
Q=Ja,b[ , a<x<b does notinclude the boundary

The closure includes the boundary
Q=[a,b],a<sx=<b

The boundary in 1D is the ends x=a,b

fER , kENR, k>0



To properly specific the problem we also need boundary
conditions (BCs) at « and » which can be either essential
(Dirichlet) or natural (Neumann). The must be minimum
number of essential BC. In the 1D case need an essential
BC at ¢ or b. Can have essential at both. Can not have
natural at both. (Each end has only one BC for the second
order ODE.)

Essential BC
u=g on Fg for example u(l)=g

Natural BC
-ku _=h on I, for example -k (0)u (0)="/

We can now state the strong form of the problem

Given f:éei)%, k€N , k>0 and constants g and #, find

1u:Q—N such that
(Ku’x) + /=0 inQ

u=gon I for example u(l)=g

-ku _=h on I, for example -k (0)u (0)="#

For the case where k =1, the exact solution is

u(x)=g+(1-x)h+ [ [j f(z)dz]dy
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For the problems we are interested in we will typically not be
able to find an exact solution and thus need a method to get
an approximate solution through some form of discretization.

The process of discretization means we will go from looking
for a solution in an infinite dimensional space to looking for
one in a finite dimensional space.

For finite difference we directly discretize the differential
operators in the strong form. For finite elements we will
discretize an alternative, but equivalent form, referred to as
the weak form. One way to construct a weak form is the
method of weighted residuals (more on this later).

For the current problem on a domain that goes from 0 to 1
(a =0, b =1) we will do this as follows:

j‘W[(K”,x),x + fldx=0

We could proceed with this weak form directly so long as all
to functions for u we consider satisfy both BC a-priori. We

b b
can also do integration by parts ( [uv dx= w| ~ [u vdx) to

get
1 1
WKu,x‘:) - f w Ku dx+ f wfdx=0
0 0

This does two things — we no longer have to take a second
derivative and, as we will see, we have a way to account for
the natural boundary conditions. We will still be required to
satisfy the essential BC a priori. Note that since we will be
required to take care of the essential BC a priori we, will be
allowed to set w =0 at those locations.
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To be more specific for our current problem this will allow us
to deal with the wxu’x‘(l) term as follows: Set w(1)=0 and

note that —x(0)u (0) =4, thus
WKu,x‘; = —(wx(u(l) , - w(0)x(0)u(0), ) = w(0)h

We can now state the weak form of the problem

Weak form:

Given f:éei)%, kENR , k>0 and constants ¢ and 4, and
u(l)=g, find u:Q—N such that

j w Ku dx = j wf dx + W(O)h‘
0 0

for all “smooth” w. We will be more specific on what we
mean by smooth later.
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Table 8.1.1 Some examples of the Poisson equation
—V . (kVu) = f in Q

d ‘
Natural boundary condition: kéﬁ + B —us) =g only
- ' n

Essential boundary condition: u =2 on T

~ flow

load

. Primary Material Source Secondary
Field of variable constant variable variables
application u k f q, %, %;‘;
Heat transfer Temperature T Conductivity k Heat source g Heat flow
due to
conduction
k8L
v on
convection
h(T —Teo)
Irrotational Stream Density p Mass Velocities -
flow of an function ¥ production o %‘% =—v
ideal fluid W _y
S dy
Velocity Density p Mass —g% =u
potential ¢ production o % =
Groundwater Piezomeétric Permeability Recharge f Seepage
head ¢ K (pumping, — f) q=k3
Velocities
- 3¢
u=-—k e
— a¢
| v=—k —3—)7
Torsion of Sf_r_ess k=1 f=2 Go %—\f = —0y;
cylindrical function ¥ G = shear 6 = angle of twist GO % = Oy
members ) ‘modulus per unit length
Electrostatics Scalar Dielectric Charge density p Displacement
potential ¢ constant € flux density Dy,
- Magnetostatics Magnetic Permeability Charge density p Magnetic flux
potential ¢ density B,
Membranes Transverse Tension in Transversely Normal force g
deflection u membrane 7' distributed






