
Method of weighted residuals – procedure to construct 
weak forms from strong forms. 
 
Given  f :Ω→ℜ and known gi , find u :Ω→ℜ  such that  

D2m (u)− f = 0  on Ω     eq. A 
Bi (u) = gi  on Γi   i = 0(1)(2m−1)  eq. B 

D j  and B j  are j th order differential operators and Γi  
are appropriate portions of the boundary. Note that 
unlike the case of m =1 where Γg ∩Γh = 0  and Γg ∪Γh = Γ 
there can be more than one BC at a boundary location. 
For example for the m = 2 case there are two BC at 
every location on the boundary. 
 
An example m = 2 case: Beam bending 
 
Given  f :Ω→ℜ and constants g1,g2 ,h1,h2 , find 
u :Ω→ℜ  such that  

EIu,xxxx − f = 0 on Ω 
  u |

Γu
= g1 displacement BC 

   u,x |ΓΘ= g2  rotation BC 

EIu,xx |ΓM = h1  moment BC 

EIu,xxx |ΓQ= h2  shear BC 

 
 
 



Accepting the fact that we often not solve for the exact 
u , but can find an approximation to it, ua  meaning, we 
will not satisfy the differential equation (eq A) and/or the 
BC (eq B) fully. Thus in general we have: 

D2m (ua )− f ≠ 0  
D2m (ua )− f = R , ua ∈ δ a ⊂ δ  

 
The method of weighted residuals (MWR) seeks to 
minimize the residual, R , by forcing a weighted integral 
of the strong form domain equation (eq. A) to zero for an 
appropriate set of weighting functions 
  w D2m (ua )− f( )Ω∫ dΩ = 0  ∀w∈V  
 
Since we cannot solve for ua ∈ δ a  using an infinite 
dimension space V , we use a finite dimensional space  
 wa D2m (ua )− f( )Ω∫ dΩ = 0  ∀wa ∈V a ⊂V  

 
As always there will be a priori conditions that the 
members of the spaces V a  and δ a  must satisfy. What 
they are is a function of what integration by parts 
operations we apply. For our finite element methods we 
will typically want to take derivatives off of u , which 
means we put them on w . In the most common case we 
will integrate by parts m times so that highest order 
derivatives we see are m on both u  and w . 
 



There are a number of weighted residual methods: 
 
Collocation – Force residual to zero at n  specific points 

δ(x − xA) D
2m (ua )− f( )Ω∫ dΩ = 0  

this yields 
D2m (ua (xA)− f ) = 0,  A =1(1)n  

 
Least Squares – Want to minimize square of the 
residual integrated over the domain 

Min. D2m u(x,dA)( )− f( )
2
dΩ

Ω∫
⎛

⎝
⎜

⎞

⎠
⎟   

where dA  are unknown parameters. The min. satisfies  
∂
∂dA

D2m u(x,dA)( )− f( )
2
dΩ
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⎟= 0,  A =1(1)n  

this yields  
∂ D2m u(x,dA)( )− f( )

∂dA
D2m u(x,dA)( )− f( )dΩΩ∫ = 0 ,  A =1(1)n  

 
Galerkin methods – alternative selections of wa  
As before we will decompose ua = va + ga .  
If the shape functions, NA , used for wa  and va  are the 
same this is a Bubnov-Galerkin method, or just Galerkin. 
If the shape functions, NA , used for wa  and va  are 
different this is a Petrov-Galerkin method. 

 



Steps in applying a Galerkin approach 
 
Step 1: Select weighting and trial functions in terms of 
shape functions, NA : 

uh = vh + gh = dANA + gBNB = dANA
A=1

n

∑ + gBNB
B=n+1

n+m

∑  

wh = cANA = cANA
A=1

n

∑  

Step 2: Plug into the Galerkin criteria 
 cA N A D2m (ua )− f( )Ω∫ dΩ = 0  A =1(1)n  

recalling the cA  are arbitrary, we have  
 N A D2m (ua )− f( )Ω∫ dΩ = 0  A =1(1)n  

Typically do not want to work from this form directly so 
we go to the next step. 

 
Step 3: Apply integration by parts to the terms of interest 
until we get the form we like best. Symbolically: 
Dk (NAΩ∫ )Dl (uh )dΩ = Dk (NAΓ∫ )

⌣
Dl−1(uh )dΓ− D̂k+1(NAΩ∫ )

⌢
Dl−1(uh )

 
Step 4: Get the algebraic form 
 
Lets look at an example of what we may do for 
constructing a stiffness matrix for a FE. Note that when 
doing a stand alone finite element, we will consider all 
possible unknowns (that is no essential boundary 
conditions, just natural boundary conditions). We will see 
the mechanics of how we assemble things will take of 
the boundary conditions.  



Lets do an example (which is basically beam bending). A 
non-dimensional strong form is: 

u,xxxx + f = 0  in 0 < x <1 
Subject to natural BC on both ends (for this case the 
essential BC are on u  and u,x ) 

u,xx (0) = h1  , u,xx (1) = h2  , u,xxx (0) = h3 , u,xxx (1) = h4  
 
Step 1: Select trial functions 
This is actually a bit trickier than you may guess in that 
one needs to know basically what the final equations will 
look like to be sure to select trial functions that can 
satisfy the requirements. For a strong form with D2m  the 
best we can do in integrate m times to get the highest 
derivative on u  and w  to be m. In the current case m = 2 , 
Thus u ∈ H 2  and w∈ H 2 . We will learn later that this will 
mean the shape functions will need to be high enough 
order to take second derivatives and, since we want to 
put multiple elements together in a mesh, will require 
that u  and u,x  are continuous between elements 
(interelement continuity requirement). I can meet the 
interelement continuity requirement for 1-D m = 2  
problems by using “interpolating shape” functions that 
have u(0)  and u,x (0)  and u(1)  and u,x (1) as unknowns. In 
1-D this will require a polynomial with at least 4 
parameters – A cubic polynomial has 4 parameters. 
 

Thus we will use: 

uh = N1u(0)+ N2u,x (0)+ N3u(1)+ N4u,x (1) = Nada
a=1

4

∑  



  
N1 =1−3x

2 + 2x3  
 

 
N2 = x(x −1)

2  
 
 

N3 = 3x
2 − 2x3 

 

 
N4 = x

3 − x2  
  
Note:  

N1(0) =1,N1,x (0) = 0,N1(1) = 0,N1,x (1) = 0  
N2 (0) = 0,N2,x (0) =1,N2 (1) = 0,N2,x (1) = 0 
N3(0) = 0,N3,x (0) = 0,N3(1) =1,N3,x (1) = 0  
N4 (0) = 0,N4,x (0) = 0,N4 (1) = 0,N4,x (1) =1 

 
Step 2: Galerkin criteria 

Na u,xxxx
h − f( )0

1
∫ dx = 0 , a =1(1)4  

note: changed from A to a  since we will use the 
lowercase when we talk about elements  
 
Step 3: Integrate by parts – look at the first term 

Nau,xxxx
h

0

1
∫ dx = Nau,xxx

h |0
1 − Na,xu,xxx

h

0

1
∫ dx  

integrating again 
 



Nau,xxxx
h

0

1
∫ dx = Nau,xxx

h |0
1 −Na,xu,xx

h |0
1  

               + Na,xxu,xx
h

0

1
∫ dx  

Substituting this into Galerkin criteria we have the 
desired form: 

Na,xxu,xx
h

0

1
∫ dx = Na f0

1
∫ dx − Nau,xxx

h |0
1  

                        +Na,xu,xx
h |0

1 ,  a =1(1)4  
 
Step 4: Get Algebraic form 
Note: Since we have no essential boundary conditions 
we will be constructing an element stiffness matrix. 
For this we plug u,xx

h , which is 

u,xx
h = Na,xxda =

a=1

4

∑ N1,xxd1 + N2,xxd2 + N3,xxd3 + N4,xxd4  

into the previous equation. This yields  
k e⎡
⎣

⎤
⎦4x4
{d e}4x1 ={F

e}4x1 +{F
e}4x1 

where  
kab = Na,xxNb,xx dx0

1
∫  Fa

e = Na f0

1
∫ dx  and 

Fa
e = Na,xu,xx

h |0
1 −Nau,xxx

h |0
1  

Employing the given natural boundary conditions and the 
values of the shape functions and their derivatives at 0 
and 1, we have: 

F1
e = h3,F2

e = −h1,F3
e = −h4 ,F4

e = h2  
 
 

 


