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Finite Element method for fluid flow problems 
 
To this point we have focused on elliptic PDE (only even 
order derivatives) that produce nice symmetric global 
systems. Standard Galerkin methods are can be shown to 
be “optimal” for these problems. On the other hand 
standard Galerkin methods do not work well for advection 
dominated problems where there are first derivative terms 
that are important. One simple advection equation is  

φ,t + aiφ,i = 0  in Ω  
with appropriate boundary and initial conditions. 
The most basic problem of general interest (that is it has 
both advection and diffusion) in this class is the “static” 
advection/diffusion equation 
 

aiφ,i +κφ,ii − f  in Ω subject to φ = g  on Γ 
Most problems of interest also have time dependent 
terms. Since the time domain is almost always handled 
through semi-discretization (e.g., use finite elements for 
the spatial discretization and finite difference for the 
temporal discretization).  
  

If you apply a standard Galerkin finite element method to 
these equations you will find the solutions will have large 
oscillations and at large over shoots and undershoots at 
discontinuities (which can happen in these classes of 
equations). 
  

Thus a large number of Petrov-Galerkin methods have 
been developed to address this class of problem. The 
currently two most popular classes of methods are the:  
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• Discontinuous Galerkin (DG). One Reference (there 
are a large number of them): Cockburn, Bernardo, 
George E. Karniadakis, and Chi-Wang Shu. "The 
development of discontinuous Galerkin methods." In 
Discontinuous Galerkin Methods, pp. 3-50. Springer, 
Berlin, Heidelberg, 2000. 

• Stabilized finite elements – developed heavily by Tom 
Hughes (an people that studied with him). There is 
not a goo book type reference on this method. A few 
well cited papers are: 
o Franca, L.P., Frey, S.L. and Hughes, T.J., 1992. 

Stabilized finite element methods: I. Application 
to the advective-diffusive model. Computer 
Methods in Applied Mechanics and Engineering, 
95(2), pp.253-276. 

o Franca, L.P. and Frey, S.L., 1992. Stabilized 
finite element methods: II. The incompressible 
Navier-Stokes equations. Computer Methods in 
Applied Mechanics and Engineering, 99(2-3), 
pp.209-233. 

o Tezduyar, T.E., 1991. Stabilized finite element 
formulations for incompressible flow 
computations. In Advances in applied mechanics 
(Vol. 28, pp. 1-44). Elsevier. 

o Whiting, C.H. and Jansen, K.E., 2001. A 
stabilized finite element method for the 
incompressible Navier–Stokes equations using a 
hierarchical basis. International Journal for 
Numerical Methods in Fluids, 35(1), pp.93-116. 

 



How do we achieve this ?

Let us consider a few well known schemes and their 
basic properties to understand what is needed.

Consider the basic equation

All schemes involve two choices

• In which way does one approximate the solution ?
• In which way should the approximation satisfy 
     the PDE ?
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Introduction

When faced with the task of solving a partial differential equation computa-
tionally, one quickly realizes that there is quite a number of different methods
for doing so. Among these are the widely used finite difference, finite ele-
ment, and finite volume methods, which are all techniques used to derive
discrete representations of the spatial derivative operators. If one also needs
to advance the equations in time, there is likewise a wide variety of methods
for the integration of systems of ordinary differential equations available to
choose among. With such a variety of successful and well tested methods, one
is tempted to ask why there is a need to consider yet another method.

To appreciate this, let us begin by attempting to understand the strengths
and weaknesses of the standard techniques. We consider the one-dimensional
scalar conservation law for the solution u(x, t)

∂u

∂t
+

∂f

∂x
= g, x ∈ Ω, (1.1)

subject to an appropriate set of initial conditions and boundary conditions on
the boundary, ∂Ω. Here f(u) is the flux, and g(x, t) is some prescribed forcing
function.

The construction of any numerical method for solving a partial differential
equation requires one to consider the two choices:

• How does one represent the solution u(x, t) by an approximate solution
uh(x, t)?

• In which sense will the approximate solution uh(x, t) satisfy the partial
differential equation?

These two choices separate the different methods and define the properties of
the methods. It is instructive to seek a detailed understanding of these choices
and how they impact the schemes to appreciate how to address problems and
limitations associated with the classic schemes.

Let us begin with the simplest and historically oldest method, known as
the finite difference method. In this approach, a grid, xk, k = 1 . . . K, is laid



Finite difference methods

• The local approximation is a 1D polynomial
• The equation is satisfied in a pointwise manner

2 1 Introduction

down in space and spatial derivatives are approximated by difference methods;
that is, the conservation law is approximated as

duh(xk, t)
dt

+
fh(xk+1, t) − fh(xk−1, t)

hk + hk−1
= g(xk, t), (1.2)

where uh and fh are the numerical approximations to the solution and the
flux, respectively, and hk = xk+1 − xk is the local grid size. The construction
of a finite difference method requires that, in the neighborhood of each grid
point xk, the solution and the flux are assumed to be well approximated by
local polynomials

x ∈ [xk−1, xk+1] : uh(x, t) =
2∑

i=0

ai(t)(x− xk)i, fh(x, t) =
2∑

i=0

bi(t)(x− xk)i,

where the coefficients ai(t) and bi(t) are found by requiring that the approx-
imate function interpolates at the grid points, xk. Inserting these local ap-
proximations into Eq. (1.1), results in the residual

x ∈ [xk−1, xk+1] : Rh(x, t) =
∂uh

∂t
+

∂fh

∂x
− g(x, t).

Clearly, Rh(x, t) is not zero, as in that case, uh(x, t) would satisfy Eq. (1.1)
exactly and would be the solution u(x, t). Thus, we need to specify in which
way uh must satisfy the equation, which amounts to a statement about the
residual, Rh(x, t). If we have a total of K grid points and, thus, K unknown
grid point values, uh(xk, t), a natural choice is to require that the residual
vanishes exactly at these grid points. This results in exactly K finite difference
equations of the type in Eq. (1.2) for the K unknowns, completing the scheme.

One of the most appealing aspects of this method is its simplicity; that
is the discretization of general problems and operators is often intuitive and,
for many problems, leads to very efficient schemes. Furthermore, the explicit
semidiscrete form gives flexibility in the choice of timestepping methods if
needed. Finally, these methods are supported by an extensive body of theory
(see, e.g., [142]), they are sufficiently robust and efficient to be used for a
variety of problems, and extensions to higher order approximations by using a
local polynomial approximation of higher degree is relatively straightforward.

It is also, however, the reliance on the local one-dimensional polynomial
approximation that is the Achilles’ heel of the method, as that enforces a sim-
ple dimension-by-dimension structure in higher dimensions. Additional com-
plications caused by the simple underlying structure are introduced around
boundaries and discontinuous internal layers (e.g., discontinuous material co-
efficients). This makes the native finite difference method ill-suited to deal
with complex geometries, both in terms of general computational domains
and internal discontinuities as well as for local order and grid size changes to
reflect local features of the solution.
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simple one-dimensional approximation in favor of something more general. The most natural is to
introduce an element-based discretization. Hence, we assume that � is represented by a collection of
elements, Dk, typically simplexes or cubes, organized in an unstructured manner to fill the physical
domain.

A method closely related to the finite di�erence method, but with added geometric flexibility, is
the finite volume method. In its simplest form, the solution u(x, t) is approximated on the element
by a constant, uk(t), at the center, xk, of the element. This is introduced into Eq.(1.1) to recover
the cellwise residual

x ⇥ Dk : Rh(x, t) =
⇥uk

⇥t
+

⇥f(uk)
⇥x

� g(x, t),

where the element is defined as D=[xk�1/2, xk+1/2] with xk+1/2 = 1
2 (xk +xk+1). In the finite volume

method we require that the cell average of the residual vanishes identically, leading to the scheme
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Finite difference schemes

• Main benefits
• Simple to implement and fast
• High-order is feasible
• Explicit in time
• Direction can be exploited - upwind
• Strong theory

• Main problem
• Simple local approximation and geometric 
     flexibility are not agreeable



Finite volume methods

• The local approximation is a cell average

• The equation is satisfied on conservation form

1 Introduction 3

The above discussion highlights that to ensure geometric flexibility one
needs to abandon the simple one-dimensional approximation in favor of some-
thing more general. The most natural approach is to introduce an element-
based discretization. Hence, we assume that Ω is represented by a collection
of elements, Dk, typically simplexes or cubes, organized in an unstructured
manner to fill the physical domain.

A method closely related to the finite difference method, but with added
geometric flexibility, is the finite volume method. In its simplest form, the
solution u(x, t) is approximated on the element by a constant, uk(t), at the
center, xk, of the element. This is introduced into Eq. (1.1) to recover the
cellwise residual

x ∈ Dk : Rh(x, t) =
∂uk

∂t
+

∂f(uk)
∂x

− g(x, t),

where the element is defined as Dk = [xk−1/2, xk+1/2] with xk+1/2 = 1
2 (xk +

xk+1). In the finite volume method we require that the cell average of the
residual vanishes identically, leading to the scheme

hk duk

dt
+ fk+1/2 − fk−1/2 = hkgk, (1.3)

for each cell. Note that the approximation and the scheme is purely local
and, thus, imposes no conditions on the grid structure. In particular, all cells
can have different sizes, hk. The flux term reduces to a pure surface term
by the use of the divergence theorem, also known as Gauss’ theorem. This
step introduces the need to evaluate the fluxes at the boundaries. However,
since our unknowns are the cell averages of the numerical solution uh, the
evaluation of these fluxes is not straightforward.

This reconstruction problem and the subsequent evaluation of the fluxes at
the interfaces can be addressed in many different ways and the details of this
lead to different finite volume methods. A simple solution to the reconstruction
problem is to use

uk+1/2 =
uk+1 + uk

2
, fk+1/2 = f(uk+1/2),

and likewise for fk−1/2. Alternatively, one could be tempted to simply take

fk+1/2 =
f(uk) + f(uk+1)

2
,

although this turns out to not be a good idea for general nonlinear problems.
For linear problems and equidistant grids these methods all reduce to the finite
difference method. However, one easily realizes that the formulation is less
restrictive in terms of the grid structure; that is, the reconstruction of solution
values at the interfaces is a local procedure and generalizes straightforwardly
to unstructured grids in high dimensions, thus ensuring the desired geometric
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more, the construction of the interface fluxes can be done in various ways that are closely related
to the particular equations (see, e.g., [218, 303]). This is particularly powerful when one considers
nonlinear conservation laws.

If, however, we wish to increase the order of accuracy of the method, a fundamental problem
emerges. Consider again the problem in one dimension. We wish to reconstruct the solution, uh, at
the interface and we seek a local polynomial, uh(x) of the form

x ⇥ [xk�1/2, xk+3/2] : uh(x) = a + bx.

We then require

⇥ xk+1/2

xk�1/2
uh(x) dx = hkuk,

⇥ xk+3/2

xk+1/2
uh(x) dx = hk+1uk+1

to recover the two coe⇥cients. The reconstructed value of the solution, uh, and therefore also
f(uh(xk+1/2)) can then be evaluated.

To reconstruct the interface values at a higher accuracy we can continue as above and seek a
local solution of the form

uh(x) =
p�

j=0

aj(x� xk)j .
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Finite volume methods

• Main benefit
• Robust and fast due to locality
• Complex geometries
• Well suited for conservation laws
• Explicit in time

• Main problem
• Inability to achieve high-order on general grids 
   due to extended stencils
• Grid smoothness requirements
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and, thus, imposes no conditions on the grid structure. In particular, all cells
can have different sizes, hk. The flux term reduces to a pure surface term
by the use of the divergence theorem, also known as Gauss’ theorem. This
step introduces the need to evaluate the fluxes at the boundaries. However,
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although this turns out to not be a good idea for general nonlinear problems.
For linear problems and equidistant grids these methods all reduce to the finite
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The key challenge is one of reconstruction



Finite element methods

We begin by splitting the solution into elements as

• The solution is defined in a nonlocal manner

• The equation is satisfied globally
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x ∈ Dk : uh(x) =
Np∑

n=1

bnψn(x),

where we have introduced the use of a locally defined basis function, ψn(x).
In the simplest case, we can take these basis functions be linear; that is,

x ∈ Dk : uh(x) = u(xk)
x − xk+1

xk − xk+1
+ u(xk+1)

x − xk

xk+1 − xk
=

1∑

i=0

u(xk+i)ℓk
i (x),

where the linear Lagrange polynomial, ℓk
i (x), is given as

ℓk
i (x) =

x − xk+1−i

xk+i − xk+1−i
.

With this local element-based model, each element shares the nodes with one
other element (e.g., Dk−1 and Dk share xk). We have a global representation
of uh as

uh(x) =
K∑

k=1

u(xk)Nk(x) =
K∑

k=1

ukNk(x),

where the piecewise linear shape function, N i(xj) = δij is the basis function
and uk = u(xk) remain as the unknowns.

To recover the scheme to solve Eq. (1.1), we define a space of test functions,
Vh, and require that the residual is orthogonal to all test functions in this
space as

∫

Ω

(
∂uh

∂t
+

∂fh

∂x
− gh

)
φh(x) dx = 0, ∀φh ∈ Vh.

The details of the scheme is determined by how this space of test functions is
defined. A classic choice, leading to a Galerkin scheme, is to require the that
spaces spanned by the basis functions and test functions are the same. In this
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• Main benefits
• High-order accuracy and complex geometries 
     can be combined

• Main problems
• Implicit in time
• Not well suited for problems with direction

This yields the global equation
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�h(x) =
K⇤

k=1

v(xk)Nk(x).

Since the residual has to vanish for all �h ⇥ Vh, this amounts to
⌅

�

�
⇥uh

⇥t
+

⇥fh

⇥x
� gh

⇥
N j(x) dx = 0,

for j = 1 . . .K. Straightforward manipulations yield the scheme

Mduh

dt
+ Sfh =Mgh, (1.4)

where

Mij =
⌅

�
N i(x)N j(x) dx, Sij =

⌅

�
N i(x)

dN j

dx
dx,

reflects the globally defined mass matrix and sti�ness matrix, respectively. We also have the
vectors of unknowns, uh = [u1, . . . , uNp ]T , of fluxes, fh = [f1, . . . , fNp ]T , and the forcing,
gh = [g1, . . . , gNp ]T , given on the Np nodes.

This approach, which reflects the essence of the classic finite element method [182, 339, 340, 341],
clearly allows di�erent element sizes. Furthermore, we recall that a main motivation for considering
methods beyond the finite volume approach was the interest in higher-order approximations. Such
extensions are relatively simple in the finite element setting and can be achieved by adding additional
degrees of freedom to the element while maintaining shared nodes along the faces of the elements
[197]. In particular, one can have di�erent orders of approximation in each element, thereby enabling
local changes in both size and order, known as hp-adaptivity (see, e.g., [93, 94]).

However, the above discussion also highlights disadvantages of the classic continuous finite ele-
ment formulation. First, we see that the globally defined basis functions and the requirement that
the residual be orthogonal to same set of globally defined test functions implies that the semidis-
crete scheme becomes implicit and M must be inverted. For time dependent problems, this is a
clear disadvantage compared to finite di�erence and finite volume methods. On the other hand, for
problems with no explicit time dependence, this is less of a concern.

There is an additional subtle issue that relates to the structure of the basis. If we recall the
discussion above, we recognize that the basis functions are symmetric in space. For many types
of problems (e.g., a heat equation), this is a natural choice. However, for problems such as wave
problems and conservation laws, in which information flows in specific directions, this is less natural
and can causes stability problems if left unchanged (see, e.g., [182, 339]). In finite di�erence and
finite volume methods, this problem is addressed by the use of upwinding, either through the stencil
choice or through the design of the reconstruction approach.

In Table 1.1 we summarize some of the issues discussed so far. Looking at it, one should keep
in mind that this comparison reflects the most basic methods and that many of the problems
and restrictions can be addressed and overcome in a variety of ways. Nevertheless, the comparison
does highlight which shortcoming one should strive to resolve when attempting to formulate a new
method.
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Table 1.1. We summarize generic properties of the most widely used methods for
discretizing partial differential equations [i.e., finite difference methods (FDM), finite
volume methods (FVM), and finite element methods (FEM), as compared with the
discontinuous Galerkin finite element method (DG-FEM)]. A ! represents success,
while ✕ indicates a short-coming in the method. Finally, a (!) reflects that the
method, with modifications, is capable of solving such problems but remains a less
natural choice.

Complex High-order accuracy Explicit semi- Conservation Elliptic
geometries and hp-adaptivity discrete form laws problems

FDM ✕ ! ! ! !
FVM ! ✕ ! ! (!)
FEM ! ! ✕ (!) !
DG-FEM ! ! ! ! (!)

residual destroys the locality of the scheme and introduces potential problems
with the stability for wave-dominated problems. On the other hand, this is
precisely the regime where the finite volume method has several attractive
features.

An intelligent combination of the finite element and the finite volume
methods, utilizing a space of basis and test functions that mimics the finite
element method but satisfying the equation in a sense closer to the finite
volume method, appears to offer many of the desired properties. This com-
bination is exactly what leads to the discontinuous Galerkin finite element
method (DG-FEM).

To achieve this, we maintain the definition of elements as in the finite
element scheme such that Dk = [xk, xk+1]. However, to ensure the locality
of the scheme, we duplicate the variables located at the nodes xk. Hence the
vector of unknowns is defined as

uh = [u1, u2, u2, u3, . . . , uK−1, uK , uK , uK+1]T ,

and is now 2K long rather than K + 1 as in the finite element method. In
each of these elements we assume that the local solution can be expressed as

x ∈ Dk : uk
h(x) = uk x − xk+1

xk − xk+1
+ uk+1 x − xk

xk+1 − xk
=

1∑

i=0

uk+iℓk
i (x) ∈ Vh,

and likewise for the flux, fk
h . The space of basis functions is defined as Vh =

⊕K
k=1

{
ℓk
i

}1

i=0
, i.e., as the space of piecewise polynomial functions. Note in

particular that there is no restrictions on the smoothness of the basis functions
between elements.

As in the finite element case, we now assume that the local solution can
be well represented by a linear approximation uh ∈ Vh and form the local
residual

What we need is a scheme that combines
• The local high-order/flexible element of FEM
• The local statement on the equation for FVM

These are exactly the components of the  
Discontinuous Galerkin Finite Element Method 




























































