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he classical Poisson-Kirchhoff theory of plates requires C'-continuity, Just as does
the classical Bernoulli-Euler beam theory (see Sec. 1.16). Continuous (i.e., C°) finite
element interpolations are easily constructed. The same cannot be said for multi-
“dimensional C'-interpolations. It has taken considerable ingenuity to develop com-

. & patible C'-interpolation schemes for two-dimensional plate elements based on classi-
= 5 cal theory, and the resulting schemes have always been extremely complicated in one
3 ry 8 y y comp

T 2 way or another. |
"(f) <) More and more, there is a turning away from Poisson-Kirchhoff type elements

& to elements based upon theories which accommodate transverse shear strains

0o ; ot upon ¢ ; o ransve

i . (Reissner and Mindlin theories) and require only C°-continuity. This approach opens
o \5)@/ the way to a greater variety of interpolatory schemes but is not without its own inherent

éﬁ% difficulties. Recently, displacement-type elements have been derived based upon

(o]

&R Reissner-Mindlin theory, which seem to be superior to plate elements derived here-

s tofore. This chapter discusses the basic techniques and considerations involved and
summarizes recent developments in this area.

Following this, a similar approach is discussed in the context of beams and

frames in which transverse shearing strains are accounted for. This also proves to be
extremely simple and effective.

5.2 REISSNER-MINDLIN PLATE THEORY

5.2.1 Main Assumptions

All quantities are referred to a fixed system of rectangular, Cartesian coordinates. A
310
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Figure 9.1 Motion in an Euler-Bernoulli beam and a shear (Timoshenko)_beam; in the Euler-Berng
beam, the normal plane remains plane and normal, whereas in the shear beam the normal plane rem:

plane but not normal

properties as the linear strain since the equations for the rate-of-deformation can be obtaj
by replacing displacements by velocities in the linear strain—displacement relations. The ai
of the following is to illustrate the consequences of the kinematic assumptions on the stra
field, not to construct a theory which is worth implementing.

9.2.2 Timoshenko ( Shear Beam ) Theory

We first describe the Timoshenko beam theory. The major kinematic assumptions of th
theory are that the normal planes remain plane, that is, flat, and that no deformation oceuf
within that plane. Thus the planes normal to the midline rotate as rigid bodies. Consider t
motion of a point P whose orthogonal projection on the midline is point C. If the normal plan

rotates as a rigid body, the velocity of point P relative to the velocity of point C is given by

Vor ZOXT (92
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e T T e S T e

general point in this system is denoted by (x1, X2, %3) or (%, y, z), whichever is more

convenient. Throughout, Latin and Greek indices take on the values 1, 2, 3 and 1, 2

respectively. ~ — [ \;,;,,[ = \T’ Y
The main assumptions of the plate theory are Yy ol

) A

1. The domain Q is of the following special form: -
0=lxyaewl:e|F gl anecacm

~ where tis the plate thickness and A is its area. The boundary of A is denoted by s.
2. 033 = 0. '
3. Ue(x,3,2) = —20a(x,). o
4. u3(x,y,z) = w(x,y). )

Remarks ,
1. In Assumption 1, we may take the plate thickness # to be a function of x and
y, if desired. & et vid ‘3 2 ‘
Maj0r 2. Assumption 2 is the plane stress hypothesis. It contradicts Assumption 4 but
\L ultimately causes ng,problem. The justification of the present theory is its usefulness
in practical structural engineeting applications. No plate theory is completely consis-
tent with the three-dimensional theory and, at the same time, both simple and useful.
“Assumption 2 is to be substituted into the constitutive equation; € is to be solved for
and subsequently eliminated.
' 3. Assumption 3 implies that plane sections remain plane. 6, is interpreted as
the rotation of a fiber initially normal to the plate midsurface (.e., z = 0).
4. By Assumption 4, the transverse displacement, w, does not vary through the

thickness.
The sign convention is illustrated in Fig. 5.2.1. “Right-hand-rule” rotations 6, are
defined by 0, = —eqp 0, Where eqp 18 the alternator tensor, Viz.,
z T 0.\ AY\“Q
0,=b, S\ G0 CONN o0t
6,=9,

\G Goeeu\ e -

=4

i X
{ " 0, . _
% / Figure 5,2.1 Sign conventions for ro-
| tations. 6y, 6, are right-hand-rule rota-
i ilg/ tions; 6:, 6, are rotations that simplify
1 the development of the plate theory.
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[eas] = [_(1) (1)] ) (5.2.1)

We prefer to develop the theory in terms of 8, rather than 6, because the algebra is
greatly simplified, due to the absence of alternator tensors. In typical structural
analysis computer programs, the right-hand-rule convention is usually, but not al-
ways, adopted. Consequently, it is the responsibility of the analyst to determine which
convention is being employed. It is common when analysts use a new program that
errors are made because of lack of careful attention to this point. Whenever a plate or
shell analysis is.being undertaken the analyst should check the rotation—bending
moment sign convention of the computer program being used before embarking upon
that analysis. '

Plate kinematics are summarized in Fig. 5.2.2.
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Y, = shear strain -
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Figure 5.2.2 Plate kinematics. Transverse shear strains need nof vanish in the
present theory. ;
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5.2.2 Constitutive Equation |

The reduced form of the constitutive equation used in the plate theory is determined
by substituting Assumption 2 into the three-dimensional constitutive equation and
eliminating e;;. For simplicity, we shall consider the isotropic case in which

T Tl 2D livnesy
, e\astic (5.2.2)
where A and p are the Lamé coefficients and 8; is the Kronecker delta. Assumption

2 implies ngz ﬂ (6 \\*“622“*“6%%) %Q/{@é 20, ‘:"Q
/ -A

-
T (€ éﬂ~>

4 +¢d ~ . o~ |
abi s\zﬁgb\ Lo | 0o = Touper + 2 || \{%go /7 (5.2.4)
’ A
mf) -

Lye \have (5.2.5)

gy = AB,«jekk + 2M€ij

(5.2.3)

1 solying Sor Go e =

O3 = 2[L€q

(SRR

Sn

where

22
A+ 20

A and w may be eliminated in fftvor of E and v (Young’s modulus and Poisson’s ratio,

A= (5.2.6)

respectively): - Tz Doy vUae ™
] L =T=7 (WU 0GR
Uy - 20 —ossomen 3 - - -2 O
U = =20 B Uap=Ox O

5.2.3 Strain-disp!aeememEquations

Assumptions 3 and 4 lead to the following form of the strain—displacement/équations:

TN &ap = U = "20ap (5.2.9)
-0, + w, &
€z = U3 = ———5—— (5.2.10)

Note that the normal-fiber rotation (i.e., 8,) and slope (i.e., w,,) are not necessarily
the same and thus transverse shear strains are accommodated. This is to be contrasted
with classical Poisson-Kirchhoff (i.e., “thin plate”) theory in which 6, = w,, and,
consequently, €, = 0. In the thin plate limit, we usually expect very small transverse
shear strains.
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5.2.4 Summary of Plate Theory Notations

w .(transverse displacement)
0, | (rotation vector)
Kapg = Oq, p) : (curvature tensor)
Yo = =0, + W, , (shear strain vector)
/2
Map = f t , Oopz dz (moment tensor)
—t/2
: ) -
: " owd hear force vec
i ‘ @ = . (]:a t
| TQ\!”\(‘(\D AV o ¢ f—:/z 3 dz (shear force vec qr)
be 1atvo oved W (prescribed boundary displacement)
(G We %O O, (prescribed boundary rotations)
/2
F = f / trdz + (b)) (total applied transverse force
~t/2

per unit area)

/2 o
Co= f t lo 2 dz + (ho2) (total applied couple per unit area)

M, ) /La,Z dz (prescribed boundary moments)
~t/2

/2
Q= ; hs dz (prescribed boundary shear force)

" Twovreath o ppply tn\b *“’\'\“C

5.2.5 Variational Equatmn <0550 !{\,\(ﬂ wons Yo “\\(\0 vihg S ovi -
LW Gpply Ho vnteopel Sappg Wl \%@C‘o\“‘?(c
The variational equation of the plate theory is derived from the variation equatlon
of the three-dimensional theory by making use of the preceding relations. The main
steps are as follows.
i. Lets, and s, be subregmns of s which satisfy s, s, Us, s =sands, N s, = .
The integrals appearing in the three-dimensional variational equations are replaced by
the followmg iterated integrals:

f L dQ = ff—:/z [ dz dA MNM \w o\a\¢(5.2.11)

(L 2.12)
L .dT = f mﬁigmﬁ f,/z y \jzhzs%g (5.2.12)

/
o 'The operator { ) is defined as follows Let f be an arbltrary functlon of x, y, and z. Then.
et qu (fG,3,2) = fx,3,~1/2) + f(x,9,1/2).
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The kinematic relations are also employed, yielding

ey

. 0= L f " [u(a,p)O’aﬁ + 2u(a,3)0'a3] dz dA i
-—t i

) f ' 4
P : . . i Ak § i, (2
’ //ﬁw 3 ‘,"‘ . ﬁ‘@ \5}‘ ¢ /2 _ _ { %} [N 0
Collecting - L f_t/z (oo + Tsfs) dz dA | g dpskdidins

%
1

g S \ouc e

%U%@%%&v -L@Eﬁ»+<m@»dA \
—f Jt/z (Tl +‘ﬁ3/L3) dz ds yi
sy J—t/2

Ty

/2 O
- f ft (—RagOupz + Y,0,) dz dA |
A

—t/2 i ‘ﬁ ,ﬁ(;\:} ;\LT 2\
P . .
- J f " (=Butuz + W) dz dA 6@@5@*\0‘”5
A J-t/2
—f%@%@+W%»M
A
/ —
— j ft ? (—Ophoz + Whs) dz ds l (5.2.13)
s J—tf2
where
Kopg = 67(,,,3) (5.2.14)
Vo = —B_a + W,a (5215)

Note. In the preceding relations we have used quantities with superposed bars
to denote weighting functions in order to avoid notational conflicts and a proliferation
of new notations.

il. The definitions of force resultants are used, yielding

0= [ (~Ragep + Fag) d
A
- f (=8.C.. + WF) dA
A

-f (=B.M, + WQ) ds (5:2.16)
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iii. Integration by parts indicates, under the usual hypotheses, the differential
equations and boundary conditions that are satisfied:
' §

0= f By (Mupp — qo + Co)dA
A v

L o O&L@\\'\fj Cj' moment equilibrium
e Boler = —fwéqawF)dA
[ ORNARS 4
YU\ transverse
€ (v é;}\"\()\"‘»g - equilibrium
Lee\ng \NgY henls f {Ba(— 1w + M,) + W(g, — Q)} ds (5.2.17)
Q’C \ o " moment shear
S\*\(‘Q ity boundary boundary
&:{ OV v .conditions condition
where
Man = Moghg | (5.2.18)
G = Gollg (5.2.19)

iv. Explicit forms of the constitutive equations in terms of the plate-theory
variables are computed as follows:

e waxt o g = [ ez &— TOOMeWT ~Honsor

Labe gt e 0t o

@\\\ ‘*\\AQ \‘\(\\mw&\:«\ = f:/jz (ABap€yy + 2uenp)z dz
‘Ar\’\ '3 AU (;Xa 0 sS

£ -
= —— [)laaﬁ B‘y,y + 2""0(01,5)]

= —CapysKys - (5.2.20)

where

8 \ t‘s —
\%VAVWOQ\C,A —>  Capys = ﬁ[ﬂ(saysﬁﬁ + 8a50py) + A0apdys] (5.2.21)

[" owds S eav force

i

qo
—t/2

i

t/2 -
f Q€ dz

~t/2
= (=0, + W o)
= Capp | (5222
Cas = tWBas (5.2.23)
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Remarks
1. Symmetry of the stiffness matrix will follow from the symmetries
Capys = Cysap (5.2.24)
Cap = Cgg (5225)

The additional symmetries

caﬁ‘yﬁ = cﬁa'yﬁ = Carﬂﬁy o (5 226)

also hold.

2. To achieve results consistent with classical bending theory it is necessary to
introduce -a shear correction factor, x, in the shear force—shear strain constitutive
equation. This can be done by replacing Cop bY KCqp. Throughout it is assumed that
k=g <— 500G |D>

3. More-general material behavior (e.g., orthotropy) can be considered by
appropriately redefining the elastic coefficients Capys and Cop.

5.2.6 Strong Form

The formal statement of the strong form of the plate theory boundary-value problem
is as follows.
Given F, Co, M,, Q, W, and O, find w and 6, such that 4
Mapp — Qo+ Co = 0 ] (5.2.27)
Go,a t F =0 (5.2.28)

Mag = “CapysKys ’ (5.229)

00055\ A NS e = Cop¥e (5.2.30)
\yon £ o Kap = Oe,p) (5.2.31)
o (7 | Yo = —0, +w, J (5232.)

0 = O, - (5.2.33)
on s,

w=W (5.2.34)

My = Maghg = Ma (5.2.35)
on s,

qn = Qancz = Q (5.2.36)

Sign conventions for stress resultants are depicted in Fig. 5.2.3.

5.2.7 Weal: Form

The statement of the variational, or weak, form of the boundary-value problém is as
follows.

_ Given F, Co, My, O, W, and ©,, find {6, 6,, w} € & such that, for all
{91’ 6’29 W} € @
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X3 h

stress resultants,

0= J [, Capys Oy, T VaCap¥sl dA
Q\}&Q\L . A |

Sovim + L (8,C, — WF) dA

+ f (B.M, — WQ) ds

We assume that if
w
u=46,; €& (the trial solution space)
/)

Chap. 5

Figure 5.2.3 Sign convention for

(5.2.37)




then - | | ] l g——

w W
6,p = Q] on s,
0, 6, -
and that if
w
u=98p €@ (the weighting function space)
6,
then

on s,

o D T
i
o oo

Exercise 1. Show that (5.2.27), (5.2.28), (5.2.35), and (5.2.36) are implied by (5.2.37).

Exercise 2. Put (5.2.37) into abstract notation: a (%, u) = (u, ) + (u, #)r. Define ¢ and
4 and show that a(-, *); (-, +); and (-, *)r are symmetric, bilinear forms.

5.2.8 Matrix Formulation

The matrix formulation of the variational equation is given as follows.

0= f (&7 D%k + ¥ Dy) dA
A
+f (87C — WF) dA
A

+ f (07M ~ wQ) ds (5.2.38)
Sk

where

(6 — (8
o) e

_In S = 7 (5.2.40)
=i -

K11 K11
K = Ko K = Ezz (5.241)
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D% DY,
D’ = D%
symmetric D%
DIbJ = Capyss
17 aly B/8
1 1 1
- 2
3 1 2
D* = D1, Di,
symm. D3,
op = Cap

5.2.9 Finite Element Stiffness Matrix and Load Vector

Chap. 5

(5.2.42)

(5.2.43)

(5.2.44)

(5.2.45)

The finite element stiffness matrix and load vector may be obtained directly from the
matrix form of the variational equation. The finite element approximations of w, w,
0,, and @, are denoted by w", w*, 8%, and 0%, respectively. In a typical element,

possessing 7., nodes,

a=1

Rep

62 = > N,0Z

a=1

(5.2.46)

(5.2.47)

(5.2.48)

(5.2.49)

where N, is the shape functlon associated with node a, and w?, W, 6%, and Gf,'a

the ath nodal values of w*, w", 8%, and 9?, respectively.

Remark

It is not neéessary to assume 0% and w" are defined in terms of the same shape
functions and nodal patterns. However, in the apphcauons we have in mind, this will

be the case.

Define
de = {d3}

(5.2.50)




")
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d* = {d;}
(wh p=3a—-2
di =46f, p=3a-1
(0% p=3a
(Wt p=3a-2
c_i,f='<071ha p=3a-1
(0%, p=3a

v = Bd° ,—y‘=Bs‘_le
B®= (B}, BS, ... ,B!]

B*=[Bi,Bs, ..., B;S]
. [0 N,, O
B:=|0 0 N,
_O Na,y Na,x
. N, -N, 0
Ba= (N,, 0 —Na]

N

321

(5.2.51)

(5.2.52)

(5.2.53)

(5.2.54)
(5.2.55)
(5.2.56)
(5.2.57)

(5.2.58)

(5.2.59)

With these deﬁnitions, the following expressions for the element stiffness and load

may be obtained:

ke = kg + k¢

ki = | B""D"B®dA  (bending stiffness)
Ae

ki= | B"D*B*dA (shear stiffness)

Ae
fe=1{f}
(
fNaFa’A-l—f N,Q ds p=3a-2
| JA¢ s®Nsy,
f;__,-J—LI‘NaCIdA— N.M,; ds p=3a—1
] A€ s€Nsy,
| —f N.CydA - [  NMyds p=3a
L A€ seﬂk‘/L '

(5.2.60)

(5.2.61)

(5.2.62)

(5.2.63)

(5.2.64)

A° and s° are the area and the boundary, respectively, of the eth element. The adjust-

ment to f; for prescribed displacements is given by
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et = S kg e = 30 \D (5.2.65)
q=1

—

where

W (x4, ¥a) p=3a-2
2 = 61(xas Y2) =3a-—-1 (5.2.66)

Oyxs, y2) p=3a

The element stresses may be obtained from the following relations:

mxx .
’ my,, ¢ = —D’B*d*  (bending moments) (5.2.67)
My
{Z"} = D*B°d° (shear resultants) (5.2.68)
y

Exercise 3. (Arrays with Respect to Right-hand-rule Rotations.) Show that if right;hand-r_ple
rotations are being employed, i.e., if 8%, < 64,in (5.2.48), and, likewise, if 0o, <01
in (5.2.49), then in place of (5.2.58), (5.2.59), and (5.2.64), respectively, we need to

use
[0 0 —N..
B:=|0 N,, O
|0 Nux —Na,
. [Nox 0 N
Ba= | N.., —Na 0]
' ( same as in (5.2.64), p=3a—-2
- NaC2dA—f N.M, ds p=3a—1
f}f _— AC seNsy, .
N.C, dA + f N.M, ds p =3a
A€ s€Nsy,

5.3 PLATE-BENDING ELEMENTS

5.3.1 Some Convergence Criteria

It is important to realize that convergence criteria for elements derived from the
present theory are quite different than those for elements derived from thin plate

theory. Necessary conditions in the present case are:

1. All three rigid body modes must be exactly representable
2. The following five constant strain states must.be exactly representable:




3 ' 01,1 7 | | \L C(

0,2 (curvatures)
3(6y,, + 92,1) )
‘ —01 + W1 .J 4
) (transverse shear strains)
"‘92 + W2
These conditions are satisfied for standard isoparametric elements and for the non-
standard isoparametric elements described in the following sections.
) 5.3.2 Shear Constraints and Locking

An important consideration in the development of plate-bending elements, based upon
D the present theory, is the number of shear strain constraints engendered in the thin
plate limit (i.e., as £ — 0). To see this, we consider a heuristic example.

Example 1

Assume a four-node isoparametric quadrilateral element and, for simplicity, assume the
element is of rectangular plan and the sides are aligned with the global x- and y-axes. In
this case, the element expansions may be written as

wh = Bo + Bix + B2y + Bsxy (5.3.1)
0% = Yao + VX + Ya2) + Yasxy (5.3.2)

where B; and Y., 0 =< i =< 3, are constants that depend upon the nodal parameters w
and 0%,,1 = a = 4, respectively. The conditions

0=mm

= —0% + wh

= (=910 + B1) — yux + (=2 + Ba)y — viaxy (5.3.3)
0=

= —0% + wh

= (—7yo + )32) + (—vya1 t Ba)x — Y2y — Vasxy (5.3.4)

impose eight constraints per element and are approximately in force as ¢ — 0 if exact

integration of k¢ is performed. (Two-by-two Gauss integration is exact in this case.) In

P a large rectangular mesh, there are approximately three degrees-of-freedom per element,

he i and thus the element tends to be overly constrained. In practice, worthless numerical
ite results are obtained [1]. To alleviate the “locking” effect, one might consider using
one-point Gauss quadrature for k¢. Clearly, this results in only two constraints per
element, and now there are more degrees of freedom than there are constraints. This

L element, with one-point shear integration and 2 X 2 bending integration, was proposed

( and shown to be effective by Hughes et al. [2].




Arguments similar to those in Example 1 have been used to evaluate other
possibilities (see Pugh et al. [1, 3] and Malkus and Hughes [4]). 10

The situation is seen to be similar to that for the incompressible problem dis-
cussed in Chapter 4. Again we shall define the constraint ratio, r, for the standard
mesh of Fig. 4.3.3 by

Req
- y = —
Re

where, in the present case, ., is the total number of displacement and rotation
equations after boundary conditions have been imposed and 7, is the total number of
shear strain constraints. Again, the idea is that as the number of equations in the
standard mesh approaches infinity, r should approximate the ratio of equilibrium
equations to constraints for the governing system of partial differential equations (in
the present case, 3 and 2, respectively). Consequently, here the ideal value of r would
be . Smaller values would indicate the presence of too many shear strain constraints
and a potential for locking. A larger value would indicate too few shear strain
constraints and suggest that the Kirchhoff limit might be poorly approximated. Note
that for the fully integrated four-node element discussed above, r = 3, indicative of
locking, whereas if one-point Gaussian quadrature is used for k§, then r = 2, the
optimal value.

We wish to emphasize again that the constraint ratio is only a quick device for
estimating an element’s propensity to lock. (See the discussion in Sec. 4.3.7.) In fact,
the constraint ratio is not as successful for plates as for incompressible continuum
elements. (There are excellent plate elements with constraint ratios less than 3. See,
for example, Sec. 5.3.7.) A superior, yet still simple, methodology for assessing the
tendency of plates to lock is based upon the Kirchhoff mode concept [17, 18]. Much
of the recent work on plate element design explicitly or implicitly employs this
,concept. The interested reader should consult [17] for a complete description.

5.3.3 Boundary Conditions

It is important to realize that boundary conditions in the present theory are not always
the same as those for the classical thin plate theory. The differences occur in the
specification of the “simply supported” case. In the present theory, there are two ways
of going about this, depending on the actual physical constraint. Rather than being an
additional complication, this freedom turns out to be a considerable benefit, for it
enables the solution of problems in which thin plate finite elements have heretofore
failed (see Rossow [5] and Scott [6]).

Consider a smooth portion of the plate boundary and a local s, n-coordinate
system to it (s denotes the tangential direction and # the outward normal direction; see
Fig. 5.3.1). The most common boundary conditions encountered in practice are given
as follows.
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P The C°-Approach to Plates and Beams Chap. 5

Serendipity Heterosis Lagrange
w-shape . -
6,, 0 ,-shape Serendio
functions erendipity Lagrange Lagrange
‘Integration |
scheme v2 .82 S2
~Jumber of
spurious .
zero-energy L 0 1
modes
Constraint
ratio 1125 1.375 1.5

Key:

@ w0, 0, degreesof freedom
Q 0, 0, degrees of freedom

U2 =2 X 2 Gauss

bending 3 X 3 Gauss
shear 2 X 2 Gauss

*l\{f‘-’ ~ommunicable in a mesh of two or more elements.




