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Formulation of Parabolic, Hyperbolic,
and Elliptic-Eigenvalue Problems

| & Some commonts on B 4l

In order to understand this chapter, a detailed understanding of the material and
" notational conventions of Chapter 2 is required.

. v pavdo acuC
7.1. PARABOLIC CASE: HEAT EQUATION g pwég L&\@ ?L

The heat equation is the prototypical “parabohc” partial differential equation of math-
ematical physics (e.g., see Stakgold [1]). The formulation given here generalizes the
formulation of Chapter 2, which was restricted to. steady heat conduction, to time-
p dependent heat conduction processes. We view all the data to be functlons of time,
3 -denoted by ¢, as well as space For example, the volumetric heat source ¢ is written
', a8 | . |
,KQX]OT[—HR ' (7.1.1)

which means / is a function of x € Q and¢t € 10, T[ ,the open time interval of length
T > 0. Likewise, we write ,4 ,Z(x, t). Slmllarly, the boundary data 18 also time-
dependent: . :

',a':nx]o, Y (7.1.2)
mT,x 10, T[> R - (7.1.3)

Note that I', and I, are assumed ‘not to vary with time. To render the .
1n1t1a1/boundary value problem well posed, an initial condition on temperature must
also be specified. We denote the initial temperature by
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Sec. 7.1 Parabolic Case: Heat Equation H oV € "fo \(’\ Gg t\f; D'A; "
‘ : A\ - p. & o
u: Q- R W\\‘JT\CJ Coln (7.1.4)

~ Two other material properties come into play: The density, p, and capacity, c; both
are assumed positive functions of x € (),

The strong form of the ‘initial/boundary—valuc problem may now be stated:

[ Given/, ¢, 4, and uy, as in (7.1.1) through (7.1.4), find u : O X [0, T]— R
such that

peu;+ g, =¢ on QX10,T[ (heat equation) (7.1.5)

()1 B u=g on I,x10,T] (7.1.6)

- —gm=h on I;Xx]0,T] - (7.1.7)

L ue, 0) = wplx) x€Q (7.1.8)

Recall from Chapter 2 ‘that
g = Kyl | (7.1.9)

where k; = k;;(x) denotes the conductivity tensor. The notation u, denotes the time
derivative of u (i.e., u, = ou/or).

' Let(@ denote the usual space of weighting functions satisfying zero-temperature
boundary conditions. Note that functions in (0 do not depend on time in any way. Let
& = &, denote the space of trial solutions. Note that & varies as a function of ¢ due to
the temperature boundary condition, (7.1.2),

S=48 = {u(- 1) |ux, 1) =glx, 1), x €T, u(-, ) € H' (Q)} (7.1.10)
ST Cosmenind B¢
The weak formulation consists of the following;
( Given ¢, g, 4, and uy, find u(f) € &; ¢+ € [0,T] such that for all w € @),

w) ! (v, pei) + alw, 1) = (v, ) + (w, e (7.1.11)

w, pcu(0) = w, peuy) Tk (7.1.12)
Condition
Remark

In the weak formulation, x is suppressed as an argument of u. Thus u(0)
represents the function # of x at time 0 [i.e., u(0) = u(- , 0)]. The superposed dot is
used to denote time differentiation. These notations, among other things, enable us to
remove commas from the weak formulation which might be confused with those
normally appearing in the bilinear forms. Equation (7.1.11) is the weak formulation
of the heat equation (7.1.5) and heat-conduction boundary condition (7.1.7), and
(7.1.12) is the weak form of the initial condition (7.1.8).
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Exercise 1. Verify the formal equivalence of (S) and (W) by proceeding along the lines'
Sec. 2.3. The procedure is virtually identical to Sec. 2.3 if (7.1.11) is written ag\

a(w, 1) = (w, £) + w, B
where

~

{ ={— pci

To develop the analogous Galerkin formulation, we proceed as in Sec. 2.4. The
approximate weighting function space, ", is identical to before. Functions u* € &

are built up in the usual way: als0
otk & neehed
uht = o + ¢ ) U}‘:W‘ +q Z (7.10.‘13)

where v"(¢) € @" (i.e, for-each fixed 7, o"(- , t) is a function in (0%) and ¢" enables
satisfaction of the temperature boundary condition. Note that g'e) € St All the
functions in (7.1.13) depend upon both space and time, i.e.,

uh(e, ) =o', ) + ', 0 (7.1.14)

The Galerkin formulation is stated as follows:

[ Given ¢, g, h, and wug, find u* = oh + gt ult) € &”,Fiuch that f(\ir_}‘al
h h Tt T Ar MY AL
w' € 0, | Ao esserticl B

B

(G)} wh, pct?) + a(w”, v") =O(w", H + wh e — wh pcd®) —aw", g

. i o (7.1.15)
R T (wh, peo™(0) = (wh, pew) — Wh, peg(0) (7.1.16)
Note that all given quantities appear on the right-hand sides of (7.1.15) and

(7.1.16). The Galerkin equation given by (7.1.15) is called a semidiscrete equation

because time is left continuous. .
The matrix equations require representations of o* and ¢* in terms of basis

functions. These are given by

>'<\;\‘;0¢w vh(x, t) = Ae%_n Ny (£)da () (7.1.17)
AT = = Y M@ (7.1.18)

4 E ' | AEn,
Note that the entire time-dependence is carried by the nodal values (i.e., the dy’s and
g4’s). The shape functions are ~Jontical to those used previously (see Chapters 2

and 3). In particular, they are not time-dependent.

Remark
; ‘Upon encountering representations such as (7.1.17) and (7.1.18) for the first

time, we may wonder if the approximation is valid only when the exact solution is
“separable” in x and ¢ (e.g., see [1] for a discussion of the separation-of-variables
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technique). This is not the case. Even nonseparable exact solutions may be approxi-

mated arbitrarily closely by representations like (7.1.17) and (7.1.18).

To develop the matrix equations, we substitute (7.1.17) and (7.1.18) into
(7.1.15) and (7.1.16) and proceed along the same lines as in Secs. 2.4 and 2.5. The

end result is the following matrix problem:

Given F:10, T[— R, find d: [0, T1— R™ such that

Md+Kd=F +t€]0,7T[
d(O) = do
where _
fg)

M=%(m")

m = [m;b]

mjb =f Na,OCNb dq)
Qe

Rel

K= »g(ke)

ke = [k3]
e = f BIDB, dQ
Qe

Rej

F() = Frogu () + A (@)

=13
¢= [ NgdQ+ [ Nbdl = N k50t + ms i
[ fﬂe ¢ ﬁ‘}f % (kirgs + mé&as)

Rep

d() =M A (ée)
e=1
de = {dg

A "en
ds = f Nopcug dQ — 3 m,g(0)
¢ .

b=1

(7.1.19)
(7.1.20)
(7.1.21)

(7.1.22)
(7.1.23)

(7.1.24)

(7.1.25)
(7.1.26)

(7.1.27)

(7.1.28)
(7.1.29)

(7.1.30)
(7.1.31)
(7.1.32)
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Remarks : C

1. If we compare with the steady formulation of Chapter 2, we see that the only
new matrix which appears is M, the capacity matrix. That M is symmetric and
positive-definite follows directly from its definition. .

2. Equation (7.1.19) is a coupled system of ordinary differential equations. Thus
to solve the initial-value problem, i.e., (7.1.19) and (7.1.20), we need to introduce
algorithms for solving systems of ordinary differential equations. This subject is taken
up in subsequent chapters. '

3. Observe in (7.1.29) that the element capacity matrices come into play in
accounting for the effect of specified boundary temperatures.

4. It is common in practice to simplify the specification of initial conditions. That
is, rather than employ (7.1.30) through (7.1.32), which emanate from (7.1.16), we
directly specify d, such that the given nodal values are interpolated [i.e., dy =
Uo(x4), A €  — m,]. ‘

S. The element capacity matrix m* turns out to be virtually identical to the
element “mass” matrix, which will be introduced in the next section. Consequently,
we shall postpone more detailed consideration of the structure of ¢ until later.-

6. Recall that ¢ £(t) = 01if degree of freedom b of element e is not specified. The

same rule applies to ¢£. .

Exercise 2. The details of arriving at (7.1.19) through (7.1.32) are straightforward given
familiarity with the analogous developments in Chapter 2. If the results are not
“obvious,” the reader should fill in all details in step-by-step fashion.

Example

The one-dimensional heat equation is, of course, just a special case of the general
formulation above. A strong form of the initial /boundary-value problem can be set which
is a generalization of the one-dimensional model problem considered in Chapter 1. The

equations are

[ peu— (kuy).={ on [0, L[ x J0, T[ (7.1.33)
u(l, t) = gt) t €10, T (7.1.34)

()1 —kue (0, 8) =h() ¢t €70, T[ (7.1.35)
~u(x, 0) = up(x) x €10, L[ (7.1.36)

The element arra);s are

me, = fﬂ N.pcN, dQ ‘ (7.1.37)
ks, = f No 2Ny dQ (7.1.38)
Qe

fa= fn Nof dQ + Na(0)8a b = 3 (ke g5 + mi¢8) | (7.1.39)
b=1
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HND SrOLIC CASE: ELASTODYNAMICS <. ¢ povticu\ay

only AND STRUCTURAL DYNAMICS yperloolic ceube
and ,
- The developments of this section generalize those of Secs. 2.7 through 2.10. The

Chus - nature of the generalization is similar in format to that of the previous section and the
fuce reader should first become familiar with Sec. 7.1 before considering this section even
iken if he or she is unjnterested in heat conduction, :

' The initial conditions this time involve specification of both displacements and
/ in velocities. Thus
hat | uy: —R \ (7.2.1)
we and ‘ need b‘f}""\ Stce

we w\ \have Secn
Uit Q>R open e O\Q,V“\\,os\f\%. 2.2)

he ) . . ) Cowmniw ) ) )
i are given functions for eachi, 1 < < nsa. The superposed-dot notation in (7.2.2) is
Ys symbolic rather than operational,
\ The remaining prescribed data are
e

40 %10, T[-R (7.2.3)
; gi: 1y, X ]0, T[> R (7.2.4)
ot hi: Ty X 10, T[— R (7.2.5)

The density, p: Q02— R, assumed to be positive, needs also to be specified in the
present case, "

The strong form of the initial/boundary-value problem is

[ Given ¢, ¢, 4, ‘i and i, as in (7.2.1) through (7.2.5), find w: QX
[0, T]— R such that |

Phiw = 055+ 4 onQ x 0, T[ (equation of motion)  (7.2.6)

(S) 1 U =g, on I, x ]0, 7T (7.2.7)
oun; =k, 4; on I, x Jo, 7] (7.2.8)

u;(x, 0) = up(x) ) x €0 (7.2.9)

L i (x, 0) = iy (x) xXEQ o (7.2.10)

Recall that oy = Cia U,y a0d Cy = ¢y (x). Note that the second time derivative (i.e.,
acceleration) appears in (7.2.6). This is the reason that two initial conditions are

The corresponding weak formulation is: !

'We now use “direct notation”; see Chapter 2 for elaboration,
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f Given ¢, g, k, uo, and iy, find u(t) € &, ¢ € [0, T], such that for all w € @),
| (W) (w, pit) + a(w, w) = (w, §) + (w, L)r (7.2.11)
(w, pu(0)) = (w, puo) (7.2.12)
(w, pie(0)) = (w, pito) | (7.2.13)

Exercise 1. . Verify the formal equivalence of (S) and (W). The arguments of Chapter 2 1;1;
be used virtually unaltered if (7.2.11) is written as

Ca(w, u) = (w, ) + (w, B

where 5

]
i
i
|
|
i
|

4 =4 pi

The semidiscrete Galerkin formulation of elastodynamics is:

[ Given ¢, g, &, o, and i, find u® = v" + gh, u"(t) € 8%, such that for all
wh e @, |

(wh, pi?) + a(wh, v¥) = (W, §) + (W" l)r = (W, pg") — a(w”, g")

(G)
| (7.2.14)
(wh, pr" (0)) = (W, puo) — (w", pg" (0)) (7.2.15)
L (w", pv*(0)) = (w", pito) — (W", pg"(0)) ’ (7.2.16)
The representations of v* and ¢" are given by
obGe, 0= D, Na(x)da(® (7.2.17)
 AEn-n,
h —
e, ) = D Na(rga() (7.2.18)
4 AEn,}i
'/ These and the usual arguments lead to the matrix problem:
Given F: 10, T[ — R™, find d: 0, T[ — R™ such that
Mi+Kd=F t€0,T] | (@219
d0) = dy (7.2.20)




Hypérbdl‘yic‘ Case: Elastodynamics and Structural Dynamics

Sec. 7.2
d() = 4
where .
M = ﬁ (m®)
m* = [mg,]

mg, = 8, L NopN, d©

(Recall p = n,y(a — 1) +iandg = ned(b — 1) +)
Rej

K= A(k)

= [k;q]

o = ¢! f BIDB, d0 ¢,

el

F®) = Fuoa 0) + A ()

fo=1{r}

: Hoe
o= fQNa‘Zf 4o + LENG/L,- T = (k08 + mg,09)
/L' ' (no sum on i)

Rl

d=m" A (de)
= {dg) |
f N, puy; dQ) — El (1))
dy = M"‘é @y
= tdy

de pruo,dﬂ Empng(O)

g=1

(7.2.23)

(7.2.24)

(7.2.25)

(7.2.26)

(7.2.27)
(7.2.28)

(7.2.29)

(7.2.30)

(7.2.31)
(7.2.32)
(7.5.33)
(7.2.34)
(7.2.35)

(7.2.36)




Remarks \ kt

1. The main addition to what we have encountered previously in the elastostatics
formulation of Chapter 2 is the mass matrix, M. The reader should verify that M is
symmetric and positive-definite. Except for the Kronecker delta and different material
parameter inside the integrand, the mass and capacity matrix [(7.1.21) through
(7.1.23)] are identical. To appreciate the origin of the Kronecker delta, we will sketch
part of the calculation that leads to the matrix formulation. If we restrict attention to
the eth element, then

[

(w", pis")e = ] wl p il dQ
QE
= 5, f wh p il dQ) (7.2.37)
Qe

= cu & f Ny p Ny dQ dy' (summation of i and j implied)
AB o

2. Equation (7.2.19) is a coupled system of second-order ordinary differential
equations. Algorithms for solving equations of this type are described in Chapter 9,
3. Note that the element mass is involved in the adjustment of forces due to

nonzero boundary accelerations (see (7.2.30)).
4. As mentioned in the previous section, we usually simplify the specification
of initial conditions in practice. Nodal interpolates in this case take the form

dop = Ug;(xs) (7'2-38)
A dop = Lo (%4) (7-2-39)
where P = LM(i, A). Recall LM is the array described in Chapter 2.

Exercise 2. Fill in the omitted details leading to the matrix formulation of elastodynamics.

.

Viscous Damping

In structural dynamics we often work with systems of the form

Md+Cd+Kd=F (7.2.40)

=

where C is the viscous damping matrix. A particularly convenient form of C is the
Rayleigh damping matrix

C =aM + bK | (7.2.41)

where a and b are parameters. The two constituents of Rayleigh damping are seen to




¢ mass and stiffness proportional. We would like to enlarge our theoretical frame-
work to include Rayleigh damping. The necessary modifications are as follows:
Replace the equation of motion, (7.2.6), by

Puiy + apu, = oy; + ¢ (7.2.42)

where the generalized Hooke’s law is modified to account for the stiffness proportional
effect, namely,

oy = cjulugy + b bgp) (7.2.43) |

In addition to the appearance of the Cd-term in (7.2.40), the effect of the viscous
damping matrix is also felt in modifying the forces due to prescribed displacement
boundary conditions. Specifically,

£ = right-hand side of (7.2.30) — 3 cg, 4 (7.2.44)

where
¢t = am® + bk® (7.2.45)

). Everything else remains the same. The parameters a and b may be selected to produce
0 desired damping characteristics.
n
Example
) In one dimension, the above formulation leads to a wave eguation. This also may be

viewed as a generalization of the one-dimensional model problem of Chapter 1. Various
interpretations are possible. For example, the axial motion of an elastic rod of length L
is governed by the equation

pu..=o0,.+¢ on]O,L[ X 10, T[ (7.2.46)
where
‘o=Eu, (7.2.47)

and E = E(x) is Young’s modulus. Boundary and initial conditions may be specified in
analogous, fashion to Chapter 1, namely,

u(L, t) = g(t) t €10, T[ (7.2.48)
~Eu.0,t)=4t) ¢t €]0,T[ (7.2.49)
u(x, 0) = uo(x) x €10,L[ (7.2.50)
i(x, 0) = o) x €10, L[ (7.2.51)

The resulting element arrays are virtually identical to the ones encountered in the
one-dimensional heat equation example at the end of Sec. 7.1, viz.,

me, = fﬂ N.pN, dQ (7.2.52)
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Algorithms for Parabolic Problems

ite

.1 ONE-STEP ALGORITHMS FOR THE SERIIDISCRETE HEAT
 EQUATION: GENERALIZED TRAPEZOIDAL METHOD

Recall that the semidiscrete heat equation can be written as
Md+Kd=F (8.1.1)

where M is the capacity matrix, K is the conductivity matrix, F is the heat supply
vector, d is-the temperature vector, and d is the time (¢) derivative of d. The matrices
M and K are assumed symmetric, M is positive-definite, and K is positive-semidefinite
(usually K is positive-definite too). The heat supply is a prescribed function of r. We
write F = F(z) for ¢ € [0, T]. Equation (8.1.1) is to be thought of as a coupled
system of n,, ordinary differential equations. '

The initial-value problem consists of finding a function d = d (?) satisfying
(8.1.1), and the initial condition

d(0) = dy (812

where d, is given.

Perhaps the most well known and commonly used algorithms for solving (8.1. 1)
are members of the generalized trapezoidal family of methods, which consists of the
following equations:
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Mv,sy + Kdyy = F,y, (8.1.3)
dn+l = dn + AZ Vota (8.1,4)
Vera = (1 — a)v, + av,y (8.1.5)

where d, and v, are the approximations to d(z,) and d(z,), respectively; F,,, =
F (t,+1); At is the time step, assumed constant for the time being; and «ais a parameter,
taken to be in the interval [0, 1]. .

Some well-known members of the generalized trapezoidal family are identified
below.

a Method

e

Forward differences; forward Euler
Trapezoidal rule; midpoint rule; Crank-Nicolson

p— N

Backward differences; backward Euler

So that the reader has a basic appreciation of the computations entailed by the
algorithm, we will present next a brief overview of implementational considerations. |

Implementation 1: v-form

The computational problem is to determine d,y; and v,y given d, and v,. The
procedure begins at n = 0 with dy known. The initial value, -v,, may be determined
from the time-discrete heat equation evaluated at ¢ = 0:

MVQ = E) - Kd() ‘ (816)

There are several ways of implementing the recursion relationship that takes us from
step n to step n + 1. Let the predictor value of d, ., be defined by

dyi=d,+ (1 — a)Ary, (8.1.7)

;)

Note that (8.1.4) and (8.1:5) can be combined and expressed in terms. of (8.1.7):
-  dyy = Zin+1 + alt v, (8.1.8)

Substituting this expression into (8.1.3) results in an equation that may be solved for

Vrt1:

M + aAtK)vysy = By — Kduy (8.1.9)

A& §

~ Lonekion uﬁ%’-\f}t{w‘; 0
n il woladta b
&5 20 anow

A aid




‘\j(’)ﬁmc) S
Pt G Bl
Qpyg = Chn + BE (101, + bt <N,
e Gyvany®
A=)V = Dy ~ Ay — D AUy
%Ue{?g\"iﬁ%ﬁ‘ ‘)V’\ﬂ:\é Vo S
X‘«wﬁ? &\n +d~mm, m&b\ B &‘b‘;&@;ﬁ%i

< .
C}“wﬂ: - dlhﬂ,qﬂ bt W‘Mi <’T W&




Sec. 8.1  One-step Algorithms for the Semidiscrete Heat Equation E [ 461
Al .

Observe that the terms on the right-hand side of (8.1.9) are khown. Once v, is
- determined, (8.1.8) serves to define d,.,,, and so on.

Remarks :

1. In the case of @ = 0, the method is said to be explicit. The attribute of
explicit methods may be seen from (8.1.9) if M is assumed “lumped” (i.e., diagonal).
In this case the solution may be advanced without the necessity of equation solving.

2. If a ## 0, the method is said to be implicit. Tn these cases a system of
equations, with coefficient matrix (M + aAz K), needs to be solved at each step to
advance the solution. As long as At is constant, only one factorization is required.

3. The right-hand-side vector is formed one element at a time. Recall that the
definition of F is given in this way (see (7.1.27) through (7.1.29)). The product

Rl

Kd, ., = Ai (ke de..) (8.1.10)

where d n+1 contains zeros in degrees of freedom that correspond to prescribed
boundary conditions. The effect of the boundary-condition terms is already accounted
for in the definition of F [see (7.1.29)]. This aspect of the implementation warrants
further discussion. We will postpone the details until we consider a general
implementation of a class of hyperbolic and hyperbolic-parabolic algorithms in
Chapter 9. The general case can be specialized to the present circumstances.

4. It is useful to note that the implementation manifested by (8.1.9) can easily
be generalized to so-called implicit-explicit methods, where part of K-is treated
implicitly and part explicitly. The only required change is to replace K on the left-hand
side of (8.1.9) with the part to be treated implicitly, say K. This could be the assembly
of a subset of elements, which leads to implicit-explicit element mesh partitions (see
Hughes et al. [1-3]).! It may be observed that the implementation is trivial. We shall
put off a more detailed discussion until Chapter 9.

Implementation 2: d-form

Another possibility is to eliminate v,+; from (8.1.3) via (8.1.8). Thus in place of
(8.1.9) we have ‘
1 1
;Z;(M + alAt K)d,., = Foi + denH (8.1.11)
In this implementation, (8.1.11) is used to determine dy+1 and then v,,; may be
determined from (8.1.8), i.e.,

- v _ dpiy — dn+1
+t T T
" alt

The advantage of this implementation occurs when M is diagonal. In this case the

calculation of the right-hand side of (8.1.11) may be performed much more

economically than the right-hand side of (8.1.9). The equation-solving burden is of
course the same for (8.1.9) and (8.1.11). "

(8.1.12)




Remark ' Vi‘
Note that if @Az — «in (8.1.11), the equilibrium, or steady~state solution (1 e.,
one for which d = 0) is approached, viz.,

Kdy1 —> Fouy (8.1.13)

This fact can be exploited in a transient analysis computer pfogram if the equilibrium
solution is desired. Just select a value of aA¢ large enough so that (8.1.13) holds to
‘desired precision. :

Exercise 1. Derive an implementation in which the v,’s are unnecessary. This results in a
saving of computer storage. [Answer: (M + aAt K)dys1 = M ~ (1 — o)At K)d, +
AI(QE;-H + (1 - OZ)F)]

: Must o

8.2 ANALYSIS OF THE GENERALIZED TRAPEZOIDAL GJ‘%\QW‘V\ o {\% ) -

' % |

METHOD oo e s Qe ;

The primary requirement of the algorithms given in theﬂ%asgx se(ctlon is that they

converge. We shall call an algorithm convergent if for. ¢, fixed and At = t,/n,

d, — d(t,) as At — 0. To establish the convergence of an algorithm, two additional

notions must be considered: séability and consistency. We shall show later on that once

stability and consistency are verified, convergence is automatic. In addition, we shall

be concerned with the accuracy of an algorithm, i.e., the rate of convergence as

At — 0, and allied topics such as the behavior of the (spurious) higher modes of the

semidiscrete system. There are several techniques that can be employed to study the

characteristics of an algorithm. In the present context the most revealing approach

appears to be the “modal approach” (sometimes called spectral, or Fourier, analysis)

in which the problem is decomposed into ., uncoupled scalar equations. It can be

rigorously established that the behavior of the entire coupled system reduces to

consideration of the individual modal equatlons that comprise it. Our first step in

analyzing the family of algorithms introduced in Sec. 8.1 will be to perform the
reduction to single-degree-of-freedom (SDOF) form.

8.2.1 Modal Reduction to SDOF Form

The essential property used in reducing to SDOF form is the orthogonality of the
eigenvectors of the associated eigenvalue problem. Recall that

K~ MM, =0, [1€{1,2, ..., 1, (8.2.1)

where

OsM=M=s--=A] (8.2.2)

leg
and .
WM &, = o, (orthonormality) (8.2.3)




Algorithms for Hyperbolic
and Parabolic-Hyperbolic Problems

ONE-STEP ALGORITHMS FOR THE SEMIDISCRETE
EQUATION OF MIOTION .

9.1.1 The Newmark Method

Recall from Chapter 7 that the semidiscrete equation of motion is written as
Md+Cl+Kd=F (9.1.1)

where M is the mass matrix, C is the viscous damping matrix, K is the stiffness matrix,
F is the vector of applied forces, and d, d, and d are the displacement, velocity and
acceleration vectors, respectively. We take M, C, and K to be symmetric; M is
positive-definite, and C and K are positive-semidefinite.

The initial-value problem for (9.1.1) consists of finding a displacement,
d = d(f), satisfying (9.1.1) and the given initial data:

d(0) = d, (9.1.2)
d(0) = v, (9.1.3)

Perhaps the most widely used family of direct methods for solving (9.1.1) to
(9.1.3) is the Newmark family [1], which consists of the following equations:

Wan+l + Cvn+l + Kdn+1 = Fn+1 | (914)
’ 2
dus = dy+ Aty + 5510 = 2B)a, + 260,01 ©.1.9)
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Sec. 9.1 One-step Algorithms for the Semidiscrete Equation of Motion XQ\.QM

Va1 = vn + At[(l - y)an + ')/an+l] (916)

where d,,, v,, and @, are the approximations of d(z,), d(z,), and d(z,), respectively.
Equation (9.1.4) is simply the equation of motion in terms of the approximate solu-
tion, and (9.1.5) and (9.1.6) are finite difference formulas describing the evolution of
the approximate solution. The parameters 8 and y determine the stability and accuracy
characteristics of the algorithm under consideration. Equations (9.1.4) to (9.1.6) may
be thought of as three equations for determining the three unknowns d,+1, v,+1, and
@,+1, it being assumed that d,, v,, and @, are known from the previous step’s calcu-
Jations., The Newmark family contains as special cases many well-known and widely

used methods.

Implementation: a-form

There are several possible implementations. We will sketch one, but we leave further
details until Sec. 9.4, which deals with operator and mesh partitions. The results in

Sec. 9.4 include the Newmark method as a special case. Define predictors:

~ A2 \ .
» dyu = dy + Ay, + =-(1 = 2B)a, 9.1.7)
Vet = ¥ + (1 — y)Ata, (9.1.8)

Equations (9.1.5) and (9.1.6) may then be writtén as
@iy = En;f‘l + BA a4 (9.1.9)
Varl = Pyt t+ 'yAta,,ﬂ (9.1.10)
To start the process, @, may be calculated from
May, = F — Cvy — Kd, (9.1.11)

or specified directly. The recursion relation determines @,41:"

M + yAtC + BAtK)ays; = Fypy — C¥ iy — Kd iy (9.1.12)

Equations (9.1.9) and (9.1.10) may then be used to calculate d,+; and v,., re-
spectively. '

This form of implementation is convenient for generalization to algorithms that
employ “mesh partitions” (see Sec. 9.4) but is not the most efficient implementation.
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