
Software	for	performing	finite	element	analysis	
The purpose of these notes is to give an introduction to software available at RPI for performing finite 
element analyses. It is intended to give you a feel for the range of tools and point you to software that is 
available. Much of the information in this document is a function of time. The current version is 
addressing the state of the methods and software available in fall 2017.  
From a high level perspective the execution of a FE analysis is part of executing a simulation to evaluate 
one or more quantities of interest (QOIs) of a physical system for which the core mathematical model 
used is based on PDEs. Starting from that perspective the steps in performing the simulation using a FE 
method include: 

1. Specifying the problem of interest – this should be done at the highest level possible. For 
problems we are considering this includes: 

a. The domain of interest  
b. The physical attributes of loads, material properties, boundary conditions, initial 

conditions.  
c. Indication of the QOI’s 

2. Selecting the mathematical model(s) to represent the behavior – the PDE’s to be solved in our 
case. Step 1b must provide needed values for parameters that are part of the PDE. 

3. Selecting the PDE discretization method – in our case FE methods. 
4. Setting the mesh control information and generate and initial mesh and create analysis input 

information. 
5. Performing the finite element analysis 
6. Evaluating the results with respect to mesh adequacy 

a. If mesh not adequate, improve mesh and return to step 5 
b. If mesh adequate, continue 

7. Postprocessing the results to evaluate QOIs 
8. Evaluating the modeling decisions 

a. If models used not adequate, improve the models – if model is still PDEs return to step 3. 
b. If models adequate, continue 

9. Preparing the final output information 

Execution	of	Simulation	Workflows	with	FE	Analysis	
There are multiple modes taken in the execution of the simulation workflows that include finite element 
analysis analyses.  
The historic perspective for the execution of a FE analysis is to define all information directly in the form 
used in the input file the FE analysis code reads in for its execution. Tools were developed to ease the 
creation of these files, however, the means everything is defined in terms of a specific mesh making the 
execution of processes, such as adaptive analysis where the mesh changes, not only difficult, but also 
ambiguous. Although tools have advanced substantially, it is still common for tools to either allow, or 
even require, the specification of physical attribute information directly in terms of a given mesh. Reliable 
automation of simulation processes in which mesh discretization errors are adaptively addressed 
requires this information be defined in terms of a higher-level model representation. For example 
associating the physical attributes to entities in a CAD model for a fixed geometry simulation. There are 
higher-level models possible to deal with things like geometric shape/topology optimization and geometry 
evolution as part of the analysis (e.g., analyzing an additive manufacturing process).  

Software	Available	at	RPI	for	Simulations	with	FE	Analysis	
A number of tools needed to support finite element based simulations are available to RPI users. Many 
of these packages are available to the entire campus community while in other cases the software may 
only be available on specific systems or to specific research groups.  
The available software falls into one of two broad categories: open-source and closed source (typically 
commercial) software. In the majority of cases there is no issues in using an existing open source 
software package for academic use. However, it you are going to develop software building upon open 



source software, you do need to check the form of open source license. Some licenses let you use and 
modify the software in any way you would like, while others require that all software that makes use of 
that software be made available as part the open source software. It is important to be aware of such 
license requirements since they can influence decisions you are able to make with software you develop. 
In the case of closed source commercial licenses must be obtained and there are typically restrictions on 
its use. In almost all cases it is limited to specific classes of academic only use. In some cases this can 
be limited to essentially classroom use while others also allow research use. In some cases the version 
that is available does not include all features, and/or limits the size of problem that can be addressed.  
To gain access to campus level software that you can download onto your own system go to the DOT 
CIO software install web page at http://dotcio.rpi.edu/services/software-labs  
A number of the software packages available to the RPI community are part of the PACE program. For 
more information on PACE see http://www.pace.rpi.edu/software.html  
In terms of running software on the RPI super computer and/or parallel clusters at the Center for 
Computational Innovations (http://cci.rpi.edu/), you can see the available software at  
https://secure.cci.rpi.edu/wiki/index.php/Software_overview 
To define a project and get a CCI account see 
https://secure.cci.rpi.edu/wiki/index.php/CCI_User_Wiki 

Geometry	Generation	Software	at	RPI	
There are multiple sources for the definition of the simulation domain. CAD models represent the most 
common domain definitions used in engineering processes. Other options for the definition of the domain 
include “mesh models” and “surface triangulations” where only a discretized version of the model is 
available, and “image data” in which basics information on material type at points of a regular grid is 
known.  
In the common case of the CAD model there is a topological model of the domain known in terms of 
material regions bounded by shells that are collections of faces that are bounded by one or more loops 
of edges that are bounded by vertices. The base topological entities of regions, faces, edges and 
vertices provide a convenient mechanism for the specification of the physical attributes since we are 
dealing with solving boundary value problems when solving PDE’s. It is also convenient to think of the 
mesh in terms of mesh regions, faces, edges and vertices, each of which can be associated with the 
geometric model entities. This supports the mapping of material properties, initial conditions and 
boundary conditions from the geometric model to any mesh used to represent the domain and supports 
proper mesh adaptation. 

 
Solid modeling software that is available for use at RPI includes Siemens NX (formerly NX Unigraphics) 
and SolidWorks. See http://dotcio.rpi.edu/services/software-labs to download this software and its 
documentation. There is also tutorial information available as part of the basic engineering graphics and 
CAD course. Both of these solid modeling systems build upon the Parasolid Modeling Kernel which 
consists of a set of low level geometric model interrogation, creation, and modification functions. The 
Parasolid Modeling Kernel functions have been used by SCOREC researchers to develop specific 
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modeling capabilities and to support mesh generation.  Contact Cameron Smith (smithc11@rpi.edu) for 
access. 
A couple of alternative approaches have been taken to go from image data to finite element analysis 
meshes. In both cases the image data needs to be segmented such that each point (or each voxel) is 
identified with a specific (small set wrt the number of points) of materials types. The Kitware Image Tool 
Kit (ITK) (https://itk.org/) is a powerful image segmentation tool. One approach to creating a mesh from 
the image data is to directly relate the segmented voxels to mesh entities. In addition to producing a very 
fine mesh, this approach does not lend itself to performing a full set of cleanup operations. An alternative 
is to create a discrete boundary representation. Software available from Simmetrix 
(http://www.simmetrix.com/) is capable of creating such boundary representations, manipulating them to 
eliminate noise, and meshing them. 
The ability to interact with geometric models is central to the ability to apply automatic mesh generation 
techniques. The most effective means of dong this is to be able to interact with the CAD model 
information in a manner that is consistent with the CAD system’s definition of the model topology, shape 
information and tolerances. An example of a tool that effectively supports such interactions is the 
Simmetrix (http://www.simmetrix.com/) geometric modeling interface, GeomSim. GeomSim maintains a 
complete copy of the topology for general non-manifold geometric models, can interact directly with CAD 
systems to construct the topology and to perform geometric interrogations accounting for geometric 
tolerances, combine models from various sources (CAD, mesh models, image data), convert segmented 
image data to boundary representation geometric models and to cleanup geometric models of imaging 
artifacts. The figure below shows segmented image data (left) converted to a boundary representation 
geometry that is then automatically meshed for FE analysis (right). 

 
The Simmetrix simulation automation components (more on other Simmetrix tools below) are available 
on both the RPI CCI and SCOREC computer systems. Simmetrix documentation is located at 
https://secure.cci.rpi.edu/wiki/index.php/Simmetrix for CCI users and at 
https://wiki.scorec.rpi.edu/researchwiki/Simmetrix for SCOREC users. 

Attribute	Specification	and	Simulation	Field	Software	at	RPI	
Software of various types deals with this. The tools for analysis attribute specification vary from tools to 
apply tensor level quantities to the high geometric domains to specifying information directly on individual 
finite element entities. Many of the tools that are available to specify this information mix the specification 
of the physical attribute information (loads, material properties, boundary and initial conditions) with 
analysis control information (element types, mesh sizes, time steps, etc.). It is preferable to separate the 
two classes of attributes.  
In addition to the ability to define the input fields, preferably at the geometric model level, there is the 
desire to also store the tensor field information that is solved for by the finite element analysis, the so 
called solution fields. This information is defined in terms of the mesh and shape functions defining how 
the fields vary over the mesh entities.   



The figure below depicts the basics of applying attributes to a geometric domain while the figure on the 
right demonstrations the basics of a solution field.  

	
The available tools for attribute specification and managing the solution fields range from geometry-
based systems for applying tensor information to geometric model entities using either scripts or a 
graphical user interface, to tools that specify detailed pointwise information directly on the mesh. Many of 
the commercial finite element packages support the ability to specify the analysis attributes and store 
solution field data.  
Simmetrix has a graphical user interface for the specification of analysis attributes as well as a 
component (FieldSim) to manage the tensor fields associated with the geometric model and mesh. The 
pointer to Simmetrix software documentation is given at end of geometric modeling section. Note that the 
Simmetrix components can operate in parallel on distributed meshes.  
SCOREC also has a set of open source tools to manage meshes and fields associated with them. The 
core tool is PUMI/APF that supports the representation and manipulation of meshes and fields on 
distributed parallel computers. Pointers to information on PUMI/APF, as well as other SCOREC mesh 
based components can be found at https://www.scorec.rpi.edu/software.php. 

Mesh	Generation	
Many of the commercial analysis packages have mesh generation tools linked into the systems that can 
be exercised. In addition there are a number of both commercial and open source mesh generation tools 
that are available. In terms of campus usage for just doing finite element analysis, much of the mesh 
generation is done using tools that are part of a commercial finite element software system.  
It is now reasonably common that the mesh generation software can interact with geometry data from 
CAD systems. Although there have been substantial improvements in the ability to interact with such 
geometry, some mesh generation software more effectively interacts with CAD geometry than others. A 
number of the tools support the fully automatic generation of meshes from general geometries and 
provide various tools to specific information to control element sizes and gradations. The robust fully 
automated procedures are based on the use of simplex elements in at least major portions of the 
domain.  
One commercial mesh package available on campus is MSC Patran 
(http://www.pace.rpi.edu/software.html) 
Open source mesh generation tools include:  
• Triangle for 2D (https://www.cs.cmu.edu/~quake/triangle.html) 
• Gmsh for 3D (http://gmsh.info/) 
• CUBIT for hex meshing (https://cubit.sandia.gov/) 
• Netgen (https://sourceforge.net/projects/netgen-mesher/)  

The Simmetrix mesh generation and mesh adaptation software, MeshSim and MeshSim Adapt, are 
heavily used in SCOREC in a large number of research projects. Like the other Simmetrix components, 



they both can operate in parallel on distributed meshes. The pointer to Simmetrix software 
documentation is given at end of geometric modeling section. 
 
Some mesh generation examples: 

 
 

 

 
  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may 
have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to 
delete the image and then insert it again.

Figure 4: (left)Tetrahedral mesh of benchmark system containing 43 million elements and 7.8 mil-
lion vertices. (right) Magnification of same mesh to show refinement near the interfaces with
solderballs. Approximately 40% of all mesh elements are within 1.5 radii of a solderball.

A mesh was generated for the benchmark configuration consisting of 43 million tetrahedral
elements and 7.8 million vertices. This mesh is shown in Figure 4. The mesh for the benchmark
structure, as well as those for other structural variations, are highly refined near the contact patches
on either side of the solder balls. In the benchmark mesh approximately 40% of all mesh elements
are located within 1.5 radii of the solderballs. The distribution of elements in and around a typical
contact patch is shown on the right in Figure 4. It was found that with a thickness of 300 µm for the
slabs representing the die and the chip carrier, the far side of each slab remained flat and variations
in stress across the back sides of the die and chip carrier, telegraphed through their thicknesses
from the individual solder balls, were negligible.

We model the material properties of the die as that of pure silicon and those of the chip carrier
as silica, as listed in Table 2. In each case, the die and carrier are regarded as being subject to J2
plasticity but not to creep. The solder joints are modelled as being a Sn-Ag-Cu alloy with most
properties taken from Ref. 15, and creep parameters taken from Ref. 16, as listed in Table 2.

2.3 Workflow
Our physical system is both geometrically complex and large compared to its smallest relevant ge-
ometric feature and exhibits highly non-linear behavior over time. With such a large computational
task, it is useful to employ large scale parallel computers for its solution. However, because we
wish to simulate several geometric configurations of the already geometrically complex system,
problem setup becomes a significant part of the total simulation effort. Our workflow for simulat-
ing this system consists of generating the non-manifold geometric model, identifying parts of the
geometry that require highly refined meshing, constructing the mesh, partitioning the mesh into the
appropriate number of parts for the parallel equations solver, applying the appropriate boundary
conditions within the solver, solving the mechanical equations, storing the solution, and analyzing
the results. Figure 5 shows how we implement this workflow.

To generate the geometric model, we use Siemens’ Parasolid modelling kernel [17] on a Linux-
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Some adaptive mesh examples: 

 
 

 

Finite	Element	Software	at	RPI	
There are a number of software packages available at RPI that execute finite element, or finite volume, 
analyses. The list is known to be incomplete, thus do not be surprised to hear about other codes, 
particularly research ones associated with specific research groups. Most of the ones listed here are 
available to the RPI community or happen to be used regularly by multiple researchers in SCOREC.  
The available FE codes range in the types of physics they can model with codes for solid/structural 
mechanics, fluid mechanics, electromagnetics being most common. Some codes have been developed 
to be more general purpose and can deal with multiple classes of physics. Past the historic fact that 
many of the codes were originally targeted to a specific class of physical behavior, the “single physics” 
codes often contain a much richer set of capabilities to perform the engineering analyses related to that 
physical behavior. For example solid/structural mechanics codes not only have a broad range of 
appropriate material models, they have specific modeling capabilities such as beam, truss, plate and 
shell formulations as well as specialized modeling abilities such as fracture mechanics, etc. Similarly fluid 
flow codes will have specific fluid material models, turbulence models, specific boundary conditions, etc. 
The numerically intense part of these codes, the linear equation solvers, non-linear iteration procedures 
and time stepping procedures are also tailored to most effectively solve the large-scale non-linear ODE 
systems produced by those particular classes of problems. The codes that deal with multiple classes of 
physics usually have fairly standard models and solution procedures and require added care and, 
possibly development, for the engineering simulations of interest.  
The available codes also vary in terms license type and mode of use. The most fully featured codes tend 
to be commercial codes that have been under continuous development for years and are well supported.  
Commercial codes restricted to academic use that may be classroom and research, or class room only. 
Finite element codes available through the PACE project (see http://www.pace.rpi.edu/software.html 
include: 
• MSC NASTRAN is a solids/structural mechanics code that is well known for being able to address 

structural dynamics problems. 
• Fluent is a finite volume based CFD code with lots of features. 



• Altair HyperWorks a set of pre and postprocessing tools for setting-up finite element analyses. 
• See http://dotcio.rpi.edu/services/software-labs for the PACE software.  

Other available commercial finite element codes are:  
• Abaqus (implicit) is a well known solid mechanics code that can effectively address nonlinear 

behaviors. Useful information on using Abaqus is in a tutorial prepared by Prof. De 
http://www.ewp.rpi.edu/hartford/~ernesto/S2015/IFEM/Readings/AbaqusTutorial-De-RPI.pdf. There 
is both an educational version of Abaqus and a research version. The educational only supports 
very small problem sizes and can be downloaded from (http://dotcio.rpi.edu/services/software-labs) 
Because of the high cost of even research version of Abaqus there are only a limited number of 
licenses available. Thus there are times that all the licenses are checked out in which case 
additional users must wait.  

• Altair AcuSolve is a powerful stabilized finite element based CFD code. It has excellent scalability for 
most classes of problems it addresses to a large number of cores. It is used in multiple SCOREC 
research projects. People with CCI accounts can find documentation on it at 
https://secure.cci.rpi.edu/wiki/index.php/AcuSolve. SCOREC user can find documentation at 
(https://wiki.scorec.rpi.edu/researchwiki/AcuSolve). Those that do not have a SCOREC account can 
contact Prof. Shephard – shephard@rpi.edu.  

• ANSYS provides a number of packages that address for everything fluids, structures, electronics, 
multiphysics (http://www.ansys.com/). None of the ANSYS tools are currently available to RPI users, 
but we have been able to get licenses for specific use of specific packages in the past. 

There are a number of open source codes used by various groups. Two that are supported commercially 
are: 
• FEniCS is a set of interoperable components that include a problem-solving environment, a form 

compiler, a finite element tabulator, the just-in-time compiler, the code generation interface, the form 
language and a range of additional components. FEniCs is well suited for applications in which 
users wnat to implementation the weak form of a problem of interest. See https://fenicsproject.org for 
more information.  

• Open Foam is primarily a CFD code that has been extended to support specific fluid flows involving 
chemical reactions and heat transfer plus specific coupled acoustics, solid mechanics and 
electromagnetics. See http://www.openfoam.com/. 

• Deal.II is C++ software library supporting the creation of finite element codes and an open 
community of users and developers. See https://www.dealii.org  

SCOREC is involved in the development and/or extension of some open source codes: 
• PHASTA is an open source code CFD code which employs implicit stabilized finite element 

technologies. It is developed jointly by RPI and UC Boulder. It has capabilities to handle 
incompressible and compressible flows, turbulent flows (with different levels of modeling ranging 
from RANS/URANS, DDES to LES), multiphase flows (with implicit and explicit tracking), complex 
geometry and adaptive meshing including boundary layer meshing, and massively parallel 
computation. PHASTA has been used in simulations approaching 100 billion elements using over 3 
million MPI processes. PHASTA is heavily used in a number of research projects at RPI and other 
universities. SCOREC users see https://secure.cci.rpi.edu/wiki/index.php/PHASTA and 
https://github.com/SCOREC/phasta. For further information contact: Prof. Onkar Sahni 
<sahni@rpi.edu>. 

• Albany is an implicit finite element from Sandia National Labs on is the Albany. Albany is part of the 
Trilinos https://trilinos.org/ object-oriented software framework making. Albany (see 
https://github.com/gahansen/Albany and https://github.com/gahansen/Albany/wiki) is implemented in 
C++ and requires a good understanding of modern C++ programming and meta-programming 
techniques to be able to effectively extend it. This makes Albany more flexible than a commercial 
finite element code (such as Abaqus or Altair) at the cost of a development overhead and a steep 
learning curve. An example of the adaptive capabilities SCORE has added to Albany can be seen in 
this ice-sheet example: https://github.com/gahansen/Albany/wiki/PAALS-Tutorial-2016   
The premise of Albany is that a user should only need to implement the weak residual form of a 



finite element method, and the code should take care of assembling Jacobian matrices and residual 
vectors 'behind the scenes'. This is done via a process called automatic differentiation. Additionally, 
Albany can perform sensitivity analyses using the same processes.  

• MFEM is scalable C++ library for finite element methods (http://mfem.org/) from Lawrence Livermore 
National Laboratory. The goal of MFEM is to enable research and development of scalable finite 
element discretization and solver algorithms through general finite element abstractions, accurate 
and flexible visualization, and tight integration with the hypre library. Conceptually, MFEM can be 
viewed as a finite element toolbox that provides the building blocks for developing finite element 
algorithms. The SCOREC adaptive meshing procedures are being integrated into MFEM 

Results	Postprocessing	
There are a number of postprocessing operations that are typically carried out ranging from simple 
examination of output vectors of nodal values to extensive uncertainty quantification operation using 
tools such as Dakota (https://dakota.sandia.gov/). One class of commonly applied postprocessing 
operations is the visualization of various solution fields. A number of commercial and open sources tools 
have been developed for the visualization of results. The most heavily applied tools are the VTK (serial) 
(http://www.vtk.org/) and ParaView (parallel) (http://www.paraview.org/) visualization tools from Kitware 
(http://www.kitware.com/). CCI users can find Paraview documentation at  
(https://secure.cci.rpi.edu/wiki/index.php/ParaView). Another heavily use package for parallel 
visualization is Visit https://wci.llnl.gov/simulation/computer-codes/visit/) from Lawrence Livermore 
National Laboratory.  
A few examples of types of visualization: 

 

 



Some	Comments	on	the	Execution	of	Large	Scale	Simulations	
Historically all steps in a FE-based simulation workflow were executed in serial. This continues to be 
satisfactory for linear problem with up to 10,000 dof or so and for smaller time dependent and/or non-
linear problems. Increasingly the level of computation needed to obtain acceptable accuracy for 
problems of interest requires much more computation that can only be effectively provided through the 
application of parallel computation. The current state of the art in industry is the application of some 
degree of parallel computation where up to 128 compute cores, or so, are applied in the execution of the 
FE analysis. All geometry and meshing steps are still executed in serial. Most postprocessing of the 
results is also done is serial or up to workstation level parallelism using tools like ParaView.  
Increasingly there is a push in research and, to some extend, industry to execute time-dependent, 
nonlinear analyses on meshes with billions of degrees of freedom. Such problems can only be run on 
large-scale parallel computers with 10’s of thousands, or more, of compute cores. Commercial CFD 
codes have been moving to large-scale parallel execution with many codes in the 10,000 core range and 
selected ones pushing 100,000 cores. The same is not true for commercial solid/structural codes that, for 
a number of reasons, are more difficult to scale. Their level of parallelism is much less than the fluids 
codes. 
On the research side the situation is different in that research codes are performing implicit solves on 
problems with 100 billion elements using more that 1 million processes and explicit codes have gone 
much larger. RPI’s Scientific Computation Research Center (SCOREC) (https://www.scorec.rpi.edu/) is 
one of the research groups pushing these limits. In addition RPI’s Center for Computational Innovations 
(CCI) (http://cci.rpi.edu/) houses one of the largest university based parallel super computers. 
Increasingly industry is looking at the potential of employing such large-scale simulations. For example 
simulations with well over 10 billion elements were part of the process that is leading Boeing to apply 
active flow control in next generation planes.   
When one pushes to the very large scale of problem, operations that were not a sizable portion of 
smaller scale parallel simulations become an issue. In particular it becomes necessary to perform all 
steps in the simulation workflow in parallel and the application of file I/O between component operations 
becomes a problem. Both Simmetrix and SCOREC have been developing the tools needed to be 
coupled with parallel finite element codes that allow all steps in an adaptive finite element simulation to 
be carried out in parallel using effective in-memory integration of the components.  
Simmetrix (http://www.simmetrix.com/) has tools to support parallel mesh generation, distributed mesh 
manipulation, distributed geometry and parallel mesh adaptation (contact Prof. Shephard 
shephard@rpi.edu for more information).  SCOREC has developed open source tools for supporting 
distributed meshes, parallel mesh adaptation, dynamic load balancing (in conjunction with Sandia 
National Labs) and methods to support in-memory integration of simulation components. See 
https://www.scorec.rpi.edu/software.php for information on the software and 
https://www.scorec.rpi.edu/reports/ for papers on some of this work.  
  



Some	Comments	on	Writing	Finite	Element	Software	
Although we will discuss how to write a code from scratch, and the basic version of Assignment will have 
you implement a very code from scratch, this is not the recommended path for support of your research. 
In terms of your research, it is most likely one of the following approaches should be taken: 

• Use of a commercial FE code. If you can find an existing commercial code that has all the 
capabilities you will need (including supporting the size problems you need to solve) and you 
have access to use it, this is likely the best option. Commercial codes are much more carefully 
tested and have lots of features to make them user friendly. 

• Use of a FEA framework with basically no extension. If one of the available frameworks has 
everything you think you will need, but you may need some small additions in the future, one of 
the frameworks is likely the best option. Each of them has advantages and disadvantages, study 
them carefully before selecting. 

• Extending a FEA framework. If no existing code has what you need, evaluate what would need to 
be developed if you wanted to add the capability to an existing FEA framework. You will need to 
get into some level of depth in looking at the advantages and disadvantages of each framework. 
You will need to be prepared to take ownership of what you add and how it is integrated into the 
framework. 

• Taking ownership of an existing code and extending. You want to do this only if that is the core of 
your research! 

 
Remember that you can replace the from scratch FEA code development of Assignment 4 with adding to 
an FEA framework by doing an approved development that is not a specific part of your term project.   
 
To give you a feel for what it is like to work with a FEA framework we will spend some time considering 
the MFEM code. There will be two parts to this: 

• Before class on January 17th go to https://www.youtube.com/watch?v=Zh6pFjkmr0g and watch 
the first 50 minutes of this lecture. The slides are at 
https://press3.mcs.anl.gov//atpesc/files/2018/08/ATPESC_2018_Track-4_5_8-6_11am_Kolev-
Shephard-Smith-Unstructured_Meshing_Technologies.pdf  
(The rest of the lecture is very high-level overview of the other FASTMath unstructured mesh 
work that we will cover in more depth in class later.) 

• In class on January 17th, Dr. Kazem Kamran will do a live MFEM demo. Bring your lap-top to 
class if you would like to do some of demo steps during class (this is not required). If you want to 
try building MFEM in advance of the class, follow the instructions at: 
https://computing.llnl.gov/tutorials/parallel_comp/  Note: Dr. Kamran will be covering this process. 
I am told the MFEM build instructions are for gnu/linux and osx only.  Windows users will need to 
use a GNU/Linux virtual machine or dual boot to follow along.  The Windows 10 'Subsystem for 
Linux' or Cygwin may allow execution of MFEM programs, but may not support use of the 
visualization tool. 

 
 
 


